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Esophageal squamous cell carcinoma (ESCC) is the most prevalent histological

esophageal cancer characterized by advanced diagnosis, metastasis, resistance

to treatment, and frequent recurrence. In recent years, numerous human

disorders such as ESCC, have been linked to abnormal expression of circular

RNAs (circRNAs), suggesting that they are fundamental to the intricate system of

gene regulation that governs ESCC formation. The tumor microenvironment

(TME), referring to the area surrounding the tumor cells, is composed of

multiple components, including stromal cells, immune cells, the vascular

system, extracellular matrix (ECM), and numerous signaling molecules.

In this review, we briefly described the biological purposes and mechanisms

of aberrant circRNA expression in the TME of ESCC, including the immune

microenvironment, angiogenesis, epithelial-to-mesenchymal transition,

hypoxia, metabolism, and radiotherapy resistance. As in-depth research into

the processes of circRNAs in the TME of ESCC continues, circRNAs are promising

therapeutic targets or delivery systems for cancer therapy and diagnostic and

prognostic indicators for ESCC.

KEYWORDS

circRNA, esophageal squamous cell carcinoma, tumor microenvironment, biological
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1 Introduction

As one of the most prevalent malignant tumors, esophageal squamous cell carcinoma

(ESCC) is associated with a high mortality rate worldwide (1). In 2020, there were 604,100

new esophageal cancer (EC) cases and 544,076 EC-related deaths, ranking seventh and

sixth in cancer morbidity and mortality, respectively (2, 3). ESCC accounts for

approximately 85% of all EC cases worldwide (4). Currently, available treatment

strategies for ESCC include surgical resection, chemotherapy, radiotherapy, molecular

targeted therapy, and their combinations (5). However, due to the high probability of
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recurrence, early metastasis, and extremely low five-year survival

rate, the patient prognosis continues to be poor (6, 7).

CircRNAs have been identified and represent unusual canonical

and non-canonical RNA splicing errors (8). However, high-

throughput sequencing and specialized computational pipelines

have led to recognizing circular RNAs (circRNAs) as a class of

endogenous non-coding RNA existing objectively in multiple

species without a 5’ end cap and a 3’ end poly(A) tail, forming a

circular structure with covalent bonds rather than “transcriptional

noise.” (9, 10) Such a unique loop structure makes circRNAs more

stable than linear RNAs because they are resistant to RNA

exonucleases and RNase R nucleic acid exonucleases (11).

CircRNAs have been recently discovered to be involved in cancer

growth, metastasis, recurrence, and therapy resistance by regulating

sponging miRNAs, binding with proteins, and encoding proteins

and peptides (12–16).

The communication between ESCCs and other cells and

the interaction among different cell types in the tumor

microenvironment (TME) determines ESCC development and

progression (6, 17). To establish a TME, tumor cells change

their normal developing environment as cancer progresses (18).

Through interaction with tumor cells, the TME, constituting the

region around the tumor during development, is vital in cancer-

related disorders (19). The TME plays a significant role in

carcinoma progression, including proliferation, metastasis,

immune evasion, and chemoradiation resistance (20). In addition,

extracellular metabolites, such as exosomes, which are typically

communication signals between various cellular compartments,

frequently play a role in the complicated interactions between

tumor cells, normal cells, their microenvironment, and

the accompanying stroma (18). CircRNAs primarily contribute

to and control ESCC development by affecting the TME

immunological microenvironment, metabolism, hypoxia,

angiogenesis, and epithelial-to-mesenchymal transition (EMT)

(19, 21, 22). The development of more potent ESCC therapies

may be facilitated by establishing a circRNA-involved TME

network, with tailored therapy being an option based on the

interaction with circRNAs (23–25).

In this review, we explored the irreplaceable role of circRNAs in

regulating cancer progression in the TME of ESCC. In summary,

circRNAs exhibit good development potential despite the TME

studies on them being in their early stages. CircRNA research

translation into clinical applications is required.
2 Biogenesis regulation, degradation,
and function of circRNA

For a long time, most circRNAs were considered “splicing

noise” or “byproducts of RNA processing.” (26) In recent years,

circRNAs have been increasingly studied and observed to play

essential roles in normal cell differentiation, tissue homeostasis,

and disease development. Their expression is usually independent
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of host gene expression (27). CircRNAs are stable byproducts of

mRNA splicing and products of newly regulated selective

splicing, which have distinctive molecular mechanisms (28). This

circular structure endows circRNAs with many distinct features:

sequence conservation, evolutionary species conservation, tissue-

specific expression patterns, and high abundance and stability,

demonstrating that circRNAs have vital non-coding functions

(29–31). We will focus later on the regulation, degradation and

function of circRNA (Figure 1).
2.1 Biogenesis, regulation, and degradation
of circRNA

Most circRNAs are produced by reverse splicing of precursor

mRNAs (pre-mRNAs), creating a single-stranded covalent closed-

loop structure by connecting the upstream 3′ splice acceptor site to
the downstream 5′ splice donor site containing a specific junction

site. This is followed by removing all or part of the intron by the

spliceosome and ligating the remaining sequences, producing

different circRNAs (32, 33). This procedure was performed under

the regulation of cis-acting elements and trans-acting factors (34).

CircRNAs can be divided into three main categories according to

their source sequences: exonic circRNAs (EcRNAs), intronic

circRNAs (ciRNAs), and exon-intron circRNAs (EIciRNA) (35–

37). The back-splicing hypothesis models currently proposed to

describe circRNA generation are Lariat-driven circularization,

intron pairing-driven circularization, and RNA-binding protein

(RBP)-driven circularization. The three models have different

mechanisms (11, 28, 32).

Lariat-driven circularization occurs while removing introns

or exons from pre-mRNAs (38, 39). Intron pairing-driven

circularization: The basis of this type of circulation is the

complementary base pairing of various fan introns, and

complementary sequences—short repeat elements (e.g., ALU

repeats) or non-repeat elements—in introns flanking post-snap

exons are important cis-acting elements of circRNA biogenesis

(40). Regarding RBP-driven circularization, fan sequences contain

RBP binding sites. By bringing the splice sites close, both RBPs can

enhance recycling (41). Certain RBPs are trans-acting regulators of

circRNA synthesis (42). In contrast, some RBPs may prevent

circRNA synthesis by preventing proper matching of intron

elements (43, 44). In addition to pre-mRNA production, a minor

portion of intron-derived circRNAs is formed by precursor tRNA

(pre-tRNA) splicing (45). RNA synthesized at the intron end is

ligated by ligase into a stable circRNA called tRNA intronic circular

RNA (tricRNA) (45, 46).

The high circRNA expression in cancer is often closely associated

with poor prognosis. Therefore, understanding circRNA degradation

and inactivation mechanisms is crucial for emerging targeted

therapies (12). A study revealed that circRNAs can be degraded by

RNase L. Endogenous circRNAs frequently form defective double

complexes, preventing protein kinase (PKR) activation by double-

stranded RNA (dsRNA)-activated PKR. Their reduction triggers
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abnormal PKR activation and autoimmune responses (47).

Argonaute 2 (Ago2)-mediated RNA degradation is the most

commonly reported mode of circRNA degradation (48, 49). Ago2

is a nucleic acid endonuclease that uses endogenous guide RNAs,

such as miRNAs (50). However, Ago2-dependent circRNA

degradation also has some drawbacks, as it is inapplicable to

circRNAs without specific miRNA targets (51). The most frequent

RNA modification is m6A (52). Recent studies have revealed that

YTHDF2 recognizes circRNAs containing m6A, and HRSP12 links

YTHDF2 and RNase P or MRP, enabling RNase P/MRP to initiate

the intranuclear degradation of YTHDF 2-bound circRNAs (53).

According to recent research, all circRNAs that possess an open

reading frame (ORF) were predicted to possess m6A sites (54).

Besides intracellular pathways, circRNAs can be further exported to

extracellular vesicles contributing to their clearance (55). Cancer

progression caused by circRNA dysregulation promises new clinical

therapeutic advances as the biogenesis and degradation mechanisms

of circRNAs are further investigated.
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2.2 Biological functions of circRNAs

The biological roles of circRNAs have also been thoroughly

explained. According to recent studies, circRNAs perform their

tasks using four primary methods: miRNA sponging, transcription

regulation, protein and peptide coding, and RNA-binding protein

incorporation (27, 28, 56). CircRNAs can function as miRNA

sponges: Most circRNAs in this review can affect the ESCC TME

by acting as miRNA sponges to regulate downstream targets. Moreso,

circRNAs act as competing endogenous RNAs (ceRNAs) and

microRNA (miRNA) sponges by binding to target mRNAs in a

base-paired pattern, causing mRNA cleavage or limiting mRNA

translation to regulate miRNA activity on other target genes (10,

56, 57). According to previous reports, circRNAs simultaneously

regulate several miRNAs and have multiple miRNA-binding sites.

These evolutionarily conserved binding sites guarantee the target

efficacy (58). Notably, only a few circRNAs have multiple miRNA-

binding sites (59). For instance, Sun et al. have found that a total nine
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FIGURE 1

Biogenesis, degradation, and functions of circRNAs. (A) Lariat-driven circularization. The skipped exon and intron sequences are spliced from the
previous mRNA. The 5 ‘splice receptor and 3’ splice donor are connected to form a lariat structure. Larch further undergoes internal splicing to
remove the intron sequence, thus generating EIciRNA or EcRNA. Some spliced introns can be cyclized to form ciRNA. (B) Intron paring-driven
circularization. This circularization depends on the complementary base pairing of different fan introns to form a hairpin structure. The
complementary sequence in the flanking intron of the exon is spliced after splicing, so that the downstream 5 ‘splice site is close to the upstream 3’
splice site for cycle. Most intron pairing patterns are promoted by ALU duplication. (C) RBPs-driven circularization. RBP binds to the RBP binding
sites on the sector sequence, and these two RBPs can facilitate the cycle by bringing the splicing sites closer together. (D) Formation of tricRNAs.
Introns carrying pre-tRNA are cut at the characteristic bulge helix bulge (BHB) motif by the tRNA splicing endonuclease (TSEN) complex. Ligase links
the RNA that is generated at the end of the tron to form stabilized tricRNA. (E) Active RNase L triggers circRNA degradation upon virus infection,
which relieves the suppression of PKR. (F) miRNAs can bind to circRNAs through base pairing and guide Ago2 dependent cleavage. (G) CircRNA
containing m6A is recognized by YTHD F2 which can interact with RNase P/MRP bridged by HRSP12 and then the complex initiating the nuclear
degradation of circRNAs. (H) CircRNAs can be excreted to the extracellular space by exosomes. Function of circRNAs. (I) Transcriptional regulation.
ciRNAs regulates the transcription of host genes by promoting the extension activity of RNA Pol II. (J) Transcriptional regulation. ElciRNAs can
combine with U1 snRNP and then interact with RNA Pol II to regulate host gene transcription in nucleus. (K) miRNA sponging. CircRNAs act as
miRNA sponge to regulate the function of miRNA target mRNAs. (L) Coding of proteins and peptides. CircRNAs can perform regulatory functions by
encoding proteins and peptides. (M) RNA binding proteins. CircRNAs can combine with RBPs by different mechanisms.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1153207
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1153207
miRNAs and nine candidate mRNA were predicted to have an

interaction with has_circ_0000520 (60). CircRNAs regulate

transcription: In addition, circRNAs play a significant role in post-

transcriptional or transcriptional regulation of gene expression (61,

62). This role is mainly mediated by EIciRNAs and ciRNAs expressed

in the nucleus during parental gene regulation (63, 64). The promoter

region of the parental gene is bound by a complex formed by specific

RNA-RNA interactions between EIciRNA, U1 small nuclear

ribonucleoprotein (U1snRNP), and U1 small ribonucleic acid

(snRNA). This complex then interacts with RNA Pol II to enhance

and promote the transcription of the parental gene (63, 65). ciRNAs

regulate their parental function by boosting RNA Pol II elongation

(66). CircRNAs can encode proteins and peptides: Despite circRNAs

being non-coding RNAs, they also regulate by encoding proteins and

polypeptides (67–69). Studies have revealed a connection between

circRNAs and polymers, a portion containing the initiation codon

AUG and a putative ORF of favorable length, indicating that

circRNAs have protein-coding potential (70, 71). Although

circRNAs are classified as lncRNAs, they can encode some short

peptides. The coding circRNA contains an internal ribosomal entry

site (IRES) that allows translation of some of the coding sequences in

the circRNA (72). Proteomics application has provided the most

visual evidence that ncRNAs can encode regulatory peptides (71).

Pamudurti et al. demonstrated that circMbl is capable of producing

proteins of approximately 10kDa size in Drosophila by establishing

intron-exon-intron minigenes (73). Studies have revealed that some

proteins or peptides encoded by circRNAs play irreplaceable

regulatory roles in tumorigenesis and progression (74–78).

CircRNAs can interact with RNA-binding proteins: In addition to

the functions mentioned above, circRNAs combine with RBPs

through different mechanisms. RBPs are a broad category of
Frontiers in Oncology 04
proteins involved in the transcription and translocation of genes

and can serve as fundamental elements of circRNA function (41).

Three primary modes of action have been described for circRNA

binding to RBPs: formation of protein complexes (79), inhibition of

protein function (protein decoys) (80), and interactions between

different proteins (81). The first is the formation of protein

complexes: circRNAs with multiple protein-binding sites can serve

as dynamic scaffolding for assembling massive RNA-protein

complexes by modulating protein-protein interactions (82). The

second category is protein decoys, where circRNA-encoded

proteins are in competing with their homologous linear splice

protein isoforms for binding molecules, thereby inhibiting normal

isoform function (80). Finally, circRNAs bind and chelate specific

proteins and regulate certain protein-protein and protein-RNA

interactions (81, 83). CircRNAs can form distinct circRNA-protein

complexes (circRNPs) by interacting with various proteins, changing

the related proteins’ mode.
3 CircRNA dysregulation modulates
the clinical characteristics and
biological processes of ESCC

A few aberrantly produced circRNAs were recently revealed to

control the proliferation, invasion, migration, and apoptosis of

ESCC in TME, thereby affecting ESCC progression. This could

lead to new insights into circRNAs as therapeutics. Here, we

summarize the biological functions and clinicopathological

features of the aberrantly expressed circRNAs in ESCC (Table 1).
TABLE 1 The clinical and cytological functions of circRNAs in ESCC.

CircRNA
Expression
in ESCC Clinical correlation Cell function Refs

Circ_0048117 upregulated
invasion depth, lymph node metastasis, distant metastasis and
TNM stage (predicted an advanced T and N stage)

proliferation, migration, invasion, metastasis,
apoptosis (84)

CircTCFL5 upregulated tumor growth, tumor volume proliferation, migration, invasion, apoptosis (85)

CircGOT1 upregulated tumor size, tumor weight, overall survival rate, prognosis proliferation, migration (86)

CircFNDC3B upregulated tumor growth, TNM stage, lymph node invasion, clinical stage III
proliferation, migration, invasion, metastasis,
apoptosis (87)

Circ_0001093 upregulated lymph node metastasis, TNM stage, tumor size proliferation, migration, invasion (88)

CircOGDH upregulated tumor growth proliferation, metastasis, invasion (89)

Circ_0000705 upregulated lymph node metastasis, TNM stage, prognosis proliferation, invasion, migration (90)

CircPUM1 upregulated tumors size, tumor volume, tumor weight proliferation, colony formation, pyroptosis (91)

Circ_0072088 upregulated tumor size, invasion depth, TNM stage, and LNM proliferation, migration, and invasion (92)

CircDUSP16 upregulated tumors growth, tumor volume, tumor weight
cell viability, colony formation, migration,
invasion (93)

Circ_0007624 downregulated tumor growth, overall survival rate proliferation, migration, invasion, apoptosis (94)

(Continued)
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ESCC mainly carries out distant metastasis through the

lymphatic system, causing patients to lose the opportunity for

early surgery, and is directly related to poor prognosis (118–120).

High expression of circ_0048117, circ_0001093, circ_0000705, and

circHIPK3 are closely related to lymph node metastasis and the

TNM stage of ESCC (84, 88, 90, 95). Conversely, as a tumor

suppressor, low circDOCK5 expression was positively correlated

with overall survival (96). In addition, the highly expressed

circNTRK2, hsa_circ_0006948, circ_2646, and hsa_circ_0000277

were closely associated with lymph node metastasis and overall

survival time and tumor differentiation (97, 99–101). Cheng et al.
Frontiers in Oncology 05
revealed that upregulated hsa_circ_0000277 is associated with

lymph node metastasis and recurrence in patients with ESCC

(112). Liu et al. demonstrated that hsa_circ_0026611 was in the

serum of patients with ESCC in the form of serum exosomes and

could identify whether ESCC was complicated by lymph node

metastasis. In addition, hsa_circ_0026611 was closely related to

TNM staging. Thus, hsa_circ_0026611 could be a biomarker in

clinical practice (115).

The TNM stage of patients with ESCC is directly related to

prognosis and is closely associated with surgery and chemotherapy

(121). CircFNDC3B and circ_0072088 are highly expressed in
TABLE 1 Continued

CircRNA
Expression
in ESCC Clinical correlation Cell function Refs

CircHIPK3 upregulated tumor size, tumor differentiation, lymph node metastases proliferation, migration (95)

CircDOCK5 downregulated overall survival rate, prognosis metastasis, migration, invasion (96)

CircNTRK2 upregulated TNM stage, lymph node metastasis, overall survival rate proliferation, invasion, apoptosis (97)

Hsa_circ_0012563 upregulated overall survival rate migration, invasion, emt, apoptosis, G1 arrest (98)

Hsa_circ_0006948 upregulated overall survival rate, lymphatic metastasis, prognosis proliferation, migration and invasion (99)

Circ_2646 upregulated
TNM stage (especially N stage), lymph node metastasis, tumor
differentiation, pathologic stage proliferation, migration, invasion (100)

Hsa_circ_0000277 upregulated
TNM stage, lymphatic metastasis, lymph node metastasis,
histological grade proliferation, invasion (101)

CircARAP2 upregulated tumor growth, tumor volume, tumor weight
proliferation, colony formation, metastasis,
invasion, cancer stem cell differentiation (102)

CircLONP2 upregulated overall survival, disease-free survival proliferation, migration (103)

CircFAM120B downregulated tumor size, tumor volume proliferation, migration, invasion, colony number (104)

CircVRK1 downregulated overall survival rate, prognosis proliferation, migration, invasion (105)

Circ_0007022 upregulated overall survival rate, tumor growth, tumor weight
proliferation, colony formation, metastasis,
migration, invasion, apoptosis (106)

Circ_100367 upregulated overall survival rate, tumor growth, tumor weight
proliferation, colony formation, metastasis,
migration, invasion, apoptosis (107)

Hsa_circ_0014879 upregulated tumor growth, tumor volume, tumor weight
proliferation, colony formation, metastasis,
migration, invasion, apoptosis (108)

CircMAN1A2 upregulated
overall survival rate, disease-free survival, tumor growth, tumor
volume, tumor weight proliferation, colony formation (109)

Hsa_circ_0007142 upregulated tumor volume, tumor weight proliferation, migration, apoptosis (110)

CircDOPEY2 downregulated overall survival rate, progression-free-survival, tumor volume proliferation, colony formation, apoptosis (111)

Hsa_circ_0000277 upregulated tumor stage, tumor growth, lymph node metastasis, prognosis
proliferation, colony formation, apoptosis, cell
cycle (112)

Circ_0006168 upregulated tumor growth, tumor volume, tumor weight
proliferation, colony formation, migration,
invasion, apoptosis (113)

CircPVT1 upregulated tumor growth, tumor volume, tumor weight
proliferation, colony formation, migration,
invasion, apoptosis (114)

Hsa_circ_
0026611 upregulated TNM stage, lymph node metastasis, poor prognosis, OS, DFS / (115)

Circ_0000337 upregulated tumor growth, tumor volume, tumor weight
proliferation, colony number, migration,
invasion, apoptosis (116)

CircSFMBT2 upregulated overall survival rate, tumor volume, tumor weight proliferation, colony number, invasion, apoptosis (117)
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ESCC and are positively correlated with the TNM stage and

poor survival (87, 92). In addition, circRNAs are related to tumor

volume and weight (85, 86, 89, 91). CircDUSP16, circARAP2,

circFAM120B, and hsa_circ_0014879 promote an increased

tumor volume by promoting tumor cell proliferation and

inhibiting apoptosis (93, 102, 104, 108). Circ_0007142 was

upregulated in ESCC tissues and cells and correlated with

cisplatin resistance. Mechanistically, circ0007142 increased cell

survival by increasing the resistance of tumor cells to cisplatin,

leading to increased tumor volume and weight (110). Circ_0006168

resists chemotherapy by reducing paclitaxel sensitivity in resistant

cells, increasing tumor volume (113). CircPVT1 is vital in

maintaining ESCC chemoresistance to 5-FU through ferroptosis

and theWnt/b pathway. In vivo, circPVT1 reduced the sensitivity of
tumor cells to 5-FU and increased the tumor volume under

chemotherapy (114). As an oncogenic factor, circ_0000337

knockdown can improve the sensitivity of ESCCs to cisplatin,

thereby reducing tumor volume and weight in vivo (116).
4 CircRNAs as a novel regulator of
tumor microenvironment in ESCC

The TME is a vital factor in determining cancer progression at

all stages and is a complex ecosystem in which cancer cells and the
Frontiers in Oncology 06
stroma around them coexist (122). Recruitment and conversion of

tumor cells into nearby normal cells are essential for cancer

advancement (123). The TME consists of stromal cells, immune

cells, the vascular system, and the extracellular matrix (ECM).

Crosstalk among TME components is essential for influencing

cancer progression (124–126). As mentioned above, abnormal

expression circRNAs levels in ESCC are caused by various

mechanisms. The functional mechanisms of circRNAs in ESCC

TME are discussed in the following sections. (Figure 2; Table 2).
4.1 Modulating the immune
microenvironment in ESCC

The term “macrophage polarization” describes the

macrophage activation state at a specific moment (127). Activated

macrophages are in two groups based on the guidance of various

microenvironmental signals: classically activated macrophages

(M1) and alternatively activated macrophages (M2) (128). The

polarization of M1/M2 macrophages is critical for tumor

progression. Historically, M1 macrophages have been thought to

have antitumor activities, whereas M2-polarized macrophages, also

known as tumor-associated macrophages (TAMs), have anti-

inflammatory and pro-tumor actions (129, 130). In contrast to

M1’s antitumor properties, M2-polarized macrophages are
FIGURE 2

Summary of the function of circRNAs in the TME of ESCC. CircRNAs can participate in the TME of ESCC through various mechanisms, including
EMT, exosomal, angiogenesis, hypoxia, M2 polarization, metabolism and chemoradiation resistance.
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TABLE 2 Role of circRNAs in the tumor microenvironment of ESCC.

Biology activities in
TME CircRNA Property Molecular axis Putative Function Refs

M2 Macrophage
Polarization Circ_0048117 promotor Circ_0048117/miR-140/toll-like receptor 4 (TLR4) miRNA sponge (84)

M2 Macrophage
Polarization CircTCFL5 promotor CircTCFL5/miR-543- FMNL2 miRNA sponge (85)

aerobic glycolysis, resistance
to cisplatin, EMT CircGOT1 promotor CircGOT1/miR-606/GOT1 miRNA sponge (86)

glycolysis, exosomal CircFNDC3B promotor CircFNDC3B/miR-490-5p/TXNRD1 miRNA sponge (87)

glutamine metabolism Circ_0001093 promotor Circ_0001093/miR-579-3p/GLS miRNA sponge (88)

glutamine metabolism CircOGDH promotor CircOGDH/miR-615-5p/PDX1 miRNA sponge (89)

proline metabolism Circ_0000705 promotor Circ_0000705/miR-621/PYCR1 miRNA sponge (90)

oxidative phosphorylation,
hypoxia CircPUM1 promotor CircPUM1/UQCRC2

RNA-binding protein-formation
of protein complexes (91)

angiogenesis Circ_0072088 promotor Circ_0072088/miR-377/VEGF miRNA sponge (92)

hypoxia CircDUSP16 promotor CircDUSP16/miR-497-5p/TKTL1 miRNA sponge (93)

EMT Circ_0007624 suppressor Circ_0007624/miR-224-5p/CPEB3/EGFR/PI3K/AKT miRNA sponge (94)

EMT CircHIPK3 promotor CircHIPK3/miR-124/AKT3 miRNA sponge (95)

EMT CircDOCK5 suppressor CircDOCK5/miR-627-3p/TGF-b/SMAD/ZEB1 miRNA “reservoir” (96)

EMT CircNTRK2 promotor CircNTRK2/miR-140-3p/NRIP1 miRNA sponge (97)

EMT Hsa_circ_0012563 promotor Hsa_circ_0012563/XRCC1/EMT Coding of proteins and peptides (98)

EMT Hsa_circ_0006948 promotor Hsa_circ_0006948/miR-490-3p/HMGA2 miRNA sponge (99)

EMT Circ_2646 promotor Circ_2646/miR-124/PLP2 miRNA sponge (100)

EMT Hsa_circ_0000277 promotor Hsa_circ_0000277/miR-4766-5p/LAMA1 miRNA sponge (101)

EMT CircARAP2 promotor CircARAP2/miR-761/FOXM1 miRNA sponge (102)

EMT CircLONP2 promotor CircLONP2/miR-27b-3p/ZEB1 miRNA sponge (103)

EMT CircFAM120B suppressor
CircFAM120B/miR-661/PPM1L axis and
CircFAM120B/PKR/p38 MAPK/EMT pathway

miRNA sponge/RNA-binding
protein (104)

resistance to radiation, EMT CircVRK1 suppressor CircVRK1/miR-624-3p/PTEN/PI3K/AKT miRNA sponge (105)

resistance to radiation, EMT Circ_0007022 promotor Circ_0007022/miR-338-3p/NRP1/PI3K/AKT miRNA sponge (106)

resistance to radiation, EMT Circ_100367 promotor Circ_100367/miR-217/Wnt3 miRNA sponge (107)

resistance to radiation, EMT Hsa_circ_0014879 promotor Hsa_circ_0014879/miR-519-3p/CDC25A miRNA sponge (108)

resistance to cisplatin CircMAN1A2 promotor HNRNPUL1/CircMAN1A2 RNA-binding protein (109)

resistance to cisplatin Hsa_circ_0007142 promotor Hsa_circ_0007142/miR-494-3p/LASP1 miRNA sponge (110)

resistance to cisplatin CircDOPEY2 suppressor CircDOPEY2/CPEB4/TRIM25/Mcl-1
RNA-binding protein-protein
scaffold (111)

resistance to cisplatin Hsa_circ_0000277 promotor
Hsa_circ_0000277/miR-873-5p/SOX4/
Wnt/b-catenin miRNA sponge (112)

resistance to Taxol Circ_0006168 promotor Circ_0006168/miR-194-5p/JMJD1C miRNA sponge (113)

resistance to 5-FU CircPVT1 promotor
CircPVT1/miR-30a-5p/FZD3/Wnt/
miR-30a-5p/b-catenin miRNA sponge (114)

exosomal
Hsa_circ_
0026611 promotor / / (115)

exosomal Circ_0000337 promotor Circ_0000337/miR-377-3p/JaK2 miRNA sponge (116)

exosomal CircSFMBT2 promotor CircSFMBT2/miR-107/SLC1A5 miRNA sponge (117)
F
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incredibly adaptable and multifunctional cells, which also

significantly contribute to many pro-tumorigenic outcomes

through tumorigenesis , together with angiogenic and

lymphangiogenic regulation, immune suppression, hypoxia

induction, and stemness (131). CircRNAs are generally associated

with M2 polarization (132–134); however, the specific mechanism

between circRNAs and M2 polarization is unclear. In recent studies,

Lu et al. observed that hypoxia encouraged ESCC cells to produce

more exosomes rich in hsa_circ_0048117, which might induce

TAMs to differentiate into the M2 type via the miR-140/toll-like

receptor 4 (TLR4) pathway. Thus, hsa_circ_0048117 can be seen as

a macrophage miR-140 “sponge” which directly competes with

TLR4 to bind miRNA. In addition, the ability of ESCC cells to

invade and migrate may be enhanced by M2 macrophages (84). M2

macrophages can release Arg1, IL-10, and TGF-a which boost the

tumor cells’ capacity for invasion and migration and aid in ESCC

metastasis. Compared to healthy participants, serum exosomal

hsa_circ_0048117 levels were considerably higher in patients with

ESCC. Higher exosomal levels of circ_0048117 were strongly linked

to TNM grade and predicted an advanced T and N stage (84).

Similarly, in another research, Lin et al. discovered that circTCFL5

was markedly increased in ESCC and could speed up the disease

evolution by upregulating FMNL2 by sponging miR-543 in vitro

and in vivo. Mechanistically, circTCFL5 accelerates esophageal

cancer development by modifying M2 macrophage polarization

through the miR-543/FMNL2 axis (85).

Previous studies have revealed that circRNAs can interact with

the tumor immune microenvironment by participating in multiple

approaches (19). In addition to participating in M2 polarization and

interacting with macrophages, circRNAs mediate tumor immune

surveillance (135, 136), regulate immune escape via PD-L1 (137–

140), regulate natural killer cells’ cytotoxicity (141–143), and

regulate neutrophils, myeloid-derived suppressor cells, and

cancer-associated fibroblast (144). However, whether circRNA

affects ESCC TME through the aforementioned effects, except M2

polarization, has not yet been reported.
4.2 Energy metabolism regulation
in the TME

Tumors caused by genomic instability frequently exhibit energy

metabolism reprogramming (30). Deregulation of metabolism,

common in tumor development, is a crucial source of growth and

division. Proteins and non-coding RNAs (ncRNAs) are involved in

orchestrating these changes in energy metabolism (145). CircRNAs,

a novel class of regulatory molecules, regulate cancer metabolism.

CircRNAs regulate the energy metabolism of ESCC through

different targets.

Glucose is a vital carbon substrate for generating energy and

metabolic intermediates (146). Cancer cells frequently rely on

glycolytic metabolism for maintenance; nonetheless, cellular

reprogramming of metabolic processes frequently occurs in

developing tumors when blood perfusion is constrained (147). For

instance, circGOT1 functions as an oncogene in ESCC, which
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promotes aerobic glycolysis through the miR-606/GOT1 axis,

acting as an mRNA sponge (86). CircGOT1 knockdown reduces

ESCC cell motility, proliferation, and chemoresistance to cisplatin

(86). Additionally, circGOT1 inhibition decreased lactate synthesis,

glucose consumption, and ATP levels (86). Further, circFNDC3B was

upregulated in ESCC tissues and cells, and circFNDC3B knockdown

caused apoptosis, decreased cell glycolysis, and inhibited xenograft

tumor formation (87). Sponging miR-490-5p and upregulating

TXNRD1 expression resulted in the aforementioned inhibitory

effects (87). TXNRD1 overexpression reduced the repressive

function by enhancing cell proliferation, migration, and glycolysis

and lowering apoptosis in ESCC (87). In addition, tumors from

patients with clinical stage III tumors expressed more circFNDC3B

than tissues from individuals with clinical stage I + II (87).

Amino acid metabolism is involved in cancer progression.

Cancer cells exert worsened metabolic activity to maintain their

increased proliferation and microenvironmental adaptation, to

survive in nutrient-poor environments. Tumors exhibit increased

energy-producing processes such as glycolysis, glutaminolysis, and

fatty acid production (148). Since the 1950s, researchers have

discovered that glutamine is the amino acid most tumor cells use.

The fundamental biological activities require glutamine, which

glutaminase transforms into glutamate. Glutamate can also

provide nitrogen for purines and pyrimidines production or

participate in the TCA cycle via conversion to a-ketoglutarate
(145). Glutamate is another source of glutathione, a vital cellular

antioxidant. Glutamine’s catabolism creates an anaplerotic pathway

that feeds the Krebs cycle; therefore, some cancer cells depend

highly on it (149). Thus, glutamine is crucial for tumor

development. Recently, Qian et al. discovered that circ_0001093 is

overexpressed in ESCC and functions as an mRNA sponge for miR-

579-3p to promote GLS expression, boosting glutamine metabolism

and malignant phenotype of ESCC (88). Similarly, miR-615-5p was

sponged by circOGDH to release PDX1, which increased glutamine

metabolism and promoted tumor progression in ESCC (89).

Further studies have revealed that elevated miR-615-5p reduces

ATP content, a-KG synthesis, and glutamine consumption, which

are suppressed by PDX1 (89).

In addition to glutamate metabolism, circRNAs influence ESCC

progression by participating in other amino acid metabolism pathways.

Proline metabolism is essential to metabolic reprogramming in some

malignancies, producing ATP. In cancerous cells, prolinemetabolism is

associated with ATP synthesis, protein and nucleotide production, and

redox balance (150–153). Recent studies have demonstrated that

proline metabolism is critical for metabolic reprogramming,

promoting cell proliferation, preventing cell apoptosis, and

generating metabolites that support cancer cell survival in various

stressful environments (153–157). Circ_0000705 knockdown boosted

ROS generation, decreasing proline and PYCR1 expression and ATP

synthesis in ESCC cells (90). Additionally, the inhibitory effects of

circ_0000705 knockdown on the aforementioned biological functions

in ESCC were reversed by miR-621 suppression or PYCR1 expression

restoration (90). Therefore, circ_0000705 might accelerate ESCC

development by targeting the miR621/PYCR1 axis and promoting

proline metabolism (90).
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In addition, increased oxidative phosphorylation may

contribute to hypoxia in cancerous cells; however, the exact

mechanism underlying this phenomenon is currently being

investigated. There are few reports on the potential role

of circRNAs in the oxidative phosphorylation of tumor cells

(158–160). CircPUM1 is essential for maintaining mitochondrial

complex III integrity (91). In ESCC, circPUM1 serves as a scaffold

for UQCRC1 binding to UQCRC2 (91). Lower intracellular oxygen

levels, significantly suppressed oxidative phosphorylation,

decreased mitochondrial membrane potential, and increased ROS

production are effects of circPUM1 knockdown (91). Mitochondrial

complex III becomes dysfunctional because of circPUM1 deficiency

(91). In addition, circPUM1 disruption causes pyroptosis, which

initiates ESCC cell death by altering the intracellular ATP

levels (91).

Several circRNAs are tightly linked to glycolysis, glutamine

metabolism, proline metabolism, and oxidative phosphorylation. In

addition, circRNAs may affect ESCC progression through other

mechanisms, such as serine and lipid metabolism (145). We could

uncover the mystery of ESCC development with further studies in

this area.
4.3 Abnormal regulation of angiogenesis

Angiogenesis is a crucial process in growth and development

and has been the focus of research in recent years. Endothelial cells

(ECs) proliferate, differentiate, and migrate during angiogenesis to

form new blood vessels based on pre-existing capillaries or venules

(161, 162). Additionally, angiogenesis mainly involves cell

migration, proliferation, and vascular endothelial growth factor

(VEGF) (163–165). A characteristic of cancer is angiogenesis

induction (166). The significance of malignant cell neovasculature

in tumor biology and nutrient and oxygen delivery to growing

tumors is crucial, including tumor metastasis/dissemination (167),

metabolic dysfunction (168), and cancer stem cell maintenance

(169, 170). CircRNAs within the TME can influence various

physiological and pathological processes, including tumor

angiogenesis (171, 172). Circ_0072088 is involved in tumor

biological processes, such as proliferation, migration, invasion,

and apoptosis in different cancers (173–179). Fang et al. verified

that circ_0072088 upregulation considerably enhanced the protein

and mRNA expression of VEGF in ESCC by sponging miR-377

(92). According to previous studies, VEGF upregulation by

circ_0072088 can be reversed by overexpressing miRNA-377 (92).

Thus, circ_0072088 can lessen its inhibitory effect on VEGF

expression by modulating the miR-377/VEGF axis (92). This

could increase angiogenesis regulation, which would encourage

ESCC progression.
4.4 Regulation of hypoxia in the TME

Oxygen homeostasis is crucial in human physiology and

metabolism. Oxygen is required by the machinery for energy
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production and by many cofactors and substrates for enzymes

(180). Hypoxia is a vital component of physiological and

pathological processes. Understanding the mechanisms underlying

angiogenesis, glucose metabolism, and cell proliferation is particularly

important (181). Hypoxia is a typical TME characteristic of various

malignancies. The rapid proliferation of cancer cells does not match a

lack of oxygen. Thus, several adaptive cellular responses and

biological changes are initiated when cancer cells sense a drop in

oxygen levels, causing them to swiftly adapt to the hypoxic

environment and accelerate cancer progression (182). Recent

studies have revealed that circRNAs play crucial roles in developing

hypoxic microenvironments and exhibit variable expression in

response to hypoxia (183, 184). According to previous studies,

miR-497-5p is targeted by PRKAA1 and contributes to ESCC cell

proliferation and motility control by being minimally expressed in

ESCC (185). In addition, low miR-497-5p expression regulates the

radiosensitivity of ESCC by directly targeting the 3’-UTR of CDC25A

(186). However, Ma et al. illustrated that miR-497-5p overexpression,

which is sponged by circDUSP16, could inhibit the ESCC cell

progression under hypoxic conditions (93). In hypoxic conditions,

ESCC cells had higher levels of circDUSP16 (93). By inhibiting miR-

497-5p and increasing TKTL1, circDUSP16 knockdown restored

hypoxia-stimulated malignant tendencies in ESCC cells (93). Under

hypoxic conditions, circDUSP16 knockdown clearly hindered ESCC

survival, colony formation, and invasion (93). Furthermore, the

reduction in glucose intake, lactate generation, and HK2 and

LDHA levels following circDUSP16 knockdown demonstrated that

circDUSP16 silencing caused an apparent inhibition of glycolysis in

ESCCs under hypoxic conditions (93). Additionally, circDUSP16

knockdown prevents ESCC carcinogenesis in vivo (93). These

findings suggest that circDUSP16 knockdown partially alters the

biologically malignant responses of ESCCs to hypoxia (93).

Hypoxia significantly influences tumor progression, metastasis,

invasion, angiogenesis, epigenetic reprogramming, metabolic

reprogramming, immune evasion, and glycolysis in ESCC (187–

190). Further proof of the possible applications of circRNAs may be

provided by understanding the mechanisms of circRNAs

in hypoxia.
4.5 Inducing epithelial-to-mesenchymal
transition and tumor cell migration

The complex program of cell plasticity, EMT, is abnormally

reactivated in cancer. The interaction between cancerous cells and

TME is crucial for EMT and tumorigenesis (191). CircRNA-related

signaling pathways, such as the PI3K/Akt and TGF- signaling axes,

are involved in the EMT process. For instance, the PI3K/Akt

pathway is affected by circ_0007624 (94). This circRNA functions

as a ceRNA to sponge miR-224-5p, increasing CPEB3 expression

and inactivating the EGFR/PI3K/AKT axis, which could prevent

cell proliferation, metastasis, and EMT in ESCC (94). CircHIPK3 is

another circRNA that directly modulates AKT3 expression, acting

as an miR-124 sponge in regulating ESCC progression (95).

Vimentin and E-cadherin expression were drastically reduced by
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circHIPK3 expression, indicating that circHIPK3 prevented EMT

(95). CircDOCK5 acts as a miR-627-3p reservoir in the TGF-b
signaling pathway by stabilizing miR-627-3p to impede TGFB2 and

repressing secreted TGF-b, which then dysregulates ZEB1

expression and inhibits EMT (96). In other words, circDOCK5

prevents EMT in ESCC by affecting the miR-627-3p/TGF-b/
SMAD/ZEB1 pathway (96).

Despite this, emerging research has revealed that circRNAs are

involved in EMT regulation and tumor cell migration in ESCC via

other pathways. CircNTRK2 altered NRIP1 function as miR-140-3p

sponging, which helped promote the malignant biological cell

behaviors (EMT included) of ESCC (97). Zhang et al. observed

that hsa_circ_0012563 upregulation in ESCC could enhance cell

migration and invasion by modulating the XRCC1/EMT axis.

Furthermore, its expression is tightly linked to tumor

pathogenesis and metastasis (98). Hsa_circ 0006948 can directly

bind to miR-490-3p, which regulates ESCC progression by targeting

the 3’-UTR of the oncogene HMGA2 (99). By binding to miR-124,

circ_2646 facilitates ESCC cell proliferation, migration, invasion,

and EMT (100). MiR-124 can slow ESCC development by

suppressing PLP2 expression (100). Zhou et al. observed that

circPDE3B functions as a ceRNA and promotes LAMA1-

mediated EMT, metastasis, and proliferation in ESCC by acting as

an miR-4766-5p sponge (101). Rescue experiments revealed that

co-transfection of the circPDE3B vector or miR-4766-5p inhibitor

partly reduced the inhibitory effect (101). Similarly, circARAP2

influences EMT and cancer stem cell differentiation by regulating

miR-761/FOXM1 (102). Zhu et al. explained that circLONP2

facilitated ESCC proliferation and migration via miR-27b-3p

sponging and governed its target gene—ZEB1—expression;

consequently, circLONP2/miR-27b-3p-ZEB1 axis involvement

might be an efficient strategy for ESCC treatment (103).

CircFAM120B, also known as hsa_circ_0001666, is typically

dysregulated in ESCC and is favorably correlated with overall

survival (104). Essentially, circFAM120B significantly reduced the

biological functions of ESCC by disrupting PKR to affect the p38/

MAPK/EMT axis or sponging miR-661 to restore PPM1L

expression (104).

The aforementioned data continuously verified the crucial

role of circRNAs in malignant tumor invasion and metastasis,

demonstrating that circRNAs are collectively involved in the EMT

process by participating in modulating EMT-related pathways.
5 Clinical application of circRNA
in ESCC

With the deepening of circRNA studies, various emerging

targets have been identified and verified to be involved in the

occurrence and development of ESCC (68, 192). Furthermore,

current studies have revealed that circRNAs can be used as

biomarkers. Due to their unique resistance to chemotherapy

medications, targeted therapy can be carried out for patients with

clinical chemotherapy resistance (Figure 3) (31, 193).
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in ESCC

Malignant tumors are often accompanied by metastasis

postoperatively; therefore, radiotherapy and chemotherapy still

need to be administered locally or systemically (194). However,

due to the emergence of resistance, some people with cancer still

experience local recurrence and lymph node metastases (195).

Thus, the discovery of different targets to enhance treatments

can be accomplished by understanding the regulatory processes

of circRNAs implicated in radiation and chemotherapeutic

resistance (196). The three major concerns associated with

anticancer agents are drug resistance, metastasis, and EMT.

According to available data, drug resistance and EMT are

associated in many ways. Cancerous cells that are resistant to

drugs might have higher EMT and invasive capabilities (197,

198). Accumulating evidence has clearly revealed that circRNAs

play a significant role in EMT regulation and radiation resistance in

ESCC. For instance, increased circVRK1 levels decreased the

migration potential, reversed EMT progression, and drastically

increased ESCC radiosensitivity by modulating the miR-624-3p/

PETN axis and inactivating the PI3K/AKT signaling pathway (105).

Zhang et al. verified that circ_0007022 can function as a miRNA

sponge to regulate the miR-338-3p/NRP1 axis, activating EMT and

the PI3K/AKT pathway to generate radiation resistance in ESCC

(106). Circ_100367, an oncogenic circRNA in ESCC cells with a

higher potency of EMT coordinated with miR-217, extraordinarily

regulates the radioresistance of ESCC through the Wnt3 signaling

pathway (107). Liu et al. demonstrated that hsa_circ_0014879

knockdown enhanced ESCC radiosensitivity and reduced ESCC

migration and EMT via the miR-519-3p/CDC25A regulatory

axis (108).

One of the most commonly used chemotherapeutic drugs is

platinum, which is a complex barrier in cancer therapy (199). Albeit

the mechanisms of platinum drug resistance have been the subject of

numerous investigations, few efficient, targeted treatments are

available (200–202). Mounting evidence suggests that circRNAs are

involved in multiple cellular processes and malignancies, including

ESCC (203, 204). Understanding the underlying causes of

chemoresistance is crucial for developing effective ESCC treatments

and preventing recurrence. Zhou et al. unveiled that circGOT1

functions as an oncogene in ESCC, stimulating cell proliferation,

migration, glycolytic metabolism, and reducing apoptosis by acting as

an miR-606 sponge to induce GOT1 expression (86). CircGOT1

knockdown restored the cisplatin resistant ESCC sensitivity to

cisplatin (86). In patients with ESCC undergoing platinum-based

chemotherapy postoperatively, increased HNRNPUL1 expression is

linked to a poor prognosis with a greater likelihood of recurrence and

shorter disease-free survival (DFS) (109). By controlling

circMAN1A2 production, HNRNPUL1 inhibition reduces the

cisplatin-chemoresistance of ESCCs (109). Chang et al. uncovered

that circ_0007142 depletion can modulate the miR-494-3p/LASP1

axis, leading to cisplatin resistance in ESCC (110). Moreover, multiple

chemotherapeutic drug resistance-associated proteins produce GST-

p, which can reduce the cytotoxicity of chemotherapy medications
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(205). P-gp is an energy-dependent transporter that may combine

with drugs and ATP to decrease medication concentration and

supply energy for chemotherapeutic drug excretion (206).

Remarkably, cisplatin resistant ESCCs with hsa_circ_0007142

silencing had lower P-gp and GST-p levels (110). Additionally,

hsa_circ_0007142 knockdown significantly reduced cisplatin

resistance in ESCC cells (110). Apoptosis is also closely

associated with carcinogenesis. CircRNAs can tip the balance

between cell death signaling and may improve chemoresistance

efficacy (207). A BCL-2 family member that has been the subject of

the most research is MCL-1, an anti-apoptotic oncoprotein (208).

Mcl-1 is crucial for malignant biological functions because it mediates

the apoptotic signaling pathway (209). It is also fundamentally

altered, upregulated, and largely related to chemoresistance in

several cancer (210). Liu et al. observed that in ESCC cells,

circDOPEY2 functions as a protein scaffold to enhance CPEB4

ubiquitination and degradation in a TRIM25-dependent manner,

increasing cisplatin-induced apoptosis by inhibiting CPEB4’s

promotion of Mcl-1 translation and reducing cisplatin resistance
Frontiers in Oncology 11
(111). Another ESCC study revealed that hsa_circ_0000277 can

modulate the miR-873-5p/SOX4/Wnt/b-catenin axis by acting as

an miR-873-5p sponge to accelerate progression and chemoresistance

in ESCC (112). JMJD1C facilitates tumor growth in various

malignancies by promoting cancer cell growth and preventing

apoptosis (211, 212). A study demonstrated that inhibiting

circ_0006168 decreased tumor growth in vivo by sponging miR-

194-5p and modulating JMJD1C, and in vitro by reducing cell

proliferation, invasion, and migration, and Taxol-resistant ESCC

apoptosis (113). Functionally, circPVT1 modulates the miR-30a-

5p/FZD3/Wnt/b-catenin axis and ferroptosis, and circPVT1

knockdown can drastically increase the expression of ferroptosis-

associated parameters MDA/Fe, which can improve chemoresistance

in ESCC (114).

With accumulating evidence for circRNAs elucidated by research

on chemoradiation resistance in ESCC as a new biomarker, circRNA

has excellent potential in predicting the efficacy and prognosis of

chemoradiotherapy or interfering with chemoradiation resistance

and can be a target for clinical cancer therapy.
B

C

A

FIGURE 3

Clinical application of circRNA in ESCC. (A) Radiation resistance. CircVRK1 downregulate PETN by sponging miR-624-3p and inactivate the PI3K/AKT
pathway and EMT. Circ_0007022 upregulate NRP1 by sponging miR-338-3p activating the PI3K/AKT pathway and EMT. Circ_100367 and
hsa_circ_0014879 upregulate Wnt3 and CDC25A by sponging miR-217 and miR-519-3p, thereby promoting EMT. CircFAM120B significantly
promote EMT by disrupting PKR to affect the p38/MAPK axis. Besides, circFAM120B downregulate PPM1L by sponging miR-661 directly functioning
on radiation resistance. The role of circRNAs above participate in radiation resistance to affect the progression of ESCC. (B) Chemoresistance.
CircMAN1A2 binding with HNRNPUL1 related to cisplatin resistance. CircDOPEY2 functions as a protein scaffold binding with CPEB4 and TRIM25,
upregulating Mcl-1 translation and increasing cisplatin resistance. CircGOT1, hsa_circ_0007142, and hsa_circ_0000277 upregulate GOT1, LASP1,
and SOX4/Wnt/b-catenin by sponging miR-606, miR-494-2p, and miR-873-5p increasing cisplatin resistance. Circ_0006168 upregulate JMJD1C by
sponging miR-194-5p increasing Taxol resistance. CircPVT1 increase 5-FU resistance through miR-30a-5p/FZD3/Wnt/b-catenin axis. (C) Exosomal
circRNAs. Circ_0000337 and circSFMBT2, serum exosomal circRNAs, upregulate JaK2 and SLC1A5 by sponging miR-377-3p and miR-107, thereby
promoting carcinogenic activity of ESCC.
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5.2 Exosomal circRNAs in ESCC TME

Exosomes are discoidal vesicles of 30–150 nm diameter that carry

cargo derived from the host cell, such as proteins, lipids, DNA, and

RNA. Exosomes carry their cargo to recipient cells, allowing immune

and cancerous cells to communicate through them (213, 214). Cancer

invasion and metastasis may be facilitated by exosome-mediated

interactions between cancerous cells and the TME, encouraging

EMT, angiogenesis, and immune escape (215). The TME is essential

for intercellular information transmission and oncogenesis. Numerous

studies have reported extensive and sustainable circRNAs in the

exosomes (216–221). In a recent study, Liu et al. identified that

serum exosomal hsa_circ_0026611 expression is markedly increased

in ESCC, indicating that it can be utilized as a valuable indicator to

distinguish lymph from non-lymph node-metastatic ESCC (115).

Additionally, elevated hsa_circ_0026611 expression is strongly

associated with poor overall survival (OS) and DFS (115). In another

study, Zang et al. demonstrated that circ_0000337 was highly

upregulated in ESCC (116). In addition, exosomes released by

cisplatin-resistant ESCC cells that contain abundant circ_0000337

enhance the ability of ESCC cells to resist cisplatin and promote cell

proliferation and metastasis (116). Xenotransplantation supported this

hypothesis (116). Thus, exosomal circ_0000337 drastically affects

cisplatin resistance in ESCC by modulating the miR-377-3p/Jak2 axis

(116). Exosomal circSFMBT2 has been linked to a poor prognosis and

is upregulated in ESCC (117). CircSFMBT2 silencing may slow cancer

progression by preventing ESCC proliferation, invasion, and glutamine

metabolism (117). Mechanistically, circSFMBT2 leads to SLC1A5

upregulation by sponging miR-107, thereby promoting carcinogenic

activity (117). CircSFMBT2 exosomes may be an effective new

therapeutic indicator for ESCC because they facilitate circSFMBT2

metastasis in ESCC cells, which causes the cells to exhibit the

aforementioned malignant behaviors (117). Exo-circRNAs are

defined by a transferrable target-specific capability, in addition to the

initial physiological functions of circRNAs, since circRNAs are detected

in exosomes (19). Continued studies may further reveal the

involvement and promising effects of exo-circRNAs in the TME;

thus, they require confirmation.
6 Discussion

As well as being affected by abnormal mutations in malignant

cells, cancer is also associated with the composition of the TME.

The TME is characterized by heterogeneous composition according

to a large amount of research. Nevertheless, nearly all types of

cancer can be treated with specific cells and mediators to improve

patient health. There is increasing evidence that circRNAs play a

crucial role in TME regulation. The exact physiological and

pathological roles of circRNA in TME, as well as the underlying

mechanisms, remain largely unknown. Currently, the interaction

mechanisms between circRNAs and TME elements have received

considerable attention. Establishing TME networks involving
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circRNAs may be an emerging direction for targeted therapies

based on their interactions with circRNAs. Current findings on

circRNAs have primarily concentrated on how they affect the

bioactivity of malignancy, while systematic summaries for specific

solid tumor microenvironments are lacking.

In this review, we discussed the biogenesis/degradation

mechanisms and biological functions of circRNA occurrence. We

systematically summarized the biological functions and clinical

features of ESCC affected by circRNA dysregulation and its

regulatory mechanisms in TME. Especially, in TME-related

immune microenvironment, energy metabolism regulation,

angiogenesis, hypoxia, epithelial-to-mesenchymal transition and

tumor cell migration. Finally, we also discussed the mechanisms

by which circRNAs drive chemoradiation resistance in ESCC and

the role of the emerging exosomal circRNA in ESCC TME, thus

providing insight into the future role of circRNA as a potential

diagnostic indicator of ESCC. Nevertheless, there still has some

relevant potential mechanisms that have not yet been elucidated

in studies of circRNA in ESCC TME. In the immune

microenvironment we focus on the relationship between circRNA

and macrophage M2 polarization, the expression of other immune

cells associated with TME such as T cells, NK cells, and the surface

immune checkpoint molecules PD-L1/PD-1 in tumor cells, and the

expression of important components of TME: stromal cells such as

cancer-associated fibroblasts, endothelial cells, and pericytes, for

which more studies are needed to explore their potential regulation.

Researches on circRNA in ESCC TME regarding energy

metabolism, angiogenesis, EMT, and hypoxia mechanisms is

increasing and becoming more detailed. However, current studies

on metabolic mechanisms are mainly focused on glycolysis,

glutamine metabolism, proline metabolism, and oxidative

phosphorylation. Other metabolic-related mechanisms, such as

serine and lipid metabolism, need to be explored.

Clinical applications related to the role of circRNA in ESCC

TME also need to be further explored, in addition to some of the

above mechanistic studies to be elucidated. Despite the exploration

of animal models to validate circRNA in chemoradiation resistance

in ESCC, the applicability of circRNA-targeted therapy for ESCC in

clinical trials remains to be investigated. Moreover, exosomal

circRNAs play a crucial role in ESCC, providing new therapeutic

targets and promising biomarkers for exosome-loaded small

molecules that could be designed for ESCC diagnosis. We believe

that with the investigation of circRNA function and mechanism in

ESCC TME, it will definitely contribute to the developments of new

strategies for ESCC treatment.
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