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and score inference
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Jiayin Zhou2 and Xiaoying Wang1*

1First Hospital, Peking University, Beijing, China, 2Department of Precision Diagnosis & Image Guided
Therapy, Philips Research, Shanghai, China
Introduction: Leveraging deep learning in the radiology community has great

potential and practical significance. To explore the potential of fitting deep

learning methods into the current Liver Imaging Reporting and Data System

(LI-RADS) system, this paper provides a complete and fully automatic deep

learning solution for the LI-RADS system and investigates its model performance

in liver lesion segmentation and classification.

Methods: To achieve this, a deep learning study design process is formulated,

including clinical problem formulation, corresponding deep learning task

identification, data acquisition, data preprocessing, and algorithm validation.

On top of segmentation, a UNet++-based segmentation approach with

supervised learning was performed by using 33,078 raw images obtained from

111 patients, which are collected from 2010 to 2017. The key innovation is that

the proposed framework introduces one more step called feature

characterization before LI-RADS score classification in comparison to prior

work. In this step, a feature characterization network with multi-task learning

and joint training strategy was proposed, followed by an inference module to

generate the final LI-RADS score.

Results: Both liver segmentation and feature characterization models were

evaluated, and comprehensive statistical analysis was conducted with detailed

discussions. Median DICE of liver lesion segmentation was able to achieve 0.879.

Based on different thresholds, recall changes within a range of 0.7 to 0.9, and

precision always stays high greater than 0.9. Segmentation model performance

was also evaluated on the patient level and lesion level, and the evaluation results

of (precision, recall) on the patient level were much better at approximately (1,

0.9). Lesion classification was evaluated to have an overall accuracy of 76%, and

most mis-classification cases happen in the neighboring categories, which is

reasonable since it is naturally difficult to distinguish LI-RADS 4 from LI-RADS 5.

Discussion: In addition to investigating the performance of the proposedmodel

itself, extensive comparison experiment was also conducted. This study shows

that our proposed framework with feature characterization greatly improves

the diagnostic performance which also validates the effectiveness of the added
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feature characterization step. Since this step could output the feature

characterization results instead of simply generating a final score, it is able to

unbox the black-box for the proposed algorithm thus improves the

explainability.
KEYWORDS

LI-RADS, clinical study, lesion segmentation, feature characterization, problem
formulation, deep learning
1 Introduction

Cancer is a leading cause of death worldwide, accounting for

nearly 10 million deaths in 2020 (1). Liver cancer is the third most

common cause of cancer death (accounting for 830,000 deaths) in

2020 according to the World Health Organization (2).

Hepatocellular carcinoma (HCC) is the most common type of

liver cancer, accounting for approximately 90% of all liver cancers

(3), with only 18% with 5-year survival rate and average survival

rates between 6 and 20 months. To provide standardization of liver

imaging for HCC, Liver Imaging Reporting and Data System (LI-

RADS) (4) is created and supported by the American College of

Radiology (ACR). The imaging normally refers to either multiphase

computed tomography (CT) or multiphase magnetic resonance

imaging (MRI). LI-RADS is a comprehensive system for

standardizing the terminology, technique, interpretation,

reporting, and data collection of liver imaging, diagnosis, and

staging of HCC in high-r isk pat ients . By providing

standardization, LI-RADS aims to reduce imaging interpretation

variability, enhance communication with referring clinicians, and

facilitate quality research. According to the LI-RADS system, an

observed liver lesion in a high-risk patient is assigned a LI-RADS

category from LR-1 to LR-5, which indicates the likelihood of being

HCC and the extent of the disease spread. More specifically, LR-1

and LR-2 mean definitely benign and probably benign, respectively.

LR-3 indicates an intermediate probability of malignancy. LR-4 and

LR-5 represent probably HCC and definitely HCC, respectively.

An accurate LI-RADS category system requires an accurate

and comprehensive evaluation of imaging features, such as non-

rim arterial phase hyperenhancement (APHE), lesion size, the

presence of enhancing capsule and non-peripheral washout, and

threshold growth. Although the LI-RADS system standardizes the

qualitative diagnosis for HCC and improves the reporting

workflow, it requires strong reading and interpretation abilities

from experts and still might incur large inter-reader and inter-

center variations. The increasing complexity of LI-RADS has

made its implementation less feasible in a high-volume practice

(5) and becomes a major barrier to broad adoption. Triggered by

these motivations, researchers tried to seek assistance from

artificial intelligence (AI)-based imaging techniques. It is

expected to develop computational decision-support tools to

improve workflow efficiency by automating the detection,

classification, and standardized reporting of diagnostic results.
02
For example, the American College of Radiology has called for

novel systems or tools that can seamlessly integrate LI-RADS into

radiologists’ normal workflow to make it more feasible for daily

clinical care (6).

To automate the LI-RADS system using deep learning techniques,

it is common to think of a convolutional neural network (CNN) as an

advanced mapping function for classification tasks between inputs

(which are MR images) and outputs (which are LI-RADS grades).

Instead of doing like a black box, in this paper, we try to simulate the

working principles of radiologists and unbox the black box by

actualizing the LI-RADS system step by step including lesion

detection and segmentation, discriminative feature characterization,

and standardized scoring. These steps need to be undertaken integrally

and automatically. Unlike general approaches directly classifying the

LI-RADS grades based on MRI images, this paper proposes to

introduce one more step, which is called feature characterization, in

our deep learning framework. To actualize the feature characterization

in a deep learning way, this paper delves into the multi-phase reasoning

problem for discriminative lesion feature characterization, and it is

tailored for the LI-RADS scoring system. Overall, this paper aims to

achieve a deep learning-driven complete solution by automating LI-

RADS for liver diagnosis to be classified into three types from LR-3 to

LR-5. In addition, the feature characterization as an intermediate result

is able to help improve the explainability of the proposed approach. To

be more specific, the proposed framework consists of three steps as a

complete solution, namely, UNet++-enabled liver lesion segmentation,

discriminative lesion feature characterization, and inference module for

the final LI-RADS score. Physicians working alongside AI is a type of

human-in-the-loop AI, which is envisioned to be the future way of

work. The AI-empowered proposed integrated framework helps to

improve physicians’ self-confidence when diagnosing so as to improve

their final diagnostic performance. To be more concrete, the

contributions can be summarized as follows.
• This paper not just provides a deep learning-based LI-

RADS classification framework but also embeds expert

domain knowledge into the deep learning framework and

makes an attempt at practical applications of it. In

comparison to previous related studies, this paper

proposes feature characterization to develop a tailored

approach specifically for LI-RADS application instead of

simply adopting an existing CNN model to prove the

feasibility of deep learning techniques.
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• By looking into the working principle of LI-RADS, this

paper identifies the types of lesions from a totally new

perspective (see Figure 1), proposing to characterize the

lesion features using a deep learning technique instead of

simply treating it as a general classification problem, which

directly outputs a LI-RADS grade for each lesion. In this

way, the decisions on LI-RADS can be justified through

internal analysis of relevant radiologic features, which

makes the proposed framework explainable.

• Considering the special characteristics of contrast-

enhanced MRI with multiple-phase images being

involved, this paper designs a specific network for multi-

phase reasoning problems for discriminative lesion feature

characterization, and the newly designed architecture can

be jointly trained by using multi-task learning with adaptive

loss.

• The proposed framework has been tested and investigated

in our designed study, and a comparison experiment was

also conducted to validate the effectiveness of the added

feature characterization step. The comprehensive statistical

analysis was performed using R software based on the

dataset from Peking University First Hospital (PKU1).

Statistical results are discussed in detail to analyze the

possible challenges in this study.
2 Materials and methods

2.1 Deep learning study design

Deep learning has rapidly advanced in various fields and also

gained attention in the radiology community. The paper of Yasaka

et al. (7) starts with an introduction to deep learning technology and
tiers in Oncology 03
then presents the stages that are entailed in the deep learning study

design process of radiology research. A standard workflow or

process of a complete study design is provided. The initial step is

the formulation of the clinical problem, which is the LI-RADS

scoring system in our case. After determining what the clinical

problem is, the corresponding deep learning tasks are assigned.

Based on the chosen specific deep learning tasks, data acquisition

and data preprocessing can be conducted, including the

considerations of the split of training data and testing data, and

data annotation. Given the tasks and input data, the network

architecture is designed, and appropriate software and hardware

platforms need to be selected. With both data and network model

well prepared, the designed model is trained using training data, by

which the parameters inside the model are updated to be optimal

values that can deliver the best training results. Last, the network is

required to be validated based on testing data to evaluate how well

the designed model performs on this specific task. The above briefly

describes the study design process, and the study in this paper

would follow the above guidelines and showcase how it is designed

properly. Figure 2 illustrates more intuitively how the whole deep

learning study is designed and the workflow. The study in this paper

would follow the above guidelines to be designed properly.
2.2 Clinical problem formulation
and study outline

As mentioned previously in the Introduction section, the purpose

of this study is to try to work out a solution and establish a fully

automatic framework to help radiologists with LI-RADS scoring. This

clinical problem could be formulated to be the prediction of the LI-

RADS score based on the patients’ liver image, and this main objective

can be accomplished by dividing it into three sub-problems and

resolving them separately one by one, namely, liver lesion
FIGURE 1

Comparisons of the generally adopted idea of classifying lesion types (top row) and the proposed framework specifically tailored for LI-RADS
(bottom row). LI-RADS, Liver Imaging Reporting and Data System.
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segmentation, lesion feature characterization, and inference module, to

obtain the final LI-RADS score. The clinical problem in this study was

identified from the radiologists’ daily working experience and

generated from real practical needs. This retrospective clinical study

was approved by our institutional review board, and the requirement

for written informed consent was waived. The reference number of the

institutional review board (IRB) approval for the study is 2017-74. It

was conducted based on image data of HCC diagnosis between

December 2010 and December 2017 in PKU1. All the acquired data

were first preprocessed and then split into several datasets: training sets

used for training the segmentation and classification models, validation

sets used for fine-tuning (if applicable), and testing sets used for

verifying the effectiveness of the trained model.
2.3 Data acquisition

This study is designed to include a heterogeneous collection of

MRI images from different scanners, including SIGNA EXCITE

3.0T HD (GE), Discovery MR 750 3.0T (GE), Achieva 3.0T

(Philips), and SIGNA EXCITE 1.5T HD (GE). MRI protocols

used are summarized in Table 1. Before contrast agent

administration, all patients underwent T1-weighted dual-phase

sequence, T2-weighted 2D sequence, and diffusion-weighted

sequence. After unenhanced imaging, patients received an

extracellular contrast medium (Gd-DTPA or Gd-DTPA-BMA) at

a rate of 2.5–3 ml/s. A dynamic multiphase T1-weighted (T1W)

sequence was acquired 20–40, 50–60, and 180 s after contrast agent

injection, during the hepatic arterial, portal venous, and delayed
Frontiers in Oncology 04
phases, respectively. To demonstrate the multi-phase contrast-

enhanced MRI process, Figure 3 shows a walkthrough example. It

can be observed that a typical HCC lesion that the arrow points at is

not obvious and non-detectable initially in no contrast phase but

gradually appears as a lesion during contrast enhancement,

washout, and capsule dynamics in the next three phases. The

presence of non-rim APHE, enhancing capsule, non-peripheral

washout, and the observation size could be four major features

for the determination of LI-RADS grades.

A radiologist searched the image archiving and medical history

record system for this study performed for the evaluation of focal

liver observation (hereafter, we will consistently refer to these as

liver lesions unless otherwise specified). A total of 6,041 patients

who underwent upper abdomen enhanced MRI examinations and

were registered in our institution from April 2010 to May 2017 were

included initially. The inclusion and exclusion criteria were detailed

in Figure 4. The final diagnosis was obtained by pathological tests,

transcatheter arter ia l chemoembol izat ion (TACE) or

radiofrequency ablation (RFA), CT/MRI follow-up, or

comprehensive clinical diagnosis. Based on these data, the clinical

dataset in our study was created and defined as the PKU1 dataset.

All the MRI examinations were evaluated by two experienced

radiologists (K.W. and X.W. with 10 and 30 years of imaging

experience respectively) according to the LI-RADS 2018 criteria. A

liver structure report was generated by the radiologists to record the

diagnostic results. Each liver lesion was reviewed, classified, and

determined to give a reliable diagnostic result. The lesions were

categorized into five classes by referencing radiology reports made

by experienced radiologists according to the standardized LI-RADS.
FIGURE 2

The workflow of deep learning study design.
TABLE 1 Imaging sequences and parameters for MRI.

ST IG Matrix NEX TR (ms) TE (ms) B value

T1-weighted dual-phase
FSPGR/FLASH/T1-FFE

≤6 ≤1 ≥256 × 160 ≤1 The shortest 2.25/4.5 (1.5T)
1.15/2.3 (3T)

–

T2-weighted 2D
FSE/TSE/SSFSE

≤6 ≤1 ≥288 × 224 2–4 >1,500 80–106 –

Diffusion-weighted
SE-EPI

≤6 ≤1 ≥128 × 128 4–10 1,850–2,300 The shortest 800–1,200 s/mm2

T1-weighted 3D LAVA/THRIVE ≤4.4 0 ≥256 × 160 ≤1 The shortest The shortest –
ST, section thickness; IG, intersection gap; TR, repetition time; TE, echo time; FSPGR, fast spoiled gradient-recalled; FLASH, fast low angle shot; FFE, fast field echo; FSE/TSE, fast or turbo spin
echo; SSFSE, single shot fast spin echo; SE-EPI, single shot-echo planar imaging; LAVA, liver imaging with volume acceleration; THRIVE, T1-weighted high-resolution isotropic volume
excitation.
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The images were annotated with ITK-SNAP software (version 3.6.0;

http://www.itksnap.org). The annotation for lesion segmentation

and LI-RADS classification were used as the ground truth in

statistical analysis.

A total of 203 upper abdomen MRI images obtained in our

institution were included in this study (see Figure 4). A total of 111
Frontiers in Oncology 05
positive patients and 92 negative patients were finally diagnosed

(see Table 2). The mean age of the participants was 58.53 ± 11.14

years. A total of 69.46% of the patients were male, and 30.54% were

female. Of the identified 111 positive patients, 174 liver lesions

categorized as LR-3/4/5 were further detected and used as the

ground truth. The average diameter of liver lesions was 3.15 ±
FIGURE 4

A flowchart of the patient selection process in this study.
FIGURE 3

Workflow of multi-phase contrast-enhanced MRI technique.
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2.92 cm, ranging from 0.40 to 16.40 cm. Among all the lesions,

44.8% lesions were smaller than 2 cm.
2.4 Data preprocessing

By using commercial viewing software (Centricity Radiology

RA 1000; GE Healthcare), MR images were displayed in Digital

Imaging and Communications (DICom) in Medicine format using

a window with a size of 512 × 512. For each phase, 300 slices of

images were acquired to obtain the 3D shape of the liver, resulting

in a 512 × 512 × 300 tensor, which contains 300 images in total with

size of 512 × 512.

As the deep learning segmentation model utilizes 2.5D learning

technique (will be detailed in Section 2.5.1), a tensor with the size of

512 × 512 × 3 was fed as the input. By doing so, the number of

samples that could be used for segmentation would increase to 298

for one patient, resulting in a total of 33,078 (111 image sets × 298)

available for segmentation used. Each image was preprocessed by

normalization and standardization using the written Python code,

and the pixel value of the normalized image ni could be computed

by the following:

ni =

0, if   oi < 80
oi−80
P99−80

, if   oi ∈ 80, P99f g
1, if   oi > P99

,

8>><
>>:

(1)

where P99 denotes the 99th percentile. Each pixel is then subtracted

by the mean value and divided by the standard deviation for

standardization. Unlike CT images, which have a certain range of

Hounsfield units (HU) pixel values for each tissue, there would be

several pixels with very high signal intensity values in MR images.

In addition, from observation, pixels with signal intensity values

below 80 always belong to the background; thus, we uniformly

replaced signal intensity values below 80 with 0 and values above a

threshold with 1 and normalized the values within this range into

(0, 1). The threshold used in this study was experimentally set as the

99th percentile of the whole image.

In addition, image augmentation was performed by random

rotation, shifting, and flipping both horizontally and vertically to

avoid the possible overfitting problem. The generated new images
Frontiers in Oncology 06
after augmentation were zero-padded to the same size of 512 × 512 as

the original images. A ninefold evaluation was performed to verify the

effectiveness of the segmentation model used in this study. All the

image sets after preprocessing were divided into n folds; thus,

the evaluation process was repeated n times. In each iteration, one

fold was preserved for testing, and the rest were used to train the

segmentation model. n folds take turns as the testing dataset until they

all have been evaluated as the testing set. Normally, n could be set as an

integer such as 5, 6, 7, 8, 9, and 10, and we randomly chose 9 in

this study.

For each phase, the segmentation model can generate 300 image

results, and the image with the largest size of the segmented lesion

was selected for classification. The segmented region was cropped

and then resized into 224 × 224 image to be compatible with

VGG16, which has a fixed input size requirement. The resized

image was standardized by being subtracted mean value and

divided by the standard deviation. After that, the image was also

augmented as we did for raw images in the segmentation stage.
2.5 Technique: the proposed automatic
framework for LI-RADS

In this section, we will describe in detail the proposed fully

automatic framework used for this study for LI-RADS scoring step

by step. Figure 5 shows an overview to provide a big picture of how

it works. It can be seen that the proposed system is an integrated

end-to-end architecture. Given the inputs of MRI imaging volumes

from the three phases, the system directly outputs the final HCC

scores for each lesion. Basically, it consists of three parts, which are

lesion segmentation, lesion feature characterization, and score

mapping. The raw images captured in the delayed phase are first

fed into a deep learning segmentation model to automatically

extract the region of interest (ROI) that covers the whole lesion

instead of cropping manually. Then, the intermediate sub-images

from the three phases were treated as the inputs of the

characterization model. The characterization model identifies the

appearances of APHE, capsule, and washout. On completion of all

these four features computation, a specific score could be

automatically assigned to each lesion according to the LI-RADS
TABLE 2 Patients diagnosed with HCC (n = 111) and patients with non-HCC (n = 92) and details of how these cases are confirmed.

Diagnostic methods No. of the positive patients No. of the negative patients

Liver operation 40 0

Puncture 7 2

Transcatheter arterial chemoembolization 43 0

Radiofrequency ablation (RFA) 4 0

CT/MRI follow-up studies 1 18

Comprehensive clinical diagnosis 14 72

Liver transplant 2 0
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score mapping. In the next subsections, each step in the proposed

system will be elaborated on one by one.
2.5.1 Liver lesion segmentation
To precisely extract the liver lesion region of interest, a powerful

deep learning model is designed and used by combining UNet++

(8) and convolutional block attention module (CBAM) (9). UNet++

with a ResNet backbone is utilized as the base of the segmentation

model, which includes four down-sampling layers for encoding and

four up-sampling layers for decoding. On top of that, CBAM is

integrated into UNet++ and applied on each residual block for the

encoding part. We define a hybrid segmentation loss function

consisting of pixel-wise soft dice loss and focal loss (10). When

the training loss reaches a predefined threshold, we then add one

more Lovasz loss (11) into the loss function for the next training

steps doing fine-tuning. Mathematically, the hybrid loss is defined

as follows:

L(y, p)

= − 1
no

C

c=1
o
N

n=1
(

2yn,cpn,c
y2n,c + p       2n,c

+ ac(1 − pn,c)
g yn,c log  pn,c),

(2)

where yn,c ∈ f±1g and pn,c ∈ ½0, 1� denote the target labels and

predicted probabilities for class c in nth pixel in the batch. N

indicates the number of pixels within one batch. In our case, c is 2,

indicating two classes of lesion and non-lesion. Focal loss is a

variant of cross entropy with additions of a weighting factor ac ∈
½0, 1� for class 1 and 1 − a for class −1 and a modulating factor (1 −

pn, c)g , where g is the focusing parameter. It is especially useful for

class imbalance scenarios. Factor a is introduced to balance the

importance of positive and negative examples but not to

differentiate between easy and hard examples. This is when

modulating factor (1 − pn,c)
g takes part in down-weight easy

examples and only focuses training on hard negatives. When pn,c
is small, which means that this pixel is misclassified, the resulting

loss should be taken into consideration, and the whole loss function
Frontiers in Oncology 07
is unaffected. On the contrary, when pn,c is large, it means that this is

an easy example, and the resulting loss could be ignored. As pn,c
approaches to 1, the factor goes to 0, and the loss for this pixel could

be exactly not involved. Parameter g adjusts the rate at which easy

examples are down-weighted. In addition, Lovasz–Softmax loss is

defined as follows:

Ladd(y, p) =
1
Co

C

c=1
DJcm(c)) (3)

where DJc is the convex Lovasz extension of intersection-over-

union loss.

The integrated deep learning segmentation model is end-to-end

trainable with 512×512 preprocessed images as inputs and 512×512

binary images as outputs. Each voxel is predicted as either

foreground (lesion region) or background. More specifically, we

use 2.5D learning to leverage features in neighboring slices by

combing three neighboring slices in a channel as inputs. The

designed deep learning model is first trained on the LiTS CT

dataset for both liver and lesion segmentation. Then, transfer

learning is used to fine-tune the parameters of the pre-trained

model based on the PKU1 dataset only for lesion segmentation.

2.5.2 Discriminative lesion feature
characterization

Figure 6 shows the architecture used for the characterization of

each feature including APHE, capsule, and washout. Based on the

feedback from radiologists, images in the arterial phase can be only

used for the determination of APHE, while washout and capsule are

inferred from both the portal venous phase and the delayed phase.

Although sub-images from different phases are responsible for

different features, they are designed to be mixed and combined

together to train one shared backbone model in our study as seen in

Figure 5. Instead of training separated models for different features,

only one backbone model is trained due to the lack of sample data to

generate a model for the characterization task of each feature, which
FIGURE 5

Overview of the fully automatic CNN-guided LI-RADS system. CNN, convolutional neural network; LI-RADS, Liver Imaging Reporting and Data
System; ART, arterial phase; PV, portal venous phase; DL, delayed phase; APHE, arterial phase hyperenhancement.
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is responsible for producing a value to represent the possibility of

the appearance of each feature. This results in the multi-task

learning problem, which is to use one model to resolve multiple

tasks. In this study, VGG16 (12) is pre-trained on ImageNet and

used as the backbone of our deep learning architecture for lesion

feature characterization; then, the model is fine-tuned with inputs of

PKU1 dataset based on transfer learning.

For the feature characterization problem in the study

investigated in this paper, multi-tasks correspond to the multiple

classification problems of different features. However, images from

the arterial phase are only responsible for the APHE classification

task, and images from both the portal venous and the delayed

phases are responsible for both washout and capsule classification

tasks. Therefore, we modified the traditional general multi-task

learning architecture and incorporated an adaptive loss function

into it to achieve the transitions of training loss with regard to

images from different phases. The above observations are derived

from radiologists’ expert knowledge. During the exploration, we

notice that radiologists can explicitly utilize the natural reasoning

ability to determine a LI-RADS score by observing different phases.

Through the modified multi-task learning with adaptive training, it

is able to conduct the joint multi-phase seasoning in our

customized model.

For each batch of images from different phases as the input, an

additional corresponding input x with 0 or 1 value is also provided

and fed into the network. The values 0 and 1 indicate the images are

obtained from the arterial phase and the portal venous phase/

delayed phase, respectively. The lesion feature characterization
Frontiers in Oncology 08
model is designed to be embedded with switch operations to

achieve the training of the shared parameters. During the training

process, when the input image is from the arterial phase (x = 0), the

loss function below only considers the first term in which case the

network weights are updated only based on feedback on APHE

predicted results. On the contrary, the weights are updated only

based on the loss on washout and capsule features when the inputs

belong to the portal venous phase or delayed phase (x = 1).

Mathematically, if the loss function for APHE, washout, and

capsule are L(f1), L(f2) and L(f3), respectively, the final loss

function is defined as follows:

Lall = (1 − x)L(f1) + xL(f2) + xL(f3), (4)

where x represents the input value specified for each phase. Using

this adaptive loss function strategy, we do not need to split the

dataset according to different phases to train separated models for

each feature based on corresponding phases due to the small size of

the dataset. Instead, all the images could be used to train a common

model, and different features can share the parameters of

this model.

2.5.3 Inference module
Once each lesion is detected and segmented and the presence of

discriminative features has been identified, the specific LI-RADS

score could be inferred according to the following criteria, which is a

globally well-accepted gold standard defined by authority.

Specifically, the LI-RADS score is derived by the inference rules

listed in Table 3, where Bi   (i = 1, 2, 3) is the Boolean indicator that
TABLE 3 Inference rules of LI-RADS score based on feature characterization results.

B1 0 (“False”) 1 (“True”)

Lesion size <20 ≥20 <10 10–19 ≥20

B2 + B3 0 LR-3 LR-3 LR-3 LR-3 LR-4

1 LR-3 LR-4 LR-4 LR-4/5 LR-5

2 LR-4 LR-4 LR-4 LR-5 LR-5
frontier
LI-RADS, Liver Imaging Reporting and Data System.
FIGURE 6

The developed deep learning architecture for the classification of each feature.
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represents the presence of APHE, washout, and capsule. For

example, if it is “True” for the presence of APHE, B1 is denoted

as 1 or 0, which represents “True”, otherwise “False”.
2.6 Implementation details: software
and hardware

Section 2 details how the data are acquired and then

preprocessed into an analysis-ready format that can be fed into

the technical block presented in Section 2.5. Section 2.5 explicitly

describes an end-to-end complete process from segmentation,

lesion feature characterization, and LI-RADS score inference. The

involved three sub-steps can be integrated seamlessly, and the

outputs of the previous step would be used as the inputs of the

next step. In addition, the related CNN network structures can also

be found in this paper or the related references. The whole deep

learning framework is implemented in a computer with 128 GB of

random access memory, 16 CORE Xeon® Gold 6134 CPU @

3.20GHz central processing unit (Intel) and a TITAN RTX

graphics processing unit (NVIDIA), using Python programming

and Keras framework (https://keras.io/) in the Ubuntu

16.04 system.
2.7 Deployment and practical use

Further, the LI-RADS algorithm could be deployed as a plugin in

Philips IntelliSpace Discovery (ISD) platform in PKU1 for further

testing and improvement. Philips ISD is an integrated AI research

solution that enables the entire process of generating new AI

applications, providing data integration, training, and deployment

in the research setting. Figure 7 shows the LI-RADS plugin user

interface (UI), where the segmentation result is shown as a mask and

the LI-RADS features and score are shown in the result window after

clicking the “Run” button. The whole user workflow contains

multiple steps rather than a one-click thing. Multi-modules are
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implemented along the workflow. At the segmentation interface,

users can visualize the segmentation results where manual editing is

allowed to adjust the interest of the segmented lesion area and then

feed them into the next step. When achieving the final LI-RADS

scoring interface, the ISD platform also allows users to edit the feature

characterization for further score mapping.
3 Results

To verify how well the proposed system performs and the

effectiveness of the segmentation results, we test it on the PKU1

dataset. Both the segmentation and scoring results have been

evaluated and compared with annotated ground truth. We first

verify the segmentation quality of liver lesions since the

segmentation result could directly affect the measurement of

lesion size. In addition, it is the first step of our system, and we

cannot have an accurate predicted score of LI-RADS without a good

segmentation outcome. Then, we evaluate the lesion feature

characterization results by comparing the final predicted score

with the radiologist-annotated LI-RADS score.

Figure 8 visually shows the segmentation results of some typical

images. The first row is the raw images from the delayed phase. The

middle row shows the ground truth with the liver lesion marked in

red, and the bottom row displays the results with lesions marked in

blue, which are automatically segmented by the algorithm. From

Figure 8, we can see that the deep learning segmentation model

performs well in the last five cases. Although it fails in the first case,

the lesion in this case is very challenging. To evaluate the results

more quantitatively, various performance evaluation indicators or

metrics described above are adopted and utilized in this paper

including DICE, precision, recall, sensitivity, and specificity.

DICE is a widely accepted evaluation indicator for segmentation-

specific tasks, especially in medical imaging studies to quantify the

degree of overlap between two binary images that are two segmentation

images, namely, model predicted segmentation and segmentation

annotated by radiologists. Figure 9 shows the change of DICE values
FIGURE 7

LI-RADS plugin in ISD. LI-RADS, Liver Imaging Reporting and Data System; ISD, IntelliSpace Discovery.
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based on different thresholds being performed on the CNN model

predicted segmentation results. To compare the values more intuitively,

Table 4 lists the exact number of average and median DICE values.

From these evaluation results, the model accuracy based on testing data

from the viewpoint of either median or average is not monotonic, as

the threshold increases due to the nature of the DICE definition. This is

also in line with the logic that the highest or smallest threshold does not

deliver the best segmentation results, and an appropriate threshold

(range 0.4–0.7 in this case from Table 4) is required to be selected for

optimal segmentation results.
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The average DICE value based on each threshold in Table 4 is

obtained by averaging the DICE values of all the patients. A DICE

value is first calculated for each patient, and the values are averaged

into a final value. Moreover, there is another way to compute DICE

(global DICE in this paper), which is to average the TN, TP, FN, and

FP first and then calculate the final DICE value. Mathematically,

average local DICE can be computed by 1
non

i DICEi =
1
no

n
i

2TPi
2TPi + FPi + FNi

,

and global DICE is computed by 2on
i TPi

2oi
iTPi +on

i FPi +on
i FNi

. Figure 10

demonstrates the change curves of average DICE values and

global DICE values on different thresholds. It can be seen from
FIGURE 9

Boxplot for segmentation performance evaluation results based on DICE under the different threshold conditions. These data represent all the DICE
values of testing data across nine folds. Each box is for a specific threshold. The thick black lines, boxes, and whiskers denote the median,
interquartile range, and 10th and 90th percentiles, respectively.
TABLE 4 Quantitative comparison of segmentation performance evaluation results based on median and average DICE.

Threshold 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Median 0.798 0.825 0.842 0.867 0.867 0.879 0.864

Average 0.669 0.681 0.688 0.691 0.680 0.687 0.665
frontier
FIGURE 8

Some examples of segmentation results.
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FIGURE 11

Examples with small lesion sizes. Red circles frame the lesion region identified by radiologists.
FIGURE 10

Change curves of average local DICE and global DICE values based on different thresholds. According to the legends in the figure, the green line
represents the global DICE, and the blue one indicates the average local DICE, which is the same as the average values in the last line of Table 4.
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Figure 10 that global DICE is generally higher than the average

DICE. From observation, this is because the dataset used in this

study contains many cases with very small lesion size that is not easy

to detect (see examples in Figure 11). The lesions with diameter less

than 2 cm account for 44.8%. There would be many zeros for the

DICE calculation of each patient, which can be observed in Figure 9

where the whisker that indicates the 10th percentile is near 0.

Therefore, when we calculate the average local DICE, the existence

of many zeros would drag down the average value.

Figures 12A–C plot the receiver operating characteristic curves

from the pixel level in terms of sensitivity and specificity, false-
Frontiers in Oncology 12
positive rate and true-positive rate, and precision and recall,

respectively. Since recall, sensitivity, and true-positive rate

represent the same evaluation results according to their

calculation equations, the y-axes of Figures 12A–C demonstrate

the same value. In Figure 12B, specificity is consistently high

because TN occupies the majority of image pixels. Likewise, in

Figure 12C, the false-positive rate is consistently low because of the

imbalance in the number of lesion pixels and non-lesion pixels.

Therefore, we can conclude that precision–recall is enough for

performance evaluation, and the other two sets of indicators are not

reasonable for segmentation evaluation from the pixel level.
B

C

A

FIGURE 12

Model receiver operating characteristic curves for lesion segmentation from pixel level in terms of (A) recall and precision, (B) sensitivity and
specificity, (C) true positive rate and false positive rate.
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In the case of the pixel level, the number of TP indicates the

number of pixels that belong to the lesion and are successfully

segmented by the proposed CNN segmentation model. It is easy to

compute the values of precision, recall, sensitivity, and specificity

from the pixel level given the exact number of TN, TP, FN, and FP.

However, it is vague to count the number of them on the lesion level

since it is not easy to determine to what extent the segmented lesion

could be deemed as a TN. In addition, in the case of patient level,

one patient may have multiple lesions, and we need to consider

when to determine a patient as a TN. In this study, once a lesion is

segmented, it would be treated as a TN. Regarding the patient level,

the patient with any lesion being detected would also be a TN.

Likewise, Figure 13 displays the receiver operating characteristic

curves based on precision and recall from lesion level and patient

level. A threshold is used to transform the intermediate probability

maps into binary segmentation results. When thresholds change,

the obtained binary segmentation results might also change, thus

leading to a change in performance evaluation such as precision and

recall. From the plots, as the threshold varies, recall decreases with

the increase in precision. As seen, the recall/sensitivity changes

within a range of 0.7 to 0.9, while the precision always stays high

with a value greater than 0.9. Take the plots as a whole, the

evaluation results from the patient level marked in red are better

than the results from the lesion level in blue, much closer to [1.0,

1.0]. This exactly meets the expectation of radiologists. From the

requirements, it would be enough and great if the framework can

help identify the patient who potentially has the lesion. In light of

the above quantitative and qualitative analyses, the developed deep

learning segmentation model performs well even in our challenging

PUK1 dataset.

For LI-RADS scoring, the combination model of lesion feature

characterization and inference module is evaluated to have an

overall accuracy of 76%. Figure 14 shows the confusion matrix

for LI-RADS 3/4/5 scoring of each category. Overcategorization and

undercategorization predictions are displayed in the top-right and

bottom-left triangles, respectively. As seen, the most mis-

classification cases happen in the neighbor categories mainly

because it is very difficult to distinguish LI-RADS 4 from LI-

RADS 5.
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To demonstrate the significance of the proposed approach, we

have searched the recent LI-RADS research papers that use deep

learning techniques to achieve the recognition of LI-RADS grade

based on MRI. When searching, we applied a selection strategy as 1)

the purpose of the paper is to achieve the classification in relation to

the LI-RADS score, 2) the method used is deep learning-based, and

3) the input for diagnosis is limited to MRI. As a result, we obtained

the six most recent and related papers as listed below, which include

the published year and journal of each paper, the information about

inputs and outputs, techniques used, and whether they have

compared with the state-of-the-art (SOTA).

(1) References: Hamm et al. (5);
• Published journal: European Radiology;

• LI-RADS classes (outputs): HCCs (corresponding to LR-

5), benign lesions (grouping cysts, hemangiomas, and

FNHs, corresponding to LR-1), and malignant non-HCC

lesions (grouping ICCs and CRC metastases, corresponding

to LR-M);

• inputs: 3D bounding box around target lesion (manually

cropped);

• Research purpose: to develop and validate a proof-of-

concept CNN-based deep learning system (DLS) that

classifies common hepatic lesions on multi-phasic MRI;

• Technique used: a general CNN model (three

convolutional layers + two maximum pooling layers +

two fully connected layers);

• SOTA: no.
(2) References: Wu et al. (13);
• Published journal: Annals of Transitional Medicine;
FIGURE 13

Segmentation model receiver operating characteristic curves based
on precision and recall from lesion level and patient level. The PR
curve approaching closer to the top-right corner [1.0, 1.0] indicates
better performance. PR, precision–recall.
FIGURE 14

Confusion matrix for the developed LI-RADS category model on the
PKU1 dataset. It fully demonstrates the number of predicted each
LI-RADS category and true labels. The numbers of correct category
predictions are listed on the diagonal line from the top-left corner
to bottom-right corner. LI-RADS, Liver Imaging Reporting and Data
System.
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Fron
• LI-RADS classes (outputs): combined LR-4/LR-5 tumor

OR LR-3 tumor;

• Inputs: a rectangular tumor box centered on the tumor area

(manually);

• Research purpose: to develop a deep learning (DL) method;

• Technique used: AlexNet + fine-tune;

• SOTA: no.
(3) References: Oestmann et al. (14);
• Published journal: European Radiology;

• LI-RADS classes (outputs): HCCs (corresponding to LR-

5), non-HCCs (corresponding to LR<5);

• Inputs: manually recorded to define a 3D bounding box

around the lesion;

• Research purpose: to provide proof-of-concept for CNN-

based classification;

• Technique used: customized CNN model;

• SOTA: no.
(4) References: Yamashita et al. (15);
• Published journal: Abdominal Radiology;

• LI-RADS classes (outputs): LR-1/2, LR-3, LR-4, LR-5;

• Inputs: manually crop with square regions of interest;

• Research purpose: to provide a deep CNNmodel and show

the feasibility of CNN for assigning LI-RADS categories;

• Technique used: 1) a VGG16 pre-trained network and 2) a

custom-made network;

• SOTA: no.
(5) References: Stollmayer et al. (16);
• Published journal: World Journal of Gastroenterology;
tiers in Oncology 14
• LI-RADS classes (outputs): focal nodular hyperplasia

(FNH), hepatocellular carcinoma (HCC), and liver

metastases (MET);

• Inputs: manually crop;

• Research purpose: to compare the performance of 2D and

3D-DenseNets in the classification of three types of FLLs,

including FNH, HCC, and MET;

• Technique used: DenseNet;

• SOTA: no.
(6) References: Trivizakis et al. (17);
• Published journal: IEEE Journal of Biomedical and Health

Informatics;

• LI-RADS classes (outputs): discriminate between primary

and metastatic liver cancer;

• Inputs: not applicable;

• Research purpose: to compare 3D CNNs with 2D CNNs;

• Technique used: four-strided 3D convolutional layers and

one fully connected layer with 2,048 neurons and 50%

dropout;

• SOTA: no.
From the above overview, we can see that current works still

stay in the exploration stage and attempt to prove the feasibility of

deep learning-based classification in clinical practice by directly

adopting popular CNN models in the field of computer vision.

None of them has ever tried to compare with SOTA, or it is just

because there are not yet well-accepted SOTA algorithms for this

specific task. Since the key innovation of our proposed deep

learn ing arch i tec ture focuses on the added fea ture

characterization step in comparison to previous related research,

we additionally conduct an experiment using basic VGG for LI-

RADS classification as the above references did to prove the

effectiveness of the added step. The results from VGG with both

pre-trained fixed parameters and fine-tuned adjusted parameters
BA

FIGURE 15

Confusion matrix for the VGG classification model (A) without transfer learning and (B) with transfer learning.
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are presented in Figures 15A, B, respectively. On the PKU1 dataset,

pre-trained VGG with and without transfer learning has an overall

accuracy of 49% and 43%, respectively. On the one hand, this

comparative experiment confirms the expectation that the CNN

model with transfer learning outperforms the one without transfer

learning for the LI-RADS classification application. On the other

hand, it also demonstrates that our proposed approach with the

added feature characterization step could significantly improve the

accuracy performance in comparison to a CNN architecture as a

classification tool. The other reason for such poor performance is

that the PKU1 dataset itself is challenging. This also shows that

there are still big demands on designing and developing more

specific deep learning techniques for LI-RADS rather than simply

adopting a classification model that is initially developed for other

applications before computer-aided LI-RADS diagnosis can be

really used in clinical practice.

As described in Lipton and Steinhardt (18), since sometimes a

number of proposed techniques together achieve a significant

empirical result, an ablation study was advocated to identify the

source of empirical gains; i.e., what really worked? In this study, we

are not combining a number of fancy techniques into a complex

model as our approach. The key innovation of this manuscript is

adaptive learning for the added feature characterization step. Thus,

the ablation study in this paper is designed to validate whether

adaptive learning works or not. In order to achieve the purpose of

an ablation study to elucidate which techniques really contribute to
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performance improvement, experiments using different technique

combinations are separately conducted. The combinations are VGG

with and without adaptive learning and ResNet with and without

adaptive learning. The confusion matrices of these models are

demonstrated in Figure 16. To intuitively compare the

experiment results, Table 5 shows the accuracy of their

classification performance. Among the four combinations,

whether VGGNet or ResNet, they both have better performance

when using adaptive learning than without adaptive learning.

Comparing VGGNet and ResNet, the difference in the CNN

model does not result in big differences in classification

performance, although the accuracy on VGGNet is always slightly

higher than on ResNet. The main reason should be the overfitting

learning of ResNet in this specific case study.
FIGURE 16

The confusion matrix describes the classification model performance for each combination. The top-left shows the technique used in our study and
is similar to Figure 14.
TABLE 5 The accuracy performance of each model using different
combinations.

Technique combination Accuracy

VGGNet with adaptive learning (Ours) 76.13%

ResNet with adaptive learning 72.72%

VGGNet without adaptive learning 63.50%

ResNet without adaptive learning 61.36%
fr
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4 Discussion

This study provides a fully automatic solution for computer-

aided LI-RADS scoring, integrating deep learning-based liver

lesion segmentation, lesion feature characterization, and LI-

RADS score prediction into one ecosystem. From the list of

relevant references, most current existing deep learning-based

LI-RADS classification works manually crop the sub-images

covering lesion regions that are used to be fed into the

classification model. Therefore, they are not fully automatic

computer-assisted processes. Compared with the general

classification task, the identification flow of lesion types in LI-

RADS has unique characteristics. We notice that radiologists can

explicitly utilize the reasoning ability to infer the values of several

key features before outputting a final LI-RADS score by observing

the images from different phases. There are normally three phases

that matter greatly for radiologists to diagnose, namely, arterial

phase, portal venous phase, and delayed phase. They are captured

for the duration of several different time periods after the contrast

injection. As mentioned previously, the key features officially

identified and defined in LI-RADS consist of APHE, the size of

the lesion, the presence of enhancing capsule and non-peripheral

washout, and threshold growth. While the domain knowledge of

such features plays a vital role in LI-RADS scoring, previous

methods focus on directly classifying the types based on a single

phase or image. How to endow the existing methods with the

capability of multi-phase reasoning and incorporate the LI-RADS

domain knowledge into the workflow of deep learning-based

classification is vital for automating the LI-RADS system but

still remains a boundary to explore. Motivated by the above

discussions, this paper aims to propose a complete and

automatic solution for LI-RADS scoring that is embedded with

a multi-phase reasoning task for discriminative lesion feature

characterization, and the newly designed CNN architecture can

be jointly trained by using multi-task learning with adaptive loss.

It is a common procedure for image classification tasks to first

do the segmentation and then classification. The innovation and

key contribution of this paper is not just proposing such a deep

learning-based liver segmentation framework but embedding the

expert domain knowledge into the deep learning framework and

the attempt on practical applications of this framework. Based on

the overview of prior relevant research as listed previously, they

usually adopted the CNN technique to take lesion region as inputs

and output a LI-RADS level (Hamm et al. (5); Wu et al. (13);

Oestmann et al. (14); Yamashita et al. (15)) or lesion type

(Stollmayer et al. (16); Trivizakis et al. (17)). This paper

proposes to introduce one more step, which is called feature

characterization, before LI-RADS score classification (see

Figure 1) and focuses on delving into the multi-phase reasoning

problem for discriminative lesion feature characterization. This is

our key contribution. By doing so, it is able to unbox the black box

for the proposed algorithm and improve the explainability. To

solve such multi-phase reasoning problem, this paper develops a
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new network architecture that utilizes the convolutional layers of

the VGG 16 network as the backbone and is integrated with the

switch mechanism and multi-task learning strategy. Specifically,

multi-task means the characterization of multiple features,

namely, the presence of APHE, washout, and capsule.

To validate the performance of the proposed framework, the

experiment evaluation is in two parts, namely, segmentation of liver

lesion and classification of LI-RADS score. For the segmentation

part, we have showcased the visual comparison of the segmentation

result with ground truth and evaluated the performance

quantitatively based on DICE, precision, recall, sensitivity, and

specificity. Thus, the logic of section results is 1) visual

demonstration on segmentation; 2) performance on DICE; 3)

ROC analysis at the pixel level, lesion level, and patient level; 4)

confusion matrix for LI-RADS performance. We presented the

average DICE performance index value in two ways (we call

global DICE and local DICE in this paper), analyzed their

difference, and traced the root cause of such difference, which is

the poor performance of lesions less than 2 cm. However, in our

study, the test dataset contains approximately 45% of such cases.

This analysis result reveals one of the limitations of the proposed

algorithm. In addition to the DICE index, ROCs from the pixel

level, lesion level, and patient level based on sensitivity and

specificity, false-positive rate and true-positive rate, precision, and

recall were also considered, and their applicability was discussed. It

has been explained if something is not applicable or reasonable.

Finally, a diffusion matrix is presented to demonstrate the

performance of LI-RADS scoring. In addition, a comparative

experiment with and without the feature characterization step has

been conducted to show that this added step with multi-task

learning really facilitates the diagnostic process.

Although this study provides a proof-of-concept for deep

learning-assisted LI-RADS categories and develops an approach

from a feature characterization perspective, it still has several

limitations. First, the generalization capability of the proposed

algorithm needs to be validated further in multiple center

populations. Further improvement may be achieved by additional

data collection including more institutions and increased diversity

in data distribution regarding age, sex, lesion types, and bias

control. In addition, the detection and segmentation of liver

lesions involved in the proposed automatic framework directly

utilize U-net++ and could be improved by a modified version

tailored specifically for the task of liver lesion detection. These

would be the direction of our future research work by conducting

more clinical trials for algorithm software validation and exploring

if there is any improvement in lesion detection.

To test the proposed system, patient data with liver lesions are

collected and then used to build a challenging PKU1 dataset. More

samples will be collected in the future and used to update the system

to make it more powerful. In this study, deep learning methods with

transfer learning are adopted for both segmentation and

classification. Particularly for lesion feature characterization, the

pre-trained network is retrained based on the PKU1 dataset using
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the strategy with adaptive loss function to learn the imaging

features. In comparison to previous works as listed, which simply

adopted the popular CNN models, although this paper tries to take

a step forward to modify and propose a new framework specifically

tailored for the LI-RADS scoring task, it is still the first step for the

exploration in deep learning-assisted LI-RADS categories. We

anticipate that this paper will be used to show that deep learning

for LI-RADS scoring is of great potential and practical significance.

More research attention should be given to the field of this study,

and more techniques could be developed in the coming years.
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