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Clinical-radiomic models based
on digital breast tomosynthesis
images: a preliminary
investigation of a predictive tool
for cancer diagnosis
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Objective: This study aimed to develop a clinical–radiomic model based on

radiomic features extracted from digital breast tomosynthesis (DBT) images and

clinical factors that may help to discriminate between benign and malignant

breast lesions.

Materials and methods: A total of 150 patients were included in this study. DBT

images acquired in the setting of a screening protocol were used. Lesions were

delineated by two expert radiologists. Malignity was always confirmed by

histopathological data. The data were randomly divided into training and

validation set with an 80:20 ratio. A total of 58 radiomic features were

extracted from each lesion using the LIFEx Software. Three different key

methods of feature selection were implemented in Python: (1) K best (KB), (2)

sequential (S), and (3) Random Forrest (RF). A model was therefore produced for

each subset of seven variables using a machine-learning algorithm, which

exploits the RF classification based on the Gini index.

Results: All three clinical–radiomic models show significant differences (p < 0.05)

betweenmalignant and benign tumors. The area under the curve (AUC) values of the

models obtained with three different feature selection methods were 0.72

[0.64,0.80], 0.72 [0.64,0.80] and 0.74 [0.66,0.82] for KB, SFS, and RF, respectively.

Conclusion: The clinical–radiomic models developed by using radiomic features

from DBT images showed a good discriminating power and hence may help

radiologists in breast cancer tumor diagnoses already at the first screening.
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1 Introduction

Breast cancer (BC) is the tumor with the highest incidence

worldwide. With 2.3 million new cases estimated in 2020, it

represents the 1.7% of new cancer diagnoses and is therefore the

most frequently diagnosed according to Global Cancer Statistics

2020 (1). Although screening and advancements in personalized

treatments have led to an improvement in survival rates, it is

estimated that BC-related deaths will increase 43% globally from

2015 to 2030 (2).

In current radiological practice, mammographic, ultrasono

graphic, or magnetic resonance imaging (MRI) evaluation of

tumors is largely qualitative and includes subjective evaluations

such as tumor aspect (spiculated, rounded, with necrosis,

microcalcification), density, type of enhancement and anatomic

relationship to the surrounding tissues in order to inform further

treatment (3, 4). Early studies have shown that the three-

dimensional (3D) digital mammography (DBT) examination can

lead to an effective reduction in both false-positive and false-

negative rates when compared with traditional X-ray mammo

graphy for all breast density subtypes (5, 6), especially on

heterogeneously dense breasts.

The inclusion of standard digital imaging among the possible

sources of big data for precision medicine represents one of the new

frontiers of research. Particularly, radiomics (7) offers a great

opportunity for diagnosis in several medical fields, yielding the

most interesting results in oncology. Radiomics aims to extract

quantitative information, which is potentially beyond the

perception of the human eye, from medical images to uncover

novel features that are associated with treatment outcomes, disease

molecular expressions, and/or patient survival (8).

There are few studies concerning the analysis of DBT images

and eventually the introduction into clinical practice of methods of

automatic cancer detection (9–12). However, the scientific interest

in radiomics and artificial intelligence (AI) methods in this setting is

rapidly expanding. In this scenario, the aim of our project was the

construction of a predictive model of lesion malignancy based on
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the radiomic features extracted by DBT images and on the clinical

and anatomopathological characteristics of the lesions, which could

assist radiologists in their first level diagnosis.
2 Material and methods

In the present study, patients who were subjected to

tomosynthesis exams were enrolled; DBT imaging was performed at

the Breast Unit in the Department of Radiology and Diagnostic

Imaging by using the Giotto® CLASS mammography unit. Images

were transferred from the picture archiving communication system

(PACS) to a dedicated MIM-Maestro system (MIM Software INC.) in

which the lesion was identified by the radiologists. This study was

approved by the IRCCS Regina Elena Cancer Institute Ethics

Committee (CEI number: RS1414/20(2408)). The requirement for

obtaining informed consent was waived as it was a retrospective study.
2.1 Patient inclusion

In this study, 150 patients who underwent DBT scans were

enrolled, 80 of whom had lesions classified as malignant and 70

benign. Lesions radiologically classified as malignant were

subsequently confirmed by pathologic analysis.

Patients were randomly collected among those undergoing DBT

at our hospital from May 2021 to May 2022, and their characteristics

were quite extensively distributed as shown in Table 1. Those who

had previously undergone radio/chemo or immunotherapy treatment

or breast surgery and whose regions of interest (ROIs) couldn’t be

segmented due to artifacts in the DBT image were excluded.
2.2 Tomosynthesis acquisition/
visualization protocol

Parameters for performing DBT scans were selected

automatically by the automatic exposure control (AEC) at fixed

Target/filter combination (W/Ag 50 ± 5 µm). The images resolution

was 2925 × 1342 pixels per each 1 mm reconstructed slice. The

initial images reading was performed on a workstation with

diagnostic quality monitors (BARCO 5 MP).
2.3 Dataset allocation

The data were randomly divided into the training and

validation sets in a ratio of 80:20. In the subdivision process,

attention was paid to maintaining the predetermined relationship

between patients of one group or the other.
2.4 Lesion contouring

Lesions were always identified by two expert radiologists (more

than 10 years of experience). In the case of a very irregular shape,
TABLE 1 Clinical characteristics.

Age (mean ± SD) Benign (70)
54.04 ± 13.14

Malignant
(80)66.36 ± 15.21

Density:

A 15 27

B 26 33

C 25 17

D 4 3

Bi-Rads:

1-2 38 0

3 26 12

4a-4b-4c 6 50

5 0 18
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often a malignant lesion, the radiologist manually performed the

contouring. Otherwise, a semi-automatic contouring method was

applied. In both cases, the most representative DBT slice was chosen

according to the radiologist’s indication.

An example of delineated lesions is shown in Figure 1.

The algorithm, called “2D Edge”, is part of the MIM-Maestro

system (MIM Software INC.). The density gradient method was

used to draw a particular region of the image previously identified

by the operator. To assess the robustness of the algorithm, a specific

lesion of 2.84 cm2 manually delineated by an expert radiologist was

also automatically contoured 20 times, resulting in a median area

value of 2.83 cm2 (range 2.69–2.99). Furthermore, a qualitative

validation regarding the shape was performed.
2.5 Collection of clinical variables

Patient clinical data, such as age, breast density, and Breast

Imaging–Reporting and Data System (BI-RADS) scores were

collected in a dedicated database specifically created with

Microsoft Access software.

The lesion-associated anatomical and pathological data were

obtained from the characterization following the biopsy, and data,

such as estrogen, progesterone, human epidermal growth factor

raptor 2 (HER2) and Ki67 (13) based on the histological evaluation,

were also included in the same database.

Malignant or benign status of the lesions was defined according

to a breast screening report [NHSBSP https://www.gov.uk/

government/publications/breast-screening-national-radiographic-

workforce-report-2016]:
Fron
• B1 not adequate or not representative/probable the lesion

was not taken.

• B2 benign.
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• B3 with atypia but probably benign.

• B4 with suspected atypia but not diagnostic for malignancy.

• B5 malignant (B5a carcinoma in situ, B5b infiltrating

carcinoma, B5c all malignant non-epithelial neoplasms).
2.6 Collection of radiomic variables

The images and the contours of the lesion exported from MIM

were transferred to an open access software that allowed the

extraction of radiomic features: LIFEx (www.lifexsoft.org). The

analysis took place using first and second order radiomic features.

A total of 58 features were extracted from the original images: (1)

five in the shape category, (2) 22 first-order statistical features and (3) 31

textural (n=6 Gray Level Co-occurrence Matrix [GLCM] + 11 Gray

Level Run Length Matrix [GLRM] + 3 Neighboring Gray Level

Dependence Matrix [NGLDM] + 11 Gray Level Size Zone Matrix

[GLZLM]). All extracted features were obtained from the original image

without any kind offilter. LIFEx output was an Excel file containing for

each row all the variables extracted from one lesion analysis.
2.7 Development of a clinical-
radiomic model

The clinical–radiomic model was constructed by combining age

and density with the 58 cited features associated with each lesion.

The ratio between training and validation set was chosen trying to

balance the two groups (10) while maintaining a reasonable number

of patients to train the model (14). The model was then developed

with the training set (80% of the patients, n = 120) and tested using

the validation set (20% of the patients, n = 30) splitted using a five-

fold cross validation method.
BA

FIGURE 1

(A) Example of the automatic contouring method: the operator identifies the center of the lesion and draws a cross to signal to the software the size
of the area of interest. The algorithm then draws a contour based on the density gradients obtained from the values of the pixels of interest.
(B) manually delineated lesion.
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2.7.1 Features selection
The number of features suitable for representing the population

was chosen considering the dimension and the variability of the

sample. Usually, it is considered a good practice to take a number of

features in the ratio 1:9 respect to the sample size, to avoid possible

overfitting seven features were selected from the initial 60 to build

the model. Three different key methods of feature selection have

been implemented in Python and included K best (KB), sequential

(S), and Random Forest (RF).

The KB is based on a filter method (15). In filter methods,

features are selected independently from any machine algorithms

using a specific criterion, such as scores in statistical test and

variances, to rank the importance of individual features. These

methods are also generally effective in computation time and that’s

why they are mainly used as the pre-processing step of any feature

selection pipeline.

To estimate the degree of linearity between the input features

(such as predictor of malignancy) and the output feature, the

analysis of variance (ANOVA) F-value method was implemented.

To avoid issues with outliers and violations of distributional

assumptions, all features were previously normalized using a

normal transformation of the ranks. However, any non-linear

relationships cannot be detected by ANOVA F-value. Hence in

the S method, to avoid and capture also non-linear relationships

between input and output features a Mutual information (MI)

algorithm was implemented (16). The S method is a wrapper

method that finds the best subset of feature by adding a feature at

each iteration that best improves the accuracy of the model. The

maximum number of features must be set as an input.

Themain weakness offilter methods is the lack of consideration of

the relationships among features. To obtain a robust model but at the

same time not overburden it, it is necessary to discard the information

that turns out to be overwhelming. In fact, if two characteristics are

strongly correlated, it is sufficient to consider only one for the

construction of the final model. This information can be derived by

creating a correlation matrix between the characteristics.

The last feature selection method used is an Embedded method,

RF (15). It combines the strong points offilter and wrapper methods

by taking advantage of machine algorithms that have their own

built-in feature selection process.

2.7.2 Machine learning algorithm
Three models were therefore produced, one for each subset of

variables, through a machine-learning algorithm, implemented in

python language, which exploits the Random Forrest classification

based on the Gini index (17). Models M1–3 were obtained from

three feature subsets selected by KB, S, and RF, respectively.
2.8 Statistical analysis

The Mann–Whitney (18) test was used to assess the differences

between selected features, both clinical and radiomic. All

significance tests were considered under a=5% (p-value ≤ 0.05).
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The goodness of the three models obtained was compared by

analyzing the area under the curve (AUC) of the receiver operating

characteristic (ROC) curve (19).

Figure 2 illustrates the workflow of this study.
3 Results

In Table 1, the clinical characteristics of the enrolled patients

are reported.

In Figure 3, results of the analysis of variance (ANOVA) F-value

method applied when using the K-best (KB) filter method

are shown.

A high F-value indicates high degree of linearity, and a low F-

value indicates a low degree. The presence of some promising

variables (such as age and GLCM_Correlation) and others not

correlated with the dichotomous output variable was

immediately visible.

In the S filter method, MI measures the dependence, also non-

linear, of one variable to another by quantifying the amount of

information obtained about one feature through the other. MI is

symmetric and non-negative; it is zero only if the input and output

features are independent (Figure 4).

A correlation matrix, such as the one shown in Figure 5 in

which the inter-variable dependence was highlighted through the

chromatic scale, was created to eliminate highly colinear variables in

the feature selection step for the creation of the final model.

In Figure 6 the accuracy calculated by the S method to choose

the most predictive variables is shown. Best accuracy of 0.72 is

reached with all the seven variables.

Finally, the RF method was used.

In Figure 7 the seven features obtained by KB, S, and RF

selection methods are shown.

Based on the Mann-Whitney test, the following features resulted

to be significantly different (p < 0.05) between benign and malignant

lesions: (1) age, (2) density, (3) CONVENTIONAL_HUKurtosis,

(4) CONVENTIONAL_HUExcessKurtosis, (5) GLCM correlation,

(6) GLRLM_LRLGE, (7) GLRLM_SZE, and (8) GLRLM_SZHGE.

In Figure 8, the distribution boxplot together with the p value of

four most representative selected features is shown; two clinical and

two radiomic, one of first and one of second order.

In Supplementary Material the decision tree for each predictive

model (M1, M2 and M3) and the corresponding confusion matrices

are reported.

Radiomic features provided by the three models showed

significant differences (p < 0.05) between malignant and

benign lesions.

In Figure 9, the ROC curves for model M1–3 are

shown together with their AUC values. The M1 model yielded an

AUC value of 0.716 with confidence interval (CI) of [0.635–0.797].

While an AUC value of 0.722 with CI [0.640–10.802] and 0.740

with CI [0.662–0.819] were found for the M2 and M3

models, respectively.
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4 Discussion
In a recently published paper (20), it was shown that the

proposed radiomic model could help reduce unnecessary biopsies.

In fact, especially in the presence of architectural distortion, DBT

can detect some apparently benign lesions as suspicious because of

its high sensitivity.

Due to its widespread among hospitals and low economic impact,

in Italy DBT is used as a first level screening and patients are

eventually directed to MRI according to the radiologist’s opinion.

So, even if the twomethods can probably be complementary (9), DBT

is by far the most common diagnostic method.
Frontiers in Oncology 05
For this reason, we aimed to develop a model that could help

radiologists in their first level diagnosis and eventually to address

the patient to further exams.

Having a dataset with high dimensionality a process of feature

selection is mandatory to avoid oversampling. In fact, high-

dimensional datasets are not preferred because they have lengthy

training time and have high risk of overfitting. Feature selection

helps to mitigate these problems by selecting features that have high

importance to the model so that the data dimensionality can be

reduced without much loss of the total information.

In this study, three feature selection methods were used, and

consequently, three predictive models were derived. The resulting

diagnostic performances of the 3 models are quite similar. The

model derived from the RF Selector showed a slightly better
FIGURE 2

Scheme of the overall pipeline of this study.
FIGURE 3

Result of the F-test on the input variables when using the KB filter method.
FIGURE 4

Mutual Information scores between output and input variables when using the S filter method.
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performance with respect to the KB and S Selectors yielding AUC

values of 0.740 [CI 0.662–0.819], 0.716 [CI 0.635–0.797], and 0.722

[CI 0.641–0.802], respectively.

The best diagnostic performance of the derived models is in

accordance with other studies (3, 9, 21) but lower than the one

obtained by Niu 2022. This last study enrolled a higher number of

patients (185), and besides the tumor itself, the peritumoral areas

were found to have a high discriminative power and were

subsequently analyzed. However, the study was conducted on a
Frontiers in Oncology 06
cohort of patients having a very homogenous breast density, a

feature that probably impinged on robustness.

It is worth noting that due to the fact that patients enrolled in

our study belong to a screening protocol, the mean age was 60.61 ±

15.51 years. This is probably the reason why patients with benign

lesions, usually younger, appear to have a higher parenchymal

density score. In fact, in our population a significant inverse

correlation was found between age and density (p < 0.0001)

indicating that age somehow is disguising the density effect.
FIGURE 7

Correlation matrices of the 7 features obtained by KB, S and RF selection method are shown.
FIGURE 5

Correlation matrix of the complete set of variables, clinical plus radiomic.
FIGURE 6

Accuracy plot showed with respect of the subset of features considered.
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Some limitations of this study need to be highlighted.

Even if we evaluated the reproducibility of the delineation,

feature stability inside repeated contours has not been assessed.

Moreover, in the feature selection step the variance has not been

taken into account. In fact, due to the characteristics of the studied

population some relevant features would have been excluded, as it

was retrospectively investigated.

In addition, we derived our models from a relatively small

sample size that could be hopefully augmented. Also, the choice of

selecting exams performed by the same mammographer is limiting,

and more data from patients enrolled in screening protocols in our

institute could be exploited thus overcoming differences in DBT
Frontiers in Oncology 07
scanner by performing data harmonization. A better model

could be constructed using an external validation set. For these

reasons, we are designing a wider clinical trial in which, besides

including in the delineation also of the peritumoral area, more

hospitals will be involved with the aim of building a model that

can be shared and whose robustness can be proven among

different users.

In conclusion, according to the results obtained in our study, we

think that the derived models could be considered as an aid to the

radiologist in the diagnosis of breast tumor, at least at a first level

screening, due to the good performance shown by the

constructed models.
A B

C D

FIGURE 8

Boxplot together with the p value of 4 most representative selected features. (A) Patient’s age (B) Breast density (C) GLCM_Correlation (D) GLZLM_SZE.
A B C

FIGURE 9

The receiver operating characteristic (ROC) curves of all the models. Area under the curve (AUC) is highlighted. (A–C) are respectively from KB, S
and RF features selection methods.
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