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Cuproptosis-related risk
score predicts prognosis
and characterizes the
tumor microenvironment
in colon adenocarcinoma
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Introduction: Cuproptosis is a novel copper-dependent regulatory cell death

(RCD), which is closely related to the occurrence and development of multiple

cancers. However, the potential role of cuproptosis-related genes (CRGs) in the

tumor microenvironment (TME) of colon adenocarcinoma (COAD) remains unclear.

Methods: Transcriptome, somatic mutation, somatic copy number alteration

and the corresponding clinicopathological data of COAD were downloaded

from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database

(GEO). Difference, survival and correlation analyses were conducted to evaluate

the characteristics of CRGs in COAD patients. Consensus unsupervised

clustering analysis of CRGs expression profile was used to classify patients into

different cuproptosis molecular and gene subtypes. TME characteristics of

different molecular subtypes were investigated by using Gene set variation

analysis (GSVA) and single sample gene set enrichment analysis (ssGSEA). Next,

CRG Risk scoring system was constructed by applying logistic least absolute

shrinkage and selection operator (LASSO) cox regression analysis and

multivariate cox analysis. Real-time quantitative polymerase chain reaction

(RT-qPCR) and immunohistochemistry (IHC) were used to exam the

expression of key Risk scoring genes.

Results: Our study indicated that CRGs had relatively common genetic and

transcriptional variations in COAD tissues. We identified three cuproptosis

molecular subtypes and three gene subtypes based on CRGs expression

profile and prognostic differentially expressed genes (DEGs) expression profile,

and found that changes in multilayer CRGs were closely related to the clinical

characteristics, overall survival (OS), different signaling pathways, and immune

cell infiltration of TME. CRG Risk scoring system was constructed according to

the expression of 7 key cuproptosis-related risk genes (GLS, NOX1, HOXC6,

TNNT1, GLS, HOXC6 and PLA2G12B). RT-qPCR and IHC indicated that the
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expression of GLS, NOX1, HOXC6, TNNT1 and PLA2G12B were up-regulated in

tumor tissues, compared with those in normal tissues, and all of GLS, HOXC6,

NOX1 and PLA2G12B were closely related with patient survival. In addition, high

CRG risk scores were significantly associated with high microsatellite instability

(MSI-H), tumor mutation burden (TMB), cancer stem cell (CSC) indices, stromal

and immune scores in TME, drug susceptibility, as well as patient survival. Finally,

a highly accurate nomogramwas constructed to promote the clinical application

of the CRG Risk scoring system.

Discussion: Our comprehensive analysis showed that CRGs were greatly

associated with TME, clinicopathological characteristics, and prognosis of

patient with COAD. These findings may promote our understanding of CRGs in

COAD, providing new insights for physicians to predict prognosis and develop

more precise and individualized therapy strategies.
KEYWORDS

cuproptosis-related genes (CRGs), tumormicroenvironment (TME), molecular subtypes,
prognosis model, colon adenocarcinoma
1 Introduction

Colon adenocarcinoma (COAD) is presently considered as one

of the most common malignancies and the leading cause for

mortality worldwide, resulting in more than 500,000 deaths every

year (1). Although surgery, adjuvant/neoadjuvant chemotherapy,

targeted therapy and immunotherapy have achieved certain

efficacy, some patients still have a poor prognosis due to high

recurrence and mortality rate (2). In recent years, more and more

studies have aimed to provide a more personalized and accurate

assessment of patient prognosis through a comprehensive analysis

of the genomic and clinicopathological characteristics of specific

tumors, with a view to potentially improving patient prognosis (3).

Nonetheless, present biomarkers or methods are far from

satisfactory to accurately predict outcome of patients with COAD.

Copper (Cu) is known as the third most abundant trace element

in human body (4). It is traditionally considered as a redox-active

transition metal which participated in the process from cellular

respiration to pigmentation, acting through cytochrome c oxidase

and tyrosinase (5). However, in the last decade, metalloallostery, a

new form of protein regulation and nutrient sensing, has appeared

to extend the function of Cu beyond the catalytic proteins to

dynamic signaling molecules, which are the basis of cell biology

affecting pathophysiological processes (6). Blood concentrations of

Cu were significantly increased in multiple cancers, such as thyroid

cancer, lung cancer, breast cancer and pancreatic cancer (7–10). In

addition, Cu concentration was elevated in tissues of large bowel

and oesophageal cancer (11). However, the blood concentration of

Cu was decreased in patients with endometrial cancer (12). As a

result, researches started to pay attention to the specific underlying

mechanisms of Cu dys-homeostasis in cancers. Increasing evidence

indicated that Cu dys-homeostasis might induce cytotoxicity and

affect proliferation, apoptosis, and metastasis of tumors, thus
02
resulting in cancer progression, partly through regulating kinases

activation, lipolysis, potassium channels, BRAF, NF-kB and TGF-b
signaling pathways (13–18). Most importantly, Tsvetkov et al. (19)

recently claimed that cuproptosis was a kind of copper-dependent

death and different from all other known programmed cell death

(PCD). In terms of mechanics, Cu directly bound to the fatty

acylation component of the tricarboxylic acid (TCA) cycle, thus

leading to the accumulation of fatty acylation proteins and the

subsequent loss of iron-sulfur cluster proteins, which leaded to

protein-toxic stress and ultimately to cell death. Additionally, a total

of 10 cuproptosis-related genes (CRGs), including PDHB, MTF1,

FDX1, DLAT, PDHA1, LIAS, LIPT1, DLD, GLS and CDKN2A,

were identified in this study. Based on Tsvetkov et al.’s findings, a

growing number of researches have begun to investigate the

relationships between CRGs and typical cancers. For instance,

Zhang, Z., et al. (20) demonstrated prognostic features associated

with cuproptosis in patients with hepatocellular carcinoma (HCC).

Wang, W., et al. (21), identified a cuproptosis-related prognostic

signature (H19, CYTOR, IGFBP2, KLRC2, C5orf38 and CHI3L1)

for patients with glioma.

Tumor microenvironment (TME), which contains different

immune and stromal cells and their secreted factors, has been

recognized to cultivate a chronic inflammatory, immunosuppressive,

and pro-angiogenic intra-tumoral atmosphere and is closely

associated with patient outcomes and treatment efficacy (22).

Distinct cuproptosis-related signatures were also found to be

significantly associated with TME of kidney renal clear cell

carcinoma (KIRC) (23), triple-negative breast cancer (TNBC) (24)

and lung adenocarcinoma (LUAD) (25). However, due to tumor and

corresponding TME heterogeneity, CRGs characteristics vary across

cancers. In addition, studies of CRGs in COAD are limited.

In our study, we aimed to comprehensively analyze the

relationship between CRGs and TME in COAD and construct a
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CRGs Risk scoring system to accurately predict COAD patient

survival. The development of the scoring system provided

physicians with new insights to design more effective and

individualized treatment strategies.
2 Materials and methods

2.1 Data

Transcriptome and the corresponding clinicopathological data of

COAD were downloaded from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/) and Gene Expression Omnibus

database (GEO) (https://www.ncbi.nlm.nih.gov/geo/). In detail, the

TCGA cohort included 480 COAD tissues and 41 normal tissues. The

GEO cohort containing GSE17536, GSE29623 and GSE39582,

included 827 COAD samples. The detailed clinicopathological data

of these COAD patients was presented in Table S1. The TCGA and

GEO cohorts were combined by using “Combat” algorithm in R to

eliminate batch effects before conducting subsequent analyses.

Principal component analysis (PCA) was applied to validate the

effect of batch effect removal by using the R package ggplot2. In order

to verified the accuracy of model, we also downloaded transcriptome

and the corresponding clinicopathological data of GSE40967 from

GEO database, which contained 585 COAD sampes.

Additionally, we downloaded somatic mutation data of 454

tumor samples and copy number variation (CNV) data of 506

tumor samples from TCGA.
2.2 Difference analyses, survival analyses
and correlation analyses of CRGs

A total of 10 CRGs (PDHA1, PDHB, FDX1, DLD, DLAT,

MTF1, LIAS, LIPT1, GLS and CDKN2A) were obtained from the

previous well-known publication of Tsvetkov et al. (19). Difference

analyses of CRGs were conducted between tumor and normal

tissues. Wilcoxon test was used to for statistical analysis. Survival

and survminer R packages were used for survival analysis, the same

as our previous study (26). Kaplan-Meier plot and cox regression

analyze were further applied to evaluate the relationships between

CRGs expression and patient overall survival (OS). Schoenfeld

residuals were used to check the proportional assumption of COX

model. Spearman correlation analyses were conducted to explore

the interactions among CRGs
2.3 Consensus clustering analysis of CRGs

ConsensusClusterPlus R package was applied for consensus

unsupervised clustering analysis. Patients were grouped into

distinct molecular subtypes according to the expression of CRGs,

and distinct gene subtypes according to the expression of prognostic

differentially expressed genes (DEGs), derived from different

molecular subtypes. The criteria included that the samples size in

each set was relatively consistent and the cumulative distribution
Frontiers in Oncology 03
function (CDF) curve increased gradually and smoothly. After

consensus clustering analysis, the intra-set association became

stronger, while the inter-set association became weaker.
2.4 Associations among molecular
subtypes, clinicopathological features
and prognosis

We applied Kaplan-Meier plot and log-rank test to evaluate the

associations between different molecular subtypes and patient

survival. Correlation analyses between molecular subtypes and

clinicopathological features were carried out to learn the clinical

values of distinct molecular subtypes by using Chi-square test. The

clinicopathological features contained age, gender, grade and tumor

node metastasis (TNM) stage.
2.5 Relationships between molecular
subtypes and TME

We downloaded the hallmark gene sets, including C2.CP.KEGG

(186 gene sets) and C5.GO.Gene Ontology (10561 gene sets), from the

Molecular Signatures Database (MSigDB) (https://www.gsea-

msigdb.org/gsea/msigdb). Gene set variation analysis (GSVA) with

the above two gene sets was conducted to explore the TME

characteristics of different molecular subtypes. The adjusted P-value<

0.05 was considered statistically different. Additionally, the proportion

of tumor-infiltrating immune cells (TICs) in tumor samples was

calculated by using the deconvolution algorithm, which was also

known as CIBERSORT (27). The gene expression signature matrix

of TICs was downloaded from CIBERSORT platform (https://

cibersortx.stanford.edu/). P-value for the deconvolution of each

sample was obtained by using Monte Carlo sampling algorithm in R.

A CIBERSORT P-value< 0.05 was considered suitable for further

analysis. Single sample gene set enrichment analysis (ssGSEA) was

used to evaluate the infiltration of TICs in different molecular subtypes.
2.6 Acquisition of DEGs from distinct
molecular subtypes

DEGs of distinct molecular subtypes were acquired by applying

limma package in R. The fold change of 1.5 and the adjusted P-

value< 0.05 were considered qualified for searching DEGs. Gene

Ontology (GO) and Kyoto Encylopedia of Genes and Genomes

(KEGG) enrichment analysis of DEGs were carried out by using

org.Hs.eg.db, ClusterProfiler, enrichplot, and ggplot2 packages in R.

The adjusted P-value< 0.05 was deemed statistically significant.
2.7 Establishment of CRG Risk
scoring system

Firstly, cox regression analyses of DEGs, achieved from different

molecular subtypes, were carried out to seek those associated with
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patients’ prognosis. Secondly, patients were separated into different

gene subtypes via consensus clustering analysis of prognostic DEGs

expression. Thirdly, patients were randomly divided into the

training (n=603) and testing (n=603) sets at a ratio of 1:1. Lastly,

CRG Risk scoring system was established in the training set and

verified in the testing set, GSE29263, GSE17536, GSE39582 and the

combined set. Logistic least absolute shrinkage and selection

operator (LASSO) cox regression analysis was carried out by

applying Glmnet R package to decrease the risk of over-fitting.

Next, we analyzed and cross-validated the varied trajectory of each

independent variable. Multivariate Cox analysis was carried out to

screen prognostic DEGs in the training group. The Risk score was

calculated as follows:

CRG Riskscore = S(Expi ∗ coefi)

In detail, Expi indicated key prognostic DEGs expression and

coefi indicated the coefficient of Risk. Correlation analysis between

CRG Risk score and distinct subtypes was also carried out. Survival

analysis between high- and low-risk sets was conducted by Kaplan-

Meier plot and log-rank test. Receiver operating characteristic

(ROC) curves were utilized to learn the sensitivity and specificity

of the scoring system. Similarly, all of the testing group, GSE29263,

GSE17536, GSE39582 and the combined group were classified into

high- and low-risk groups, respectively, and further analyzed by

Kaplan-Meier survival curves and ROC curves.
2.8 Tissue samples acquisition, real-time
quantitative polymerase chain reaction
and immunohistochemistry

A total of 8 sets of COAD and paired normal tissues were

harvested from COAD patients at Nanjing Jiangning Hospital. The

study was permitted by the Ethics Committee of Nanjing Jiangning

Hospital (2021-03-048-K01). Total RNA extraction and RT-qPCR

were performed as our previous study (28). The primers used for

RT-qPCR are shown in Table S2. Slides (4mm) of formalin-fixed

paraffin-embedded tissue sections were incubated with GLS (1:200;

Cell Signaling Technology), NOX1 (1:200; Proteintech), HOXC6

(1:50; Affinity Biosciences), TNNT1 antibody (1:100; Invitrogen).

The expression level was scored semiquantitatively based on

staining intensity and distribution using the immunoreactive

score (IRS) as described (29) and as following: IRS = SI (staining

intensity) x PP (percentage of positive cells). SI was determined as 0,

negative; 1, weak; 2, moderate; and 3, strong. PP was defined as 0,

negative; 1, 1-20% positive cells; 2, 21-50% positive cells; 3, 51-100%

positive cells. Ten visual fields from different areas of each sample

were selected randomly for the IRS evaluation and the average IRS

was calculated as final value.
2.9 Relationships between TME and
distinct Risk score groups

Difference analyses of CRGs expression levels were carried out

between high- and low- Risk groups. Wilcoxon test was used for
Frontiers in Oncology 04
comparison. We further conducted correlation analyses not only

between TICs and risk scores, but also TICs and key prognostic Risk

genes. An ESTIMATE algorithm was used to analyze the ratio of

immune/stromal components in TME. The Immune Score, Stromal

Score and ESTIMATE Score presented the ratio of immune

component, the stromal component and the sum of the both,

respectively. Difference analyses of Immune/Stromal/ESTIMATE

Score were conducted between high- and low- Risk score sets.

Wilcoxon test was used for comparison.
2.10 Microsatellite instability cancer stem
cell, tumor mutation burden and somatic
mutations in different Risk score sets

Difference and correlation analyses of MSI, TMB and CSC in

distinct CRG Risk score groups were conducted to study the

underlying associations. Maftools package in R was applied for

the comparison of mutation frequency in different Risk score sets.
2.11 Drug susceptibility analyses

In order to study effectiveness of drugs in different Risk groups,

pRRophetic package in R was used to calculate the semi-inhibitory

concentration (IC50) values of drugs.
2.12 Development of a nomogram

We applied Rms package in R to establish a nomogram, which

combined clinicopathological characteristics, patient survival and

CRG Risk score. In the nomogram, a variable matched a score and

the scores for all variables were added together to get an overall

score. Calibration maps of the nomogram were developed to

evaluate the consistency between predicted 1, 3, and 5-year

survival rates and actual outcomes. ROC curve was drawn to

understand the sensitivity and specificity of the scoring system.
2.13 Statistical analyses

All statistical analyses were conducted by using R version 4.2.1.

Statistical significance was set at P-value< 0.05.
3 Results

3.1 Identification of CRGs in COAD

We analyzed 10 CRGs in our study, including DLD, DLAT,

PDHB, MTF1, PDHA1, FDX1, LIAS, LIPT1, GLS and CDKN2A.

Difference analyses showed that 7 of 10 CRGs were dys-regulated in

tumor samples compared with those in normal samples, among

which LIPT1, PDHA1, GLS and CDKN2A were up-regulated, and

FDX1, DLD and MTF1 were down-regulated (Figure 1A).
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In order to further study the genetic and transcriptional

alterations of CRGs in COAD, we generally analyzed the somatic

mutation frequency of CRGs and found 10.13%mutation frequency

in tumor samples (Figure 1B). LIPT1, DLD, PDHA1 and LIAS

shared the highest mutation frequency (2%), followed by PDHB,

MTF1, DLAT and GLS (1%). Both FDX1 and CDKN2A had no

mutations in tumor tissues. We further examined CNV frequency

in CRGs, among which DLD, CDKN2A, FDX1, DLAT, PDHB and

LIAS had elevated copy number loss (Figure 1C). The detailed

locations of these CRGs on chromosomes were shown in Figure 1D.

As a result, we noted that CRGs had relatively common genetic and

transcriptional variations in COAD tissues, which might

affect oncogenesis.
3.2 Identification of cuproptosis-related
molecular subtypes

To learn the role of CRGs in oncogenesis of COAD, we

combined expression patterns of CRGs and clinicopathological

information of TCGA-COAD, GSE17536, GSE29623 and

GSE39582 by using “Combat” algorithm to eliminate batch

effects. PCA indicated that batch differences were well eliminated

(Figure 2A). Kaplan-Meier plot revealed 3 of 10 CRGs were closely

associated with patients’ OS, among which GLS and CDKN2A were

negatively related, while LIAS was positively related (Figures 2B–D).

Multivariate Cox regression analyses of CRGs also indicated that

both GLS and CDKN2A were closely related with the survival of
Frontiers in Oncology 05
COAD patients (Table 1). Cuproptosis network generally described

the complex interrelations among CRGs and the prognosis of

patients with COAD (Figure 2E; Table S3).

Considering the pervasive interrelations among CRGs, we used

consensus clustering algorithm to divide patients into three groups

based on the expression profile of CRGs. K=3 appeared to be an

optimal choice for grouping samples into 3 sets, including

molecular subtype A (n=511), B (n=444) and C (n=328)

(Figures 3A, S1A–I, Tables S4, 5). Survival analysis revealed that

patients in subtype C had the worst prognosis than those in subtype

A or B (Figure 3B). The heat-map exhibited the expression profile of

10 CRGs in distinct molecular subtypes (Figure 3C). CDKN2A was

obviously up-regulated in molecular subtype C, while PDHA1,

FDX1, DLAT, DLD and GLS were greatly elevated in subtype A

(Figure 3C). In addition, grade, N, M and stage were found to be

s ign ificant ly as soc ia ted wi th cuproptos i s molecu lar

subtypes (Figure 3C).
3.3 Functional characteristics of TME in
distinct molecular subtypes

We further performed GSVA enrichment analyses to explore

the features of TME in different cuproptosis subtypes. GO GSVA

enrichment analysis revealed that molecular subtype A

was primarily enriched in messenger ribonucleoprotein complex,

regulation of translational initiation by eif2 alpha phosphorylation

and phosphatase activity, compared with subtype B (Figure 4A;
B

C D

A

FIGURE 1

Genetic and transcriptional alterations of CRGs in colon adenocarcinoma. (A) The expression levels of 10 CRGs between 480 COAD samples and 41
normal samples. Wilcoxon test was used to compare two groups. (B) The maftool exhibited incidence of somatic mutations of CRGs in 454 COAD
patients from TCGA database. (C) The CNV frequency of CRGs in 454 COAD samples from TCGA database. (D) Locations of CNV alterations on 23
chromosomes. P<0.05 was considered as significant importance. ** indicated P-value<0.01, *** indicated P-value<0.001.
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Table S6). Subtype B was enriched in acyl coa binding, fatty acid

derivative binding and acylcoa dehydrogenase activity, compared

with subtype C (Figure 4B; Table S6). Subtype C was significantly

enriched in embryonic skeletal joint morphogenesis, gap junction

and connexin complex, compared with subtype A (Figure 4C;

Table S6). Several biological pathways, such as endoplasmic

reticulum tubular network organization, cellular response to zinc

ion and mrna methylation were recurrent in the comparisons of
Frontiers in Oncology 06
subtype A and B, A and C, and B and C (Table S7). KEGG GSVA

enrichment analysis indicated subtype A mainly participated in

TGF-b signaling pathway, riboflavin metabolism and RNA

degradation, compared with subtype B (Figure 5A; Table S8).

Subtype B was primarily enriched in metabolic related pathways,

including fatty acid metabolism, butanoate metabolism,

porphyrin and chlorophyll metabolism, compared with subtype

C (Figure 5B; Table S8). Subtype C was mainly enriched in
B

C D

E

A

FIGURE 2

Survival analyses of CRGs and a comprehensive landscape of cuproptosis network in COAD patients from TCGA and GEO database. (A) PCA of
TCGA, GSE17536, GSE29623 and GSE39582 after batch effect removal. (B–D) Survival analyses of CRGs (GLS, CDKN2A and LIAS) in COAD patients.
Kaplan-Meier plot and log-rank tests were performed for survival analyses. Schoenfeld residuals was used to check the proportional assumption of
COX model. (E) Mutual associations among CRGs in COAD samples. Spearman correlation analyses were used. The line between two CRGs
indicated their interaction, and the stronger the correlation, the thicker the line. Pink line indicated positive correlation and blue line indicated
negative correlation. P-value< 0.05 was considered to be statistically significant.
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glycosphingolipid biosynthesis globo series, glycosaminoglycan

biosynthesis chondroitin sulfate and glycosaminoglycan

biosynthesis keratan sulfate, compared with subtype A

(Figure 5C; Table S8).
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Regarding the complex functions of different molecular

subtypes in TME, we next conducted ssGSEA between TICs and

different subtypes to further identify tumor immune

microenvironment (TIME) characteristics of COAD. The ratio of
TABLE 1 Multivariate Cox regression analyses of CRGs in COAD patients.

id HR HR.95L HR.95H P-value km

CDKN2A 1.198237 1.0668866 1.3457599 0.002266 0.002461

GLS 1.302257 1.0853925 1.562451 0.004488 0.002666

LIAS 0.856896 0.718415 1.0220694 0.085936 0.009963

PDHB 0.792502 0.5976615 1.0508627 0.106232 0.002516

DLD 0.853752 0.6900535 1.0562847 0.145449 0.063517

PDHA1 0.887978 0.7283648 1.0825689 0.239915 0.066255

FDX1 0.884588 0.683168 1.1453929 0.352246 0.063822

DLAT 0.960967 0.7880859 1.1717723 0.693977 0.048397

LIPT1 1.02602 0.8300225 1.2682982 0.812277 0.112617

MTF1 1.027758 0.7957044 1.3274861 0.833903 0.10872
fron
B

C

A

FIGURE 3

CRG molecular subtypes and their clinicopathological characteristics. (A) Identification of three molecular subtypes (k = 3) and their correlation area
through consensus clustering analysis in COAD samples. (B) Survival analysis showed a significant difference in different molecular subtypes. Kaplan-
Meier plot and log-rank tests were conducted for survival analyses. (C) The heat-map displayed the CRGs expression profile in distinct molecular
subtypes, and the associations between clinicopathologic features and molecular subtypes. Chi-square test was used for the comparison. Red color
indicated increased expression level and blue color indicated decreased expression level. P-value< 0.05 was considered to be statistically significant.
** indicated P-value<0.01, *** indicated P-value<0.001.
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23 TICs in each tumor sample was presented in Table S9. The result

of ssGSEA suggested great difference between the infiltration of 19

TICs and distinct subtypes. In detail, the infiltration levels of

eosinophil and plasmacytoid dendritic cell were elevated in

subtype A, activated B cell, activated CD8 T cell, activated

dendritic cell, monocyte and neutrophil were up-regulated in

subtype B, and another 12 TICs were obviously raised in subtype

C (Figure 5D).

According to above analyses, we primarily speculated that

different subtypes took a different part in TME, especially TIME

of COAD.
3.4 Identification of cuproptosis-related
gene subtypes

As the potential role of different molecular subtypes in TME of

COAD, we further explore the underlying biological behavior of

different subtypes through seeking for DEGs. We identified 114

DEGs derived from subtype A and B, 90 DEGs from subtype A
Frontiers in Oncology 08
and C, 49 DEGs from subtype B and C (Table S10). Finally, a total of

186 DEGs were obtained for further analyses through combination

(Figure 6A; Table S11). GO enrichment analysis demonstrated that

186 DEGs mainly participated in signaling pathways associated with

digestion, such as maintenance of gastrointestinal epithelium and

digestive system process (Figures 6B, C; Table S12). Univariate Cox

regression analysis was performed to seek DEGs of prognostic value

and finally identified 86 DEGs associated with patients’ OS, which

were analyzed in the following section (Table S13). According to 86

prognostic DEGs expression, consensus clustering analysis was

carried out to separate patients into 3 sets, namely gene subtype A

(n=310), B (n=729) and C (n=244) (Figures 6D, S2A–I; Tables S14,

15). Distinct gene subtypes showed great differences in the expression

levels of both prognostic DEGs and 8 CRGs (FDX1, LIPT1, DLD,

PDHA1, PDHB, MTF1, GLS and CDKN2A) (Figures 6E, F; Tables

S16, 17). In addition, cuproptosis gene subtypes were closely related

with age, gender, grade, and T and N stage of COAD patients

(Figure 6E). Survival analysis revealed that patients of gene subtype

B had a better prognosis, compared with those of subtype A or

C (Figure 6G).
B

C

A

FIGURE 4

GO GSVA enrichment analyses indifferent molecular subtypes. (A) GO GSVA enrichment analyses between molecular subtype A and B (B) GO GSVA
enrichment analyses between molecular subtype B and C (C) GO GSVA enrichment analyses between molecular subtype A and (C) Red color indicated
more enriched in pathways and blue color indicated less enriched in pathways. Adjusted P-value<0.05 was considered to be statistically significant.
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3.5 Construction and validation of CRG
Risk scoring system

To study the prognostic value of CRGs in COAD, we further

constructed CRG Risk scoring system based on different molecular

and gene subtypes. First, we applied “caret” package in R to randomly

separate COAD patients into the training (n=603) and testing (n=603)

groups at a ratio of 1:1. The clinicopathological characteristics of patients

in the training and testing group were consistent (Table S18). Second,

LASSO and multivariate Cox analyses were conducted to identify

optimum prognostic signature based on 86 DEGs expression (Figure

S3). Finally, CRG Risk scoring system was established through
Frontiers in Oncology 09
multivariate Cox regression analysis in the training set, the formula

was as follow: Risk score = (0.30346935571892* expression of GLS) +

(0.285346929484159 * expression of CAB39L) + (-0.171967289741126*

expression ofNOX1) + (0.149406405352724 * expression ofHOXC6) +

(0.128828618079011 * expression of TNNT1) + (-0.305462961248901*

expression of ASRGL1) + (-0.142788274274145* expression of

PLA2G12B). We classified patients into two groups, namely high- and

low-Risk score sets, according to the calculation of Risk score in each

tumor sample. Figure 7Apresented the specific classifications of patients

in the training set, including three cuproptosismolecular subtypes, three

gene subtypes and twoCRGRisk score sets. The detailed information of

7 key cuproptosis-related risk genes, Risk score and survival features in
B

C

D

A

FIGURE 5

KEGG GSVA enrichment analyses and immune infiltration in different molecular subtypes. (A) KEGG GSVA enrichment analyses between molecular
subtype A and B (B) KEGG GSVA enrichment analyses between molecular subtype B and C (C) KEGG GSVA enrichment analyses between molecular
subtype A and C Red color indicated more enriched in pathways and blue color indicated less enriched in pathways. Adjusted P-value<0.05 was
considered to be statistically significant. (D) ssGSEA indicated differences between the infiltration levels of TICs and distinct molecular subtypes.
Pvalue<0.05 was considered to be statistically significant. * indicated P-value<0.05, *** indicated P-value<0.001.
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trainingand testinggroupswasdisplayed inTables S19, 20.The resultsof

difference analyses indicated that all of the expression of GLS, NOX1,

HOXC6, TNNT1 and PLA2G12B were increased in tumor tissues,

compared with those in normal tissues (Figure S4). Among these five

genes, GLS and HOXC6 were negatively associated with patients’

survival, while NOX1 and PLA2G12B were positively related. RT-

qPCR and IHC indicated the same result (Figures 7B–G). Difference

analyses in the training set showedRisk scorewas extremely increased in

both molecular subtype C and gene subtype C and decreased in both

molecular subtype B and gene subtype B (Figures 7H, I). The heat-map

presented a great difference of 7 key Risk score gene expression profile

between high- and low-Risk score sets in the training group (Figure 7J).

The scattergram of patients’ survival in different Risk score groups

revealed that COAD patients’ survival got worse, while Risk score

increased (Figure 7K), which was also proven by Kaplan-Meier
Frontiers in Oncology 10
survival curves (Figure 7L). In addition, area under the time-

concentration curve (AUC) values of 1-, 3-, and 5-year survival rates

of CRG Risk score in the training set were 0.693, 0.706, and 0.703,

respectively, signifying both relative high sensitivity and

specificity (Figure 6M).

To verify the accuracy of the scoring system, we further

calculated Risk score according to the above Risk score formula,

in the testing group, individual GSE17536, GSE29623, GSE39582,

GSE40967, respectively (Tables S21–24). Patients were

respectively divided into distinct cuproptosis molecular

subtypes, gene subtypes and Risk score sets, the same as which

in the training set (Figures S5–8A). Risk score showed a great

difference in both molecular subtypes and gene subtypes of the

testing group, individual GSE17536, GSE29623, GSE39582

(Figures S5–8B, C). The expressions of 7 key Risk scoring genes
B C

D E

A

F G

FIGURE 6

Identification of CRG gene subtypes based on 186 DEGs derived from different molecular subtypes. (A) The intersection of DEGs from the
comparison between molecular subtype A and B, B and C, A and C (B, C) GO enrichment analyses of 186 DEGs from distinct molecular subtypes.
Adjusted P-value<0.05 was considered to be statistically significant. (D) Identification of three gene subtypes (k = 3) and their correlation area
through consensus clustering analysis according to the expression of 86 prognosis-related DEGs. (E) The heat-map presented the gene profiles in
distinct gene subtypes, and the correlations between clinicopathologic characteristics and distinct gene subtypes. Chi-square test was used for the
comparison. P-value< 0.05 was considered to be statistically significant. (F) Difference analyses of CRGs expression in different gene subtypes.
Pvalue< 0.05 was considered to be statistically significant. (G) Survival analysis of three gene subtypes. Kaplan-Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be statistically significant. ** indicated P-value<0.01, *** indicated P-value<0.001.
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in different Risk group were shown in Figures S5–8 D; 9A,

respectively. Both scattergram and Kaplan-Meier survival curves

showed that high Risk score predicted poor survival in testing

group, individual GSE17536, GSE39582 and GSE40967 (Figures

S5E, F, S7–8E, F, S9B, C). However, in GSE29623, survival analysis

revealed that Risk score was not associated with patients’ survival,
Frontiers in Oncology 11
which might be related with the small sample size (Figure S6F).

We further plot ROC curves to confirm the sensitivity

and specificity of the scoring system and found relatively

high AUC values in the cohorts of validation, indicating the

system as an accurate predictor for patients’ survival (Figures

S5–8G, 9D).
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FIGURE 7

Construction of CRG Risk scoring system in the training group. (A) Alluvial diagram of patients’ distributions in groups with different molecular subtypes,
gene subtypes, Risk scores and survival outcomes. (B) The expression of 7 key genes between COAD and paired normal tissues. (C) Immunoreactive
score of key genes between tumor and normal tissues. (D) The expression of GLS in COAD tissues and normal tissues. (E) The expression of NOX1 in
COAD tissues and normal tissues. (F) The expression of HOXC6 in COAD tissues and normal tissues. (G) The expression of TNNT1 in COAD tissues and
normal tissues. (H) Difference analysis of CRG Risk score in different molecular subtypes. (I) Difference analysis of CRG Risk score in different gene
subtypes. (J) Heat-map displayed five scoring genes expression profile in different risk sets of the training group. (K) Ranked dot and scatter plot of CRG
Risk score distribution and patient survival in the training group. (L) Survival analysis between high- and low-Risk score groups in the training set. Kaplan-
Meier plot and log-rank tests were conducted for survival analyses. (M) ROC curve predicted the sensitivity and specificity of 1-, 3-, and 5-year survival
according to CRG Risk score in the training group. P-value< 0.05 was considered to be statistically significant. * indicated P-value<0.05.
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3.6 Associations between TME and the
CRG Risk score

Difference analyses of CRGs indicated that 6 CRGs showed a

great difference in distinct Risk score sets. To be specific, GLS and

CDKN2A expression were increased, while DLD, DLAT, PDHA1

and PDHB expression were decreased in high-Risk score group,

compared with those in low-Risk group (Figure 8A). In order to learn

the relationships between CRG Risk score and TICs in TME of
Frontiers in Oncology 12
COAD, correlation analyses were carried out and suggested that CRG

Risk score was positively associated with activated NK cells, memory

B cells, eosinophils, M0 macrophages, M1 macrophages, M2

macrophages, and neutrophils, while negatively associated with

CD8 T cells, regulatory T cells (Tregs), naïve B cells, resting

dendritic cells, plasma cells and CD4 memory resting T cells

(Figures 8B–N). Furthermore, all of immune, stromal and estimate

score were higher in high-Risk score set than those in low-Risk score

set (Figure 8O).Most immune cells were greatly associated with seven
B
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FIGURE 8

Associations between TME and CRG Risk score. (A) Difference analyses of CRGs expression in the high- and low-Risk score groups. (B–N) Correlation
analyses between CRG Risk score and TICs. (O) Difference analyses between CRG Risk score and immune/stromal/estimate scores. (P) Correlation analyses
between the abundance of TICs and seven key Risk scoring genes in the proposed model. P-value< 0.05 was considered to be statistically significant.
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prognostic genes (Figure 8P). Consequently, CRG Risk score might

be associated with TME of COAD.
3.7 Associations among MSI, CSC, TMB,
somatic mutations and CRG Risk score

Up to data, limited molecular markers are available to lead

therapeutic decisions for patients with COAD, among which MSI,

CSC, TMB and somatic mutations appeared to be the most

promising. An increasing number of research revealed that

patients with high microsatellite instability (MSI-H) tumor might

benefit from immune checkpoint inhibitors (ICIs) in COAD (30,

31). As a result, we assessed the MSI status and found that in the

low-risk group, 73% were MSS, 17% were low microsatellite

instability (MSI-L), and 10% were MSI-H, while in the high-risk

group, 59% were MSS, 20% were MSI-L, and 20% were MSI-H
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(Figure 9A). The results indicated that patients with high-risk

shared a higher MSI-H frequency. Figure 9B suggested that

patients bearing MSI-H tumors appeared to have a higher Risk

score, compared with those with MSS. This might be related with

better treatment outcomes of ICIs. Additionally, crosstalk between

immune cells and CSCs, another important indicator of TIME,

takes a great part in tumor progression (32). As presented in

Figure 9C, CRG Risk score was negatively associated with CSC

index, indicating COAD cells with high CRG Risk scores had less

difference in stem cell properties and higher cell differentiation than

those with low-risk scores. TMB, as an indicator of the number of

tumor mutations, is known to be closely associated with patients’

immunotherapy benefits (33). Differential analysis indicated that

TMB in high-risk group was significantly higher than that in low-

risk group (Figure 9D). Correlation analysis also suggested that

TMB was positively associated CRG Risk score (Figure 9E).

Maftools of somatic mutations showed that the top 10 mutant
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FIGURE 9

Associations among MSI, TMB, CSC and CRG Risk score. (A) The distribution of MSI in different Risk score groups. (B) Difference analysis between
CRG Risk score and MSI. (C) Correlation analysis between CRG Risk score and CSC index. (D) Difference analysis of TMB in distinct CRG Risk score
groups. (E) Correlation analysis between CRG Risk score and TMB. (F-G) The waterfall plot of somatic mutation characteristics in high- and low-Risk
score groups. P-value< 0.05 was considered to be statistically significant.
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genes in the high-risk and low-risk groups were APC, TP53, TTN,

KRAS, PIK3CA, SYNE1, MUC16, FAT4, RYR2 and ZFHX4,

respectively (Figures 9F, G).
3.8 Drugs susceptibility analysis in distinct
Risk score groups

To investigate the predictive value of CRG Risk score in drug

sensitivity, we used pRRophetic R package to calculate the IC50

values of various drugs (Figures S10, 11; Table 2). Both drugs under

clinical use and clinical trials were included in our analyses. Various

drugs were divided into different groups, such as AKT inhibitor,

AMPK activator, Bcr-Abl inhibitor, BTK inhibitor, EGFR inhibitor,

MAPK inhibitor, mTOR inhibitor, TrkA inhibitor, Topoisomerase

inhibitor, Microtubule assosiated inhibitor, XIAP inhibitor,

TNF inhibitor and so on. In particular, patients of low-Risk score

set showed increased IC50 value for AMPK activator (AICAR), Bcl-2
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inhibitor (TW.37, Obatoclax.Mesylate and ABT.263), BRAF inhibitor

(PLX4720), c-Kit inhibitor (AMG.706), DNA Synthesis

inhibitor (Cytarabine, Bleomycin and Gemcitabine), HSP90

inhibitor (AUY922), ITK inhibitor (BMS.509744), MEK inhibitor

(CI.1040 and RDEA119), PARP inhibitor (AG.014699 and

AZD.2281) and ROCK inhibitor (GSK269962A). In addition,

patients of high-Risk score set showed increased IC50 value for

AKT inhibitor (AKT.inhibitor.VIII and A.443654), CDK inhibitor

(Roscovitine), Raf/VEGFR/c-Kit inhibitor (Sorafenib), Her-2

inhibitor (Lapatinib) and EGFR inhibitor (Erlotinib and BIBW2992).

However, drugs that target the same site may have opposite

effects in different risk groups. For example, patients with low CRG

risk scores had increased IC50 values for Aurora kinase inhibitors

(ZM.447439) and decreased IC50 values for aurora kinase

inhibitors (VX.680). HDAC inhibitors (Vorinostat) had increased

IC50 values and HDAC inhibitors (MS.275) had decreased IC50

values in the low-risk score set. mTOR inhibitors (Temsirolimus,

NVP.BEZ235 and AZD8055) presented better drug sensitivity in
TABLE 2 Drug susceptibility in patients of the low- and high-score groups.

Drugs Low-score group High-score group

AKT inhibitor AKT.inhibitor.VIII +

A.443654 +

AMPK activator AICAR +

Aurora Kinase inhibitor ZM.447439 +

VX.680 +

Bcl-2 inhibitor TW.37 +

Obatoclax.Mesylate +

ABT.263 +

Bcr-Abl inhibitor Nilotinib +

AP.24534 +

Dasatinib +

Imatinib +

BRAF inhibitor PLX4720 +

BTK inhibitor LFM.A13 +

CDK inhibitor Roscovitine +

CHK inhibitor AZD7762 +

c-Kit inhibitor AMG.706 +

Raf/VEGFR/c-Kit inhibitor Sorafenib +

DNA Synthesis inhibitor Cytarabine +

Bleomycin +

Gemcitabine +

DNA crosslinker/apoptosis inducer Cisplatin +

EGFR inhibitor Erlotinib +

BIBW2992 +

(Continued)
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TABLE 2 Continued

Drugs Low-score group High-score group

FAK inhibitor PF.562271 +

FGFR inhibitor PD.173074 +

FTase inhibitor FTI.277 +

Proteosome inhibitor Z.LLNle.CHO +

GSK-3 inhibitor CHIR.99021 +

SB.216763 +

HDAC inhibitor Vorinostat +

MS.275 +

Hedgehog inhibitor GDC.0449 +

Her-2 inhibitor Lapatinib +

HSP90 inhibitor AUY922 +

ITK inhibitor BMS.509744 +

JNK inhibitor JNK.Inhibitor.VIII +

JNK.9L +

AS601245 +

MAPK inhibitor VX.702 +

MDM2 inhibitor JNJ.26854165 +

MEK inhibitor CI.1040 +

RDEA119 +

mTOR inhibitor Temsirolimus +

Rapamycin +

NVP.BEZ235 +

AZD8055 +

PAK inhibitor IPA.3 +

PARP inhibitor AG.014699 +

AZD.2281 +

TBK1 and PDK1 inhibitor BX.795 +

PI3K inhibitor AZD6482 +

GDC0941 +

NVP.BEZ235 +

PKC inhibitor Midostaurin +

PLK inhibitor BI.2536 +

GW843682X +

PPAR inhibitor FH535 +

Rac inhibitor EHT.1864 +

Raf inhibitor AZ628 +

ROCK inhibitor GSK269962A +

RPTK inhibitor CEP.701 +

RSK inhibitor BI.D1870 +

(Continued)
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low-risk score set, while mTOR inhibitor (rapamycin) had the

opposite. RSK inhibitors (BI. D1870 and CMK) and PF.4708671.

RSK inhibitor (BI.D1870 and CMK) and PF.4708671 also showed

the opposite drug susceptibility between different risk score sets.
3.9 Construction of a nomogram for the
prediction of COAD patient’s survival

Regarding the important role of Risk score in patients’ survival,

we constructed a nomogram combining CRG Risk scores and

clinicopathological characteristics to predict 1, 3, and 5-year

survival rates of COAD patients (Figure 10A). The calibration

graph showed that the nomogram functioned well in predicting

patients’ survival compared to an ideal model (Figure 10B). The
Frontiers in Oncology 16
AUC values of 1, 3, and 5-year survival rates of nomogram were

0.873, 0.798, and 0.804, respectively, suggesting both relatively high

sensitivity and specificity (Figure 10C).
4 Discussion

COAD is a global health problem. Despite continuous

improvement of early screening and treatment strategies, the

survival of patients with advanced COAD remains poor (1).

Previous research suggested genomic susceptibility contributed to

the occurrence and development of COAD (34–37). For example,

BRAF V600E and KRAS mutations were significantly related with

poor prognosis of patients with microsatellite-stable COAD (38).

However, risk factors affecting patients’ survival varied and the
TABLE 2 Continued

Drugs Low-score group High-score group

PF.4708671 +

CMK +

RXR activator Bexarotene +

Src inhibitor A.770041 +

AZD.0530 +

Bosutinib +

Syk inhibitor BAY.61.3606 +

TNF inhibitor Lenalidomide +

TrkA inhibitor GW.441756 +

VEGFR inhibitor Axitinib +

Pazopanib +

PPM1D/Wip1 inhibitor CCT007093 +

XIAP inhibitor Embelin +

Topoisomerase I inhibitor Camptothecin +

Topoisomerase II inhibitor Doxorubicin +

Etoposide +

Microtubule Assosiated inhibitor Docetaxel +

Vinblastine +

Microtubule stabilizer Paclitaxel +

SER Ca2+-ATPase inhibitor Thapsigargin +

Metformin +

Cuproptosis inducer Elesclomol +

ARFGAP1 inhibitor QS11 +

Chloride Channel inhibitor Shikonin +

eIF2a Dephosphorylation inhibitor Salubrinal +

SHP PTP inhibitor NSC.87877 +

DNA-PK inhibitor NU.7441 +
“+”: Indicated up-regulated sensitivity.
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above risk factors predicting the prognosis of patients were not

yet satisfactory.

TME is a highly complex ecosystem (39). The subtle interactions

between tumor cells and co-existing immune cells in TME determine

tumor’s natural history. Based on pioneer studies on TME, the two

most widely applied ICIs, blocking cytotoxic-T-lymphocyte-

associated protein 4 (CTLA-4) and targeting programmed cell

death 1 (PD-1) or programmed cell death ligand 1 (PD-L1),

emerged as exciting treatment strategies across various

malignancies in the last decade (40). ICIs showed impressive anti-

tumor efficacy in COAD patients bearing tumors with the expression

of PD-L1, deficient mismatch repair (dMMR), MSI-H, or high TMB

(41, 42). Whereas the number of COAD patients who benefit from

ICIs is limited due to primary and acquired resistance. Therefore,

comprehensive knowledge of changes in genomic, transcriptome and

somatic mutations in TME is of great significance for the prevention,

treatment and prognosis assessment of COAD.

PCD, also termed as RCD, is a form of cell death that can be

regulated by multiple biomacromolecules, thus leading to

biochemical and morphological alterations which are depend on

energy (43). Increasing evidence has indicated that RCD is the key

features of tumorigenesis, which may ultimately affect therapeutic
Frontiers in Oncology 17
strategies in cancers (44). RCD subroutines containing apoptosis,

necroptosis, autophagy, pyroptosis, ferroptosis, lysosome-dependent

cell death (LCD), alkaliptosis and NETosis have been identified and

are being extensively investigated in a variety of malignancies (45).

For instance, interactions between specific pyroptosis-related

subtypes and TME greatly influenced patients’ prognosis (46).

Dividing cancer patients into different subtypes according to their

genomic features allows us to more accurately predict drug

susceptibility and patient outcome, helping physicians design more

precise and individualized treatment strategies (47–49).

Cu is an essential micronutrient participated in multiple

fundamental biological processes (50). Aberrant Cu homeostasis

(ACH) is associated with tumor growth, metastasis, and drug

resistance due to its role in oxidative stress and chronic

inflammation (51). A higher Cu level indicated a higher risk of

colorectal cancer (52). In addition, Cu chelator exhibited great

antitumor activity in various cancers, such as esophageal cancer,

triple-negative breast cancer and COAD (53–57). For example, the

disulfiram (DSF), a well-known antialcohol drug, combined with

Cu triggered autophagic cell death and inhibited cell viability in

colorectal cancer by targeting ULK1 (55). Tetrathiomolybdate (TM)

and TPEN, specific Cu chelators, also showed obvious anti-tumor
B C
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FIGURE 10

Construction and validation of a nomogram in COAD patients. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of COAD patients.
(B) Calibration curves of the nomogram. (C) ROC curves for predicting the 1-, 3-, and 5-year OS of COAD patients.
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activity in COAD (58–60). In addition, quite a few novel Cu

compounds were developed to investigate their antitumor

mechanisms and therapeutic effect in COAD. For instance, the

copper-imidazo[1,2-a] pyridines induced COAD apoptosis (61). Cu

(dmp)2(CH3CN)]
2+ exhibited anti-proliferative activity in human

colorectal cancer cells (62). Cu(qmbn)(q)(Cl) triggered

mitochondrion-mediated apoptotic cell death via activating the

caspases-3 and 9 proteins (63). Moreover, nanoparticles

combining Cu were designed to investigate the anticancer

potential in COAD. Cu nanoparticles (CuNPs and Cu-Cy) shed a

good insight for COAD treatment (64, 65). Cu2O@CaCO3

nanocomposites inhibited CRC distant metastasis and recurrence

by immunotherapy through inducing an immunologically favorable

TME and intensing the immune responses of anti-CD47 antibodies

(66). The Bi : Cu2O@HA nanoparticles exhibited excellent targeting

ability and photothermal therapeutic effect (67). Cuproptosis, a

novel RCD, was recently identified as copper-dependent death,

which occurred through directly binding Cu to TCA cycle (19).

However, the role of cuproptosis in COAD is unclear, and the

prognostic value of CRGs has not been thoroughly evaluated.

Thanks to the large public database such as TCGA and GEO, we

are able to access and analyze the transcriptome profiles of a variety of

malignancies to gain a comprehensive understanding of genetic

landscape, screen potential biomarkers, develop therapy strategies

and predict patient outcome (68, 69). Several studies have described

cuproptosis-related molecular patterns and the characterization of

TME in colorectal cancer and found that cuproptosis patterns were

closely associated with TME and served to predicted survival of

patients with colorectal cancer (70–74). D. Hou, et al. (75) developed

a risk model of 11-cuproptosis-related lncRNAs to predict clinical

and therapeutic implications of CRC patients. However, colon and

rectal cancer were quite different in their biological characteristics,

surgical protocol, treatment strategy and prognosis (76). Previously,

Luo, B., et al. (77) identified two clusters based on 30 differentially

expressed CRGs of 963 COAD samples from TCGA-COAD and

GSE39582 databases. However, the OS between the two clusters

showed no statistical difference and the accuracy of risk model was

not verified. Xu, C., et al. (78) classified COAD samples from TCGA-

COAD and GSE39582 databases into two groups according to 9

cuproptosis-related DEGs and further constructed a risk model.

Whereas, ROC curves of the model showed that AUC values for

the 1-year, 2-year, and 3-year survival were 0.575, 0.577 and 0.571

respectively, signifying the moderate predictive power of the model.

In addition, Yang, G., et al. (79) grouped 623 COAD patients from

TCGA-COAD and GSE17536 databases into 2 sets based on 12

CRGs expression profiles and established nomogram pattern based

on risk model to predict patient prognosis. However, the sensitivity

and specificity of the nomogram was not verified. As a result, we

aimed to establish a more accurate risk model to predict survival

through comprehensively integrating CRGs expression patterns of

1307 COAD samples fromTCGA-COAD, GSE17536, GSE29623 and

GSE39582 databases. In our study, 7 of 10 CRGs were found to be

dys-regulated in tumor samples compared with those in normal

samples, and a relatively high mutation frequency and CNV of CRGs

was observed in COAD samples. Survival analysis and univariate Cox

regression analysis of patients from TCGA (TCGA-COAD) and
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GEO database (GSE17536, GSE29623 and GSE39582) suggested

both GLS and CDKN2A were significantly related with patients’

survival. The cuproptosis network demonstrated the complex

interrelations among CRGs and prognosis of cancer patients.

Considering the relatively common genetic and transcriptional

variation and the potential prognostic value of CRGs in COAD, we

speculated cuproptosis may be a new therapeutic target and that

CRGs characteristics might play an important role in predicting

therapeutic response and patient outcome, providing new insights

into the role of Cu in COAD. We further categorized patients into

three cuproptosis related molecular subtype, including subtype A, B

and C, based on CRGs expression profile. Distinct molecular subtypes

differed in both the CRGs expression profile, and the survival and

clinicopathological features of COAD patients. GO and KEGGGSVA

enrichment analyses suggested that different molecular subtypes

enriched in different signaling pathways. Given the indispensable

role of immunotherapy in colorectal adenocarcinoma, TIME-

associated indicators such as TICs, MSI, CSC, TMB, somatic

mutations, etc., were investigated to study the relationship between

CRGs and TIME of colorectal adenocarcinoma. TICs profile revealed

great difference in the infiltration of 19 TICs among distinct subtypes.

GO enrichment analysis of 186 DEGs, obtained from the comparison

between subtype A and B, A and C, and B and C, revealed that DEGs

mainly enriched in signaling pathways associated with digestion.

Univariate Cox regression analysis identified 86 prognostic DEGs

from the above 186 genes. Based on 86 prognostic DEGs expression

profile, we once again classified patients into 3 sets, namely gene

subtype A, B and C, which were differed in the expressions of both

prognostic DEGs and 8 CRGs. Additionally, cuproptosis gene

subtypes were closely associated with the survival and

clinicopathological characteristics (age, sex, grade, T and N stage)

of COAD patients. In view of the important role of CRGs in COAD,

the risk scoring system of CRG was further constructed in the

training set according to prognostic DEGs expression, and verified

in the testing set and the combined set. Risk scores of molecular

subtype C and gene subtype C were significantly increased, while risk

scores of molecular subtype B and gene subtype B were significantly

decreased. The higher the risk score, the lower the survival rate. In

addition, CRGs, TICs, CSC, TMB, MSI, somatic mutations, and drug

sensitivity were closely associated with distinct risk score sets. Finally,

a nomogram integrating risk scores and clinicopathological

characteristics was established to predict OS rates of COAD

patients. AUC values of 1-, 3-, and 5-year survival rates of

nomogram were 0.873, 0.798, and 0.804, respectively, which was

higher than previous nomogram established by Zhong, L., et al. (80).

However, our study of the relationships between CRGs and TME in

COAD were primarily based on the bioinformatics analysis. The

specific mechanism of CRGs affecting TME needs to be further

studied in vitro and in vivo, which may be crucial for the treatment

of COAD.
5 Conclusion

CRGs were significantly correlated with clinicopathologic

features, TME and immunoinfiltration of COAD. The higher the
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Risk score, the higher the MSI and TMB, and the lower the CSC. In

addition, the CRGs Risk scoring system showed good ability to

predict patient survival and drug sensitivity.
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SUPPLEMENTARY FIGURE 1

Unsupervised clustering of CRGs and consensus matrix heat-maps for k = 2,

4-9 through consensus clustering analysis in COAD samples from TCGA and

GEO database.

SUPPLEMENTARY FIGURE 2

Unsupervised clustering of prognostic genes and consensus matrix heat-

maps for k = 2, 4-9 through consensus clustering analysis in COAD samples
from TCGA and GEO database.

SUPPLEMENTARY FIGURE 3

Identification of optimum prognostic genes in COAD samples. (A, B) The
LASSO regression analysis and partial likelihood deviance analysis on 86
subtype-related prognostic DEGs.

SUPPLEMENTARY FIGURE 4

Difference, paired difference and survival analyses of 7 key Risk scoring genes
(GLS, NOX1, HOXC6, TNNT1, PLA2G12B, CAB39L and ASRGL1) in

COAD patients.

SUPPLEMENTARY FIGURE 5

Validation of CRG Risk score in the testing group. (A) Alluvial diagram of
patients’ distributions in testing groups with different molecular subtypes,

gene subtypes, Risk scores and survival outcomes. (B) Differential analysis of
CRG Risk score in different molecular subtypes of the testing group. (C)
Differential analysis of CRG Risk score in different gene subtypes of the testing

group. (D) The heat-map of seven scoring genes expression in different risk
sets of the testing group. (E) Ranked dot and scatter plot of CRG Risk score

distribution and patient survival in the testing group. (F) Survival analysis of
high- and low- CRG Risk score in the testing group. Kaplan–Meier plot and

log-rank tests were conducted for survival analyses. P-value < 0.05 was
considered to be statistically significant. (G) ROC curve predicted the

sensitivity and specificity of 1-, 3-, and 5-year survival according to CRG

Risk score in the testing group.

SUPPLEMENTARY FIGURE 6

Validation of CRG Risk score in GSE29623. (A) Alluvial diagram of patients’

distributions in testing groups with different molecular subtypes, gene
subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE29623. (C) Differential

analysis of CRG Risk score in different gene subtypes of GSE29623. (D) The
heat-map of seven scoring genes expression in different risk sets of

GSE29623. (E) Ranked dot and scatter plot of CRG Risk score distribution
and patient survival in GSE29623. (F) Survival analysis of high- and low- CRG

Risk score in GSE29623. Kaplan–Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be

statistically significant. (G) ROC curve predicted the sensitivity and

specificity of 1-, 3-, and 5-year survival according to CRG Risk score
in GSE29623.

SUPPLEMENTARY FIGURE 7

Validation of CRG Risk score in GSE17536. (A) Alluvial diagram of patients’
distributions in testing groups with different molecular subtypes, gene

subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE17536. (C) Differential
analysis of CRG Risk score in different gene subtypes of GSE17536. (D) The
heat-map of seven scoring genes expression in different risk sets of
GSE17536. (E) Ranked dot and scatter plot of CRG Risk score distribution

and patient survival in GSE17536. (F) Survival analysis of high- and low- CRG
Risk score in GSE17536. Kaplan–Meier plot and log-rank tests were

conducted for survival analyses. P-value< 0.05 was considered to be

statistically significant. (G) ROC curve predicted the sensitivity and
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specificity of 1-, 3-, and 5-year survival according to CRG Risk score
in GSE17536.

SUPPLEMENTARY FIGURE 8

Validation of CRG Risk score in GSE39582. (A) Alluvial diagram of patients’

distributions in testing groups with different molecular subtypes, gene
subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG
Risk score in different molecular subtypes of GSE39582. (C) Differential
analysis of CRG Risk score in different gene subtypes of GSE39582. (D) The
heat-map of seven scoring genes expression in different risk sets of

GSE39582. (E) Ranked dot and scatter plot of CRG Risk score distribution
and patient survival in GSE39582. (F) Survival analysis of high- and low- CRG

Risk score in GSE39582. Kaplan–Meier plot and log-rank tests were
conducted for survival analyses. P-value< 0.05 was considered to be

statistically significant. (G) ROC curve predicted the sensitivity and
specificity of 1-, 3-, and 5-year survival according to CRG Risk score

in GSE39582.
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SUPPLEMENTARY FIGURE 9

Validation of CRG Risk score in GSE40967. (A) The heat-map of seven scoring
genes expression in different risk sets of the combined group. (B) Ranked dot

and scatter plot of CRG Risk score distribution and patient survival in the

combined group. (C) Survival analysis of high- and low- CRG Risk score in the
combined group. Kaplan–Meier plot and log-rank tests were conducted for

survival analyses. P-value< 0.05 was considered to be statistically significant.
(D) ROC curve predicted the sensitivity and specificity of 1-, 3-, and 5-year

survival according to CRG Risk score in the combined group.

SUPPLEMENTARY FIGURE 10

Differential drugs susceptibility analyses in high- and low-Risk group. P-
value< 0.05 was considered to be statistically significant.

SUPPLEMENTARY FIGURE 11

Differential drugs susceptibility analyses in high- and low-Risk group. P-
value< 0.05 was considered to be statistically significant.
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