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Phenotyping of
lymphoproliferative tumours
generated in xenografts of
non-small cell lung cancer
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Medicine, University College London, London, United Kingdom
Background: Patient-derived xenograft (PDX) models involve the engraftment of

tumour tissue in immunocompromised mice and represent an important pre-

clinical oncology research method. A limitation of non-small cell lung cancer

(NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a

subset of initial engraftments are of lymphocytic, rather than tumour origin.

Methods: The immunophenotype of lymphoproliferations arising in the lung

TRACERx PDX pipeline were characterised. To present the histology data herein,

we developed a Python-based tool for generating patient-level pathology

overview figures from whole-slide image files; PATHOverview is available on

GitHub (https://github.com/EpiCENTR-Lab/PATHOverview).

Results: Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and

10% of lung squamous cell carcinoma transplantations, despite none of these

patients having a prior or subsequent clinical history of lymphoproliferative

disease. Lymphoproliferations were predominantly human CD20+ B cells and

had the immunophenotype expected for post-transplantation diffuse large B cell

lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-

Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene

rearrangements in three tumours where multiple tumour regions had resulted

in lymphoproliferations suggested that each had independent clonal origins.

Discussion: Overall, these data suggest that B cell clones with lymphoproliferative

potential are present within primary NSCLC tumours, and that these are under
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continuous immune surveillance. Since these cells can be expanded following

transplantation into NSG mice, our data highlight the value of quality control

measures to identify lymphoproliferations within xenograft pipelines and support

the incorporation of strategies to minimise lymphoproliferations during the early

stages of xenograft establishment pipelines.
KEYWORDS

patient-derived xenograft models, PDX, pre-clinical modeling, non-small cell lung
cancer, lymphoproliferation, Epstein-Barr virus
Introduction

NOD-scid interleukin (IL) 2 receptor gamma chain null (NSG)

mice are severely immunocompromised in both the innate and

adaptive immune responses, with deficiency of functional B, T and

NK cells, reduced dendritic cell and macrophage function,

and extensive cytokine abnormalities (1). Immunodeficiency in

these mice facilitates the engraftment of human tissues and, in

the context of cancer, offers the opportunity for individualised

patient-derived xenograft (PDX) models of cancer progression

and treatment response (2).

As for other cancer types, only a fraction of implanted non-small

cell lung cancers (NSCLC) engraft in the murine host and proliferate

to establish PDX lines (3–7). Understanding why some tumours

engraft and others do not is a priority, particularly as xenograft

formation can correlate with clinical outcomes and some have

advocated guiding patient treatment using PDX models. Although

some tumour transplantations simply never form xenografts within

the lifespan of the mouse, a significant cause of xenograft failure in

PDX pipelines is the formation of non-tumour xenografts, which

have been reported in studies of a wide range of cancer types,

including liver (8), breast (9), gastrointestinal (9–12), pancreatic

(9), bladder (9), renal (9), prostate (13) and ovarian (14) cancers.

Similarly, this issue has been noted in lung cancer PDX models using

a variety of immunocompromised mouse strains (15–17).

We have recently reported the outcomes from a PDX generation

pipeline initiated from multi-regional primary NSCLC tumour tissue

(18) within the lung TRACERx prospective cohort study (19). We

found that 16/145 NSCLC transplantations (from 13 of 44 patients)

resulted in CD45+ xenograft formation (18). Here, we report

phenotyping of these CD45+ lymphoproliferations using histology,

immunohistochemistry, PCR and flow cytometry approaches.
Materials and methods

Generation and maintenance of
xenograft models

Ethical approval to generate patient-derived models was

obtained through the Tracking Cancer Evolution through

Therapy (TRACERx) clinical study (REC reference: 13/LO/1546;
02
https://clinicaltrials.gov/ct2/show/NCT01888601). Animal studies

were approved by the University College London Biological

Services Ethical Review Committee and licensed under UK Home

Office regulations (P36565407).

Tissue from patients undergoing surgical resection of non-small

cell lung cancers was immediately transported on ice from theatres to

a pathology laboratory where it was dissected for diagnostic and then

research purposes. Region-specific tumour samples were dissected by

a consultant pathologist such that the tissue used to generate patient-

derived xenograft (PDX) models was spatially adjacent to the tissue

that was sequenced in TRACERx. Individual region-specific tumour

samples were transported to the laboratory in transport medium

consisting of MEM alpha medium (Gibco) containing 1X penicillin/

streptomycin (Gibco), 1X gentamicin (Gibco) and 1X amphotericin B

(Fisher Scientific, UK). Tumour tissue was minced with a scalpel

rather than dissociated to single cell suspensions to preserve local

cytoarchitecture. In some cases, tissue was cryopreserved prior to

implantation. To generate PDX tumours, male non-obese diabetic/

severe combined immunodeficient (NOD/SCID/IL2Rg-/-; NSG) mice

were anaesthetised using 2–4% isoflurane, the right flank was shaved

and cleaned before tumour tissue in growth factor-reduced Matrigel

(BD Biosciences) was injected subcutaneously using a 16G needle.

Mice were observed during recovery, then regularly monitored for

tumour growth. Mice were kept in individually ventilated cages under

specific pathogen-free conditions and had ad libitum access to sterile

food and autoclaved water. Tumour monitoring was performed twice

per week and tumour measurements taken in two dimensions using

callipers. When xenograft tumours formed, mice were terminated

before tumours reached 1.5 cm3 in volume. Mice without xenograft

tumours were terminated at a median of 306 days (range 37-402

days). Successfully engrafted tumours were propagated by injection of

minced xenograft tissue in matrigel into a new host, with banking of

FFPE tissue, OCT-embedded tissue and DNA at each generation.

Cryopreservation of patient material and xenograft tissue at each

tumour transfer was performed in foetal bovine serum plus

10% DMSO.
Immunohistochemical characterisation

Formalin-fixed paraffin‐embedded (FFPE) tissue sections were

routinely obtained at PDX passage by fixation of tumour fragments
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(approximately 3x3x3 mm in size) in 4% paraformaldehyde

overnight at 4°C. Samples were stored in 70% ethanol at 4°C

before being processed and embedded in paraffin. FFPE tissue

sections of PDX tumours and their equivalent primary tumour

region were subjected to hematoxylin and eosin (H&E) staining or

immunohistochemistry using the following antibodies: anti-human

CD45 (Clone: HI30; 1:200; BioLegend, #304002), anti-keratin

(Clone: AE1/AE3; 1:100; Agilent #13160), anti-CD3 (Clone:

LN10; 1:100; Leica Biosystems, #NCL-L-CD3-565), anti-CD20

(Clone: L26; 1:200; Agilent, #M0755), anti-CD30 (Clone: JCM182;

RTU; Leica Biosystems, #PA0790), anti-CD56 (Clone: 564; RTU;

Leica Biosystems, PA0191), anti-CD79A (Clone: JCB117; 1:100;

Agilent; #M7050), anti-CD138 (Clone: MI15; 1:100; Agilent;

#M7228), anti-BCL2 (Clone: BCL-2/100/D5; RTU; Leica

Biosystems; #PA0117), anti-BCL6 (Clone : LN22; RTU; Leica

Biosystems; #PA0204), anti-MUM1 (Clone : MUM1p; 1/400;

Agilent; #M7259), anti-IgL (Clone: N/A; 1:400; Agilent; #GA507),

and anti-IgK (Clone: N/A; 1:4000; Agilent; #A0191). Optimization

of the antibodies and staining conditions was carried out on

sections of human tonsil. Immunostaining was performed using

the automated BOND-III Autostainer (Leica Microsystems, UK)

according to protocols described previously (20). Slide images were

acquired using a NanoZoomer 2.0HT whole slide imaging system

(Hamamatsu Photonics, Japan). Supplementary File 1 showing

semi-automatically generated overview images with a selected

region of interest was created from Nanozoomer ndpi whole-slide

digital images by a custom python module using the openslide

package (21). This tool (PATHOverview) is freely available on

Github (https://github.com/EpiCENTR-Lab/PATHOverview).
EBER in situ hybridisation

In situ hybridization for detection of the EBV-encoded small

RNAs (EBER) was performed using the EBER Probe (Catalogue no:

ISH5687; Leica Biosystems Newcastle Ltd, UK). The technique was

carried out on an automated stainer platform (BOND-III, Leica

Biosystems, UK) according to the manufacturer’s instructions.
PCR of Ig light chain

DNA was extracted from xenografts using either the PureLink

Genomic DNA Mini Kit (Invitrogen) or the DNA/RNA AllPrep Kit

(Qiagen). PCR for IGK, Kde and IGL along with a positive control

ladder reaction was performed on 35-120 ng DNA utilising the

BIOMED-2 (22) protocol with pooled primers detailed in

Supplementary Table 1. ABI Gold Buffer (Applied Biosystems) was

used in a 25 ml reaction. IGK, Kde and positive control reactions were
performed with 1.5 mMMgCl2 and IGL with 2.5mMMgCl2. Cycling

conditions were: 95°C for 7 min followed by 35 cycles of 95°C for 30s,

60°C for 30s, 72°C for 30s with a final extension at 72°C for 10min.

PCR products were imaged on a 1% agarose gel.
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Flow cytometry

Cryopreserved xenografts were dissociated by mashing through

a 30 mm cell strainer and blocked using 10% foetal bovine serum in

PBS. Cells were resuspended in staining buffer consisting of 50%

PBS containing 1% bovine serum albumin (BSA) and 50% Brilliant

Stain Buffer (BD Biosciences) and incubated for 20 minutes at 4°C

in the following antibodies: anti-CD45 (APC-H7; BD Biosciences,

560178), anti-CD3 (PE; BD Biosciences, 555333), anti-CD19 (PE-

Cy7; Thermo Fisher Scientific, 25-0199-41), anti-CD20 (FITC;

Biolegend, 302303), anti-IgK (BV421; Biolegend, 392705) and

anti-IgL (APC; Biolegend, 316609). Cells were washed and re-

suspended in flow cytometry buffer (PBS + 1% BSA) for flow

cytometry. Cells were analysed using a BD LSRFortessa X-20 Cell

Analyser (UCL Division of Medicine Core Facility, University

College London) and data were analysed in FlowJo (v10).
Resource availability

Biological materials, including xenograft models generated

within this study, will be made available to the community for

academic non-commercial research purposes via standard MTA

agreements. PATHOverview, the Python-based tool used to

generate histology overview images in this manuscript, has been

made available via GitHub (https://github.com/EpiCENTR-

Lab/PATHOverview).
Results

CD45+ lymphoproliferations in a NSCLC
PDX model pipeline

PDX generation was performed through subcutaneous injection

of multi-region, spatially independent biopsies of NSCLC tumours

in NSG mice (18). Tissue samples were obtained via the lung

TRACERx study from patients undergoing surgical resections,

with no patients having received neoadjuvant therapy (23).

Immunohistochemistry (IHC) revealed that 15 xenografts did not

express keratin but did express human CD45 (18). Tissue from a

further xenograft (CRUK0733 Region 1; R1) was not available but it

was determined to be a lymphoproliferation due to its lack of shared

mutations with the patient’s NSCLC in a targeted sequencing assay,

meaning that overall 16/145 (11.0%) of transplanted tumour

regions gave rise to lymphoproliferations [Figure 1A; (18)].

Following multi-region xenograft establishment, three tumours

gave rise to more than one lymphoproliferation from different

spatial regions, two of these tumours also gave rise to a NSCLC

PDX model from a further spatial tumour region.

8/45 lung adenocarcinoma (LUAD) regions generated

lymphoproliferations compared to 6/60 lung squamous cell

carcinoma (LUSC) regions (ns, Chi-square test), while two
frontiersin.org
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lymphoproliferations arose from other NSCLC histologies (Figure 1A).

We found no difference between the time taken to the emergence of

palpable tumours between samples that generated lymphoproliferations

versus those that generated NSCLC PDXs (Figure 1B; median 115.5

versus 101.5 days, respectively; p = 0.33, two-tailed Mann-Whitney

test). Likewise, there was no difference in the time between injection of

tumour material and the harvest of tumours for samples that generated

lymphoproliferations versus those that generated NSCLC PDX models

(Figure 1C; median 135 vs 91 days, respectively; p > 0.99, Kruskal-

Wallis test). Further, 6 out of 68 (8.8%) freshly injected patient samples

gave rise to lymphoproliferations compared to 10 out of 77 (13.0%)

cryopreserved samples (ns, Chi-square test). Where data were available,

we analysed the frequency of stromal tumour infiltrating lymphocytes

in regional histology samples from our patient cohort and found no

association between infiltration and lymphoproliferation (Figure 1D;

ns, Kruskal-Wallis test). Clinically, none of the patients whose

tumours gave rise to lymphoproliferations had a history or family

history of lymphoma, nor did any of these patients relapse with

lymphoproliferative disease.
Frontiers in Oncology 04
CD45+ xenografts from NSCLC are large B
cell lymphomas with a post-transplant-like
immunophenotype

Review of hematoxylin and eosin stained tissue sections

revealed that CD45+ lymphoproliferations shared many common

features independent of the tumour region or patient of origin. They

contained large, atypical cells with pleomorphic nuclei containing

prominent nucleoli that were mixed with mitoses and areas of

necrosis. Independent xenografts exhibited variable extent of

necrosis. An example patient is shown in Figure 2 and data for all

patients – presented using a new Python-based tool for assembling

pathology images, PATHOverview (see Methods) – are shown in

Supplementary File 1.

Conventional immunohistochemistry was carried out to

characterise the immunophenotype of lymphoproliferations. Cells

expressed human CD45, CD20 and CD79a, indicating their B cell

identity, and in all cases were positive for Bcl-2 and CD30. They

were largely negative for CD56 and the germinal centre-associated
frontiersin.o
A
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FIGURE 1

Lymphoproliferation formation in a multi-region non-small cell lung cancer patient-derived model program. (A) Frequency of CD45+ xenografts in the
lung TRACERx PDX program. (B) Quantification of the time elapsed between injection and xenograft detection (ns, p = 0.33, two-tailed Mann-Whitney
test). Points are coloured by the prior cryopreservation status of the injected tumour material. (C) Quantification of the time elapsed between injection
and experimental end point (xenograft harvest or, in the event of no xenograft formation, mouse termination; two-tailed Kruskal-Wallis test, * p < 0.05,
**** p < 0.0001). Points are coloured by the prior cryopreservation status of the injected tumour material. (D) Tumour infiltrating lymphocyte score in
patient tissue (NSCLC PDX vs no growth, p = 0.258; NSCLC PDX vs CD45+, p > 0.99; No growth vs CD45+, p > 0.99; Kruskal-Wallis test).
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https://doi.org/10.3389/fonc.2023.1156743
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pearce et al. 10.3389/fonc.2023.1156743
markers CD10 and Bcl-6 (24), although occasionally Bcl-6

expression was observed in a subset of the atypical cells. MUM1,

a marker expressed in activated B and plasma cells was positive in

all cases, whereas CD138 staining was found in only a very small

proportion of cells. Most samples contained diffuse CD3+ cells, but

in all such cases these were a minor component. Flow cytometry

analysis revealed that these CD3+ cells were B lymphocytes with

aberrant expression of CD3, rather than a population of passenger T

lymphocytes (Figure 3). Overall, these findings are consistent with

post-transplant B cell lymphoma with the phenotype of non-

germinal centre B cells.

As EBV-associated lymphoma occurs in immunocompromised

patients and transplant recipients (25), we performed in situ

hybridization for EBV-encoded small RNAs (EBER) to assess the

EBV status of these lymphoproliferations. All lymphoproliferations

were positive for EBER (15/15; Table 1; Supplementary File 1), which

are expressed ubiquitously by EBV-infected cells regardless of their

latency status (26). It has not been possible to determine the EBV

serology status of patients within the lung TRACERx cohort, but none

of the patients whose tumours generated lymphoproliferations in our
Frontiers in Oncology 05
study had a history of immunodeficiency, of lymphoproliferative

disease or of prior therapy that would be expected to result in an

immunodeficient state. Nor did we find evidence of germline

mutations in any of these patients that would confer susceptibility to

diffuse large B cell lymphoma (based on (27); data not shown).
IgK and IgL rearrangements suggest
independent origins of NSCLC
PDX lymphoproliferations

Detection of immunoglobulin light chain restriction is

indicative in routine diagnostic pathway for B-cell lymphoma. To

evaluate the immunoglobulin light chain expression pattern in our

samples, we performed single immunohistochemistry for kappa and

lambda light chains. We found that 8/15 lymphoproliferations

showed kappa only immunoglobulin (Ig) light chain restriction,

two showing lambda light chain restriction and in the remaining

five, co-expression of both kappa (IgK) and lambda (IgL) light

chains was observed (Table 1; Figure 4A; Supplementary File 1).
FIGURE 2

Immunophenotyping of an example case of lymphoproliferation formation in an NSG mouse injected subcutaneously with NSCLC. The xenograft
shown was developed from CRUK0764 inter-region tissue (IR; i.e. not matched to a tumour region defined within the TRACERx study). Scale bar =
1.0 mm. Inset image is 250 mm in width. Images for all lymphoproliferations are contained in Supplementary File 1.
frontiersin.org
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Dual expression of IgK and IgL has been shown in disease states

(28) and at low frequency in healthy blood (29). The presence of a

cell population expressing both both IgK and IgL was confirmed by

flow cytometry in two lymphoproliferations (CRUK0810 R8 and

CRUK0941 R1) which had shown IHC evidence of dual expression

(Figure 4B). For one xenograft (CRUK0733 R1), fixed tissue was
Frontiers in Oncology 06
unavailable for histological characterisation of IgK and IgL. We

therefore used the standardised EuroClonality (BIOMED-2) PCR-

based assay (22) to determine the immunoglobulin light chain gene

rearrangements in this sample and the two cases previously

validated using flow cytometry. This assay uses pooled primers

targeting rearrangements in the kappa locus (IGK, Figure 4C, left

lane), rearrangements to the kappa deleting element (Kde), which

occur once kappa rearrangements have been exhausted (30) (Kde,

middle lane), and subsequent rearrangements of the lambda locus

(IGL, right lane). The neoplastic B cell nature of the CRUK0733 R1

xenograft was confirmed by the presence of two IGK

rearrangements (Figure 4C).

Histological characterisation showed that lymphoproliferations

arising from different spatial regions of the same primary tumour

shared similar morphology and immunophenotype in all three cases

for which multiple lymphoproliferations were available. However,

distinct Ig light chain restrictions in lymphoproliferations arising

from the same tumour indicated the likely independent origins of

the lymphoproliferative xenografts in two cases for which

immunohistochemistry was possible (Table 1; Figure 4;

Supplementary File 1). In all three cases, PCR for Ig light chain gene

rearrangements demonstrated distinct rearrangements between the

xenograft pairs, again supporting their independent clonal

origins (Figure 4C).

Kappa and lambda light chain expression was detected in the

CRUK0810 R8 xenograft by histology (Figure 4A) and flow cytometry

(Figure 4B). The xenograft contained multiple rearrangements in IGK,

Kde and IGL in the PCR assay (Figure 4C), suggesting the possibility

that this lymphoproliferation may have contained multiple B cell

clones. The CRUK1054 R5 xenograft demonstrated lambda light

chain restriction by immunohistochemistry (Figure 4A) and flow

cytometry (Figure 4B), but IGL rearrangement was not detected by

PCR (Figure 4C). This xenograft did, however, show two

rearrangements to Kde (Figure 4C), supporting progression to IGL

rearrangement. The failure to detect IgL may have been caused by

subsequent somatic hypermutation of IGL or by the use of an IGL gene

segment not covered by the BIOMED-2 primer set (22).
Discussion

In xenograft studies from a diverse range of tumour types,

spontaneous mouse tumours and proliferations of non-tumour

lymphocytes have been observed, providing a caveat in the

development of pre-clinical cancer models. The rate of

lymphoproliferation emergence varies between reports, with as

many as 80% of growing lesions after three months being

lymphoproliferations in one prostate cancer PDX pipeline (13). It

is feasible that age might be a factor in lymphoproliferation

frequency in PDX pipelines but they have also been observed in

paediatric solid cancers (31). In lung cancer PDX experiments,

lymphoproliferation rates of 16.7% in NOG mice [4/24; (17)],

12.4% in NOD-scid mice [19/153; (15)] and 11.5% in NSG mice

[16/139 lung squamous cell carcinoma; (16)] have previously been

observed. In accordance with these studies, we found a

lymphoproliferation rate of 11.9% of all patient tissue injections.
A

B

FIGURE 3

Investigation of CD3-expressing cells in B lymphoproliferations.
(A) Immunohistochemical staining with an anti-CD3 antibody in the
CRUK0825 R7 xenograft. Scale bar = 1.0 mm. Inset image is 500 mm
in width. (B) Flow cytometry analysis of CD19 and CD20 expression
(lower panel) within CD45+/CD3+ cells (upper panel).
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We did not observe more frequent lymphoproliferation formation

in adenocarcinomas than squamous cell carcinomas as has been

previously reported in a study using NOD-scid mice (15). Over 25%

of xenografts that formed in our study were lymphoproliferations

and there was no difference in the time between implantation and

harvest of lymphoproliferations and NSCLC PDXs that could be

used to distinguish lymphoproliferations from true NSCLC PDX

models. This indicates the relevance of screening PDXmodels using

immunohistochemistry for keratin and CD45 expression as a rapid

and relatively low-cost approach to identify lymphoproliferations in

xenograft platforms. Screening models at the earliest opportunity

and routinely during PDX passaging avoids the time- and cost-

inefficient expansion of lymphoproliferations and mistaken tumour

identity in downstream studies.

The origin of lymphoproliferations in the xenotransplantation

setting is not fully understood. Given that tumour-infiltrating B

cells are present in tumours, lymphoproliferations could feasibly

arise from the activation and expansion of these cells. However, the

association of lymphoproliferations with the reactivation of

Epstein-Barr virus (EBV) – a herpes virus which persists as a life-

long, asymptomatic latent infection in more than 90% of the human

population and exhibits tropism for B lymphocytes (32) – suggests

that rare transformed cells that were previously kept in check by

immune surveillance in patients can generate lymphoproliferations

in immunocompromised mice. In immunocompetent patients,

EBV infection would be expected to be confined to post-germinal

centre memory cells (33), it is therefore likely that these cells are
Frontiers in Oncology 07
present in the tumour tissue and will have undergone differentiation

and immunoglobulin maturation. Indeed, the immunophenotype

of the lymphoproliferations presented here is similar to that of post

germinal centre cells and post-transplantation diffuse large B cell

lymphoma. While the limited analysis of Ig light chain amplicon

length by agarose gel electrophoresis presented here is not sufficient

to determine if a single lymphoproliferation is monoclonal, it does

demonstrate that lymphoproliferations arising from independent

spatial regions of primary tumours were clonally distinct. These

data suggest that tumours contain multiple clones of EBV-

transformed memory B cells possessing proliferative potential in

NSG mice, where immunosurveillance by T cells is absent.

One approach to preventing the formation of lymphoproliferations

might therefore be to quantify EBV RNA in starting material to filter

out regions most likely to contain these B cells. Our finding that

cryopreservation has little impact on NSCLC PDX take rate while not

selectively favouring either tumour or B cell proliferations, would allow

a time window in which to implement this approach (18). However, a

previous study in NSCLC has suggested that the extent of EBER

positivity in tissue did not predict lymphoproliferation formation (15).

Monoclonal antibody therapy against CD20 using rituximab results in

B cell depletion and is an approved therapy in some leukaemias and B

cell non-Hodgkin lymphoma. Injection of mice with a single dose of

rituximab at the point of xenograft implantation has been shown to

reduce lymphoproliferation formation in ovarian (14) and

hepatobiliary/gastrointestinal PDX platforms (17). However, tumour

histology affected the efficacy of this approach, so further data are
TABLE 1 Immunophenotyping of B lymphoproliferations arising in a NSCLC xenograft program.

Patient Region CD20 CD79A CD3 BCL2 CD56 CD10 BCL6 MUM1 CD138 CD30 EBER Ig

CRUK0701 R1 + + # + - - # + # + + K

CRUK0704 T1 IR + + # + - - # + # + + L (K)

CRUK0731 IR + + # + - - # + # + + K

CRUK0764 IR + + - + - - # + # + + L

CRUK0795 IR + + # + - - # + # + + L (K)

CRUK0825 R7 + + + + - - # + # + + K

CRUK0830 R4 + + # + # - # + # + + K (L)

CRUK0934 R6 + + - + - - # + # + + K

CRUK0941 R1 + + # + - - # + # + + K (L)

CRUK0949 R6 + + + + - - # + # + + K

CRUK0810
R4 + + - + - - # + # + + K

R8 + + # + - - # + # + + L (K)

CRUK1054
R2 + + # + - - # + # + + K

R5 + + - + - - # + # + + L

CRUK0733
R5 + + # + - - # + # + + K

R1 Histology sample unavailable
frontier
IR, inter-region (i.e. not matched to a tumour region defined within the lung TRACERx study). + Detected in the majority of cells; # Detected in a subset of cells. Detection of both IgK and IgL
light chain expression by immunohistochemistry is indicated with the minor light chain shown in brackets.
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required on its efficacy in NSCLC PDX models given the substantial

cost of dosing every first passage mouse in large PDX

derivation studies.

In conclusion, post-transplant-like diffuse large B cell proliferations

were a frequent outcome in our NSCLC xenograft study using NSG

mice. Here we present the characterisation of these lymphoproliferations,
Frontiers in Oncology 08
including several cases in which lymphoproliferations were derived from

spatially distinct regions of the primary tumour. In these cases, we

demonstrate that the proliferations likely arise from distinct cells of

origin. None of the patients from which these lymphoproliferations were

derived suffered haematological malignancy diagnosis with 3.5 years of

follow up. This suggests that there are multiple B cell clones with
A B

C

FIGURE 4

B lymphoproliferations arising from different primary tumour regions show distinct immunoglobulin light chain rearrangements. (A) Immunohistochemical
staining with anti-IgK (left) and anti-IgL (right) antibodies in the CRUK0810 R8, CRUK0941 R1 and CRUK1054 R5 xenografts. Scale bars = 1.0 mm. (B) Flow
cytometry analysis of IgK and IgL expression within CD45+ cells that were also positive for either CD19 or CD20. (C) PCR analysis of rearrangements to
immunoglobulin light chain loci, including those to the kappa deleting element (Kde), in cases where multiple lymphoproliferations arose in xenografts of
distinct tumor regions.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1156743
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pearce et al. 10.3389/fonc.2023.1156743
lymphoproliferative potential within a primary NSCLC tumour and that

there is continuous surveillance of these cells within the tumour. Our

data highlight the value of quality control measures to identify

lymphoproliferations within xenograft pipelines and support the

incorporation of strategies to minimise lymphoproliferations during

the early stages of xenograft establishment pipelines.
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