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Understanding mitochondrial dynamics and metabolic plasticity in
cancer stem cells: Recent advances in cancer treatment and potential
therapeutic approaches
Mitochondria and mitochondrial homeostasis have been shown to play critical roles in

the pathology of various chronic medical conditions including cancer. In cancer,

mitochondria are associated with most of the basic cellular mechanisms and signaling

events. Being the powerhouse of the cell, mitochondria control cellular energy metabolism

and the generation of ATP through oxidative phosphorylation and reactive oxygen species

(ROS). Mitochondria are also responsible for the maintenance of cellular homeostasis

through controlled cell death. Several factors contribute to the vulnerability of

mitochondrial genes to mutation, including the lack of proof-reading mechanism in the

replication process, high ROS levels, and the absence of histone proteins (1, 2). This results

in a high degree of acquired heterogeneity in tumor microenvironments during disease

progression. Due to the direct involvement of mitochondria in cellular events,

mitochondrial genes and mitochondrial proteins have immense potential as therapeutic

targets and biomarkers for early detection and prognosis.

The mitochondrial DNA (mtDNA) copy number is a direct indication of

mitochondrial activity and is known to be associated with cancer by influencing

numerous cellular mechanisms. It is also interesting that both increases and decreases in

mtDNA copy number alterations are responsible for cancer initiation and progression (3).

In adult gliomas, the mtDNA copy number has been evaluated as an age-related predictive

marker (4), and, in colon cancer (CRC), it has been reported as a predictor for poor

prognosis (5). Moreover, mtDNA copy number variation has been found to be associated

with poor prognosis of various other cancers such as cervical cancer, breast cancer,

esophageal squamous carcinoma, and chronic lymphocytic leukemia (6–9). Apart from the
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CNVs, mitochondrial protein expressions were also reported as

prognostic biomarkers. Ubiquinol cytochrome c reductase binding

protein (UQCRB), the protein responsible for the stabilization of

mitochondrial ETC complex-III, was reported as a biomarker for

CRC. The overall expression and CNV have been reported to be

highly associated with CRC progression (10). In a case-control

study of 260 renal cell carcinoma patients and 280 matched control

individuals, a decreased mtDNA copy number was reported as a

heritable predictive marker for higher cancer incidence (11).

In response to cell demands and environmental conditions,

mitochondria can divide (mitochondrial fission) and fuse

(mitochondrial fusion) (12). These dynamics have important roles

in the pathology of cancer. The balance between fission and fusion

is crucial in the maintenance of cellular processes such as energy

metabolism, calcium signaling, oxygen sensing, and ROS

generation. Most genes regulating mitochondrial fission and

fusion are encoded by nuclear genes (13). In solid tumours,

mitochondrial fission induces a reduction in the expression of

MHC-I, causing immune escape (14) and making it a target to

prevent immune evasion. Similarly, in triple negative breast cancer

(TNBC) samples, significantly increased mitochondrial fission is

associated with poorer survival (15). It is also observed that the

survival of TNBC cells increased with a positive feedback loop to

mitochondrial fission, by enhancing the Notch- and surviving-

mediated pathways (15). On the other hand, Humphries et al.

reported that TNBC with increased mitochondrial fission showed

reduced metastatic potential (16).

Mitophagy, the elimination of defective mitochondria through

autophagy, is considered to be a quality control mechanism, and

any defects in mitophagy lead to impairment of mitochondrial

functions, creating pathological alterations (17). Dysfunction of

mitophagy leads to tumorigenesis (18) and the role of mitophagy

varies with tumour progression. In a study using mitochondrial

depletion, Yu-Seoun et al., demonstrated that mitochondrial

dysfunction can lead to cancer cells acquiring stem cell-like

properties (19). Furthermore, the mitochondrial density decreases

as a result of increased mitophagy, which results in low reactive

oxygen levels and low energy levels in the cells. Consequently, cells

that possess stem cell-like quiescence properties survive in hypoxic

conditions, resulting in residual cells and relapses of cancer. The

majority of chemotherapies target rapidly dividing cells and ROS-

producing cells, both of which become ineffective against quiescent

cells, resulting in chemo resistance (20).

Metabolic reprogramming is an extremely prevalent feature of

cancer cells and is directly linked to mitochondria. Mitochondria

are indispensable to cancer cells because of their ability to generate

ATP. In breast cancer cells, Lu et al., reported that the

overexpression of mitochondrial fission regulator protein

(MTFR2) alters the metabolism of glucose. MTFR2 changes

oxidative phosphorylation (OXPHOS) into glycolysis in a HIF1a-
and HIF2a-dependent manner (21). In hypoxic conditions, cancer

cells also switch from OXPHOS to glycolysis. During this switching,

anaerobic glycolysis generates lactate as the end product, which

assists the cells in reducing ROS levels by utilizing metabolic

intermediates such as pyruvate (22). In addition, it has been

reported that glycolytic enzymes are upregulated during hypoxia;
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therefore, inhibiting these enzymes could be a promising way to

eradicate residual cells and cancer stem cells (23–25). In addition to

switching to glycolysis, the hypoxic microenvironment activates the

pentose phosphate pathway (PPP). PPP activation produces

NADPH and facilitates cancer cell survival in hypoxic

environments by maintaining ROS homeostasis (26, 27).

Notably, mitochondria are the major source of intracellular

ROS for a cell. By the oxidation of nucleotides, increased

intracellular ROS directly damages nuclear and mitochondrial

DNA. Similarly, reduced ROS levels cause cancer cells to enter a

quiescent state, preventing them from being damaged by oxidative

stress (28). Low levels of ROS are reported in cancer stem cells and

metabolically inactive drug resistance cells (1). It has been shown

that mitochondria-targeted photodynamic therapies (PDT) are

effective in eliminating quiescent cancer stem cells and chemo-

resistant cancers that are in a low-energy state (29). Integrated PDT

uses the cancer cell’s ROS and metabolic state to convert prodrugs

into active photosensitizers or to specifically target photosensitizers

to mitochondria, resulting in effective photosensitizer accumulation

(30). Upon exposure to irradiation, mitochondria suffer irreversible

damage, resulting in cell death.

In the tumor microenvironment (TME) hypoxia induces

acidification with low pH through the accumulation of lactic acid

from glycolysis. The low pH alters the expression of multiple genes

that promote cancer cell invasion and metastasis, and inhibits

immune cell infiltration into the TME (31). Mitochondria-

mediated upregulation of carbonic anhydrase enzyme, responsible

for cancer cell survival in acidic environments, is a target for

inhibiting cancer progression and metastasis (van Gisbergen et

al.). Moreover, at an acidic pH, the immune cells lose their ability

to counteract cancer cells. According to a recent study by Yi-Ru

et al., decreased mitophagy in T cells leads to the accumulation of

depolarized mitochondria and terminal exhaustion of T cells.

Notably, T cells treated with nicotinamide riboside recovered

mitochondrial fitness and became responsive to PD-1 inhibitors,

confirming the role of mitochondrial dynamics in T-cell exhaustion

(32). In addition, MDSCs infiltrate tumors by secreting chemokines

that are regulated by mitochondria through HIF-1a (28). An

immune responsive TME results from targeting mitochondria to

impede chemokine production, thereby affecting the recruitment of

MDSCs and Tregs.

The transfer of mitochondria between cells of the TME is yet

another mechanism for cell survival and immune evasion. Saha

et al., with the help of advanced technologies, depicted the

nanotube-mediated transfer of mitochondria between cancer cells

and immune cells. The cancer cells benefit from this exchange by

generating more energy and increasing their cell division, whereas

the immune cells become inactive and exhausted from this

exchange. A promising strategy to target the TME for cancer

treatment is to inhibit nanotube formation to enhance immune

therapies (33).

Mitochondria provide resistance against chemotherapeutic

agents through a number of different ways. As discussed

previously, the most important way is ROS homeostasis.

Additionally, ATP-dependent efflux pathways for multidrug

resistance (MDR) (34), as well as TME acidifications, are reported
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to have a mechanistic impact on chemoresistance (35). Besides

chemoresistance, the ROS scavenging ability protects cancer cells

against radiotherapy (27).

Another therapeutic target is mitochondrial biogenesis in cancer

cells. In a bioinformatics-based analysis of lung cancer patients, the

key gene for mitochondrial biogenesis, HSPD1, was confirmed as a

predictive biomarker (36). Additionally, pharmacological induction

of Mfn-2 with Leflunomide increased mitochondrial fusion, with

decreased ATP production and tumor growth in pancreatic ductal

adenocarcinoma (37). Anti-mitochondrial therapy is a potential

approach to target caner progression and metastasis. By inhibiting

cancer cell mitochondria, numerous precancerous changes can be

targeted. As well as preventing therapy resistance, targeting

mitochondria can enhance chemotherapy, radiotherapy,

and immunotherapy.

In this Research Topic, we discuss the critical function of

mitochondria in cancer cells and TMEs. The mitochondria

provide a connection between the cells of the TME and support

the survival and progression of cancer cells. By modifying ROS

homeostasis, mitochondria control the glycolytic flux and the

induction of genes involved in progression and metastasis.

Mitochondria in acidic TMEs inhibit immune infiltration, cause

immune cell exhaustion, and induce cancer cell immune evasion. In

cancer cells, mitochondria provide resistance to chemotherapy,

radiotherapy, and immunotherapy. Taken together, mitochondria

are crucial targets for drug therapies, and changes in mitochondrial
Frontiers in Oncology 03
copy number variations and gene expressions function as predictive

and prognostic biomarkers.
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