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Development, comparison, and
validation of four intelligent,
practical machine learning
models for patients with
prostate-specific antigen
in the gray zone

Taobin Liu1,2†, Xiaoming Zhang1†, Ru Chen1*, Xinxi Deng3*

and Bin Fu1,2*

1Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
2Jiangxi Institute of Urology, Nanchang, Jiangxi, China, 3Department of Urology, Jiu Jiang NO.1
People's Hospital, Jiujiang, China
Purpose: Machine learning prediction models based on LogisticRegression,

XGBoost, GaussianNB, and LGBMClassifier for patients in the prostate-specific

antigen gray zone are to be developed and compared, identifying valuable

predictors. Predictive models are to be integrated into actual clinical decisions.

Methods: Patient information was collected from December 01, 2014 to

December 01, 2022 from the Department of Urology, The First Affiliated

Hospital of Nanchang University. Patients with a pathological diagnosis of

prostate hyperplasia or prostate cancer (any PCa) and having a prostate-

specific antigen (PSA) level of 4–10 ng/mL before prostate puncture were

included in the initial information collection. Eventually, 756 patients were

selected. Age, total prostate-specific antigen (tPSA), free prostate-specific

antigen (fPSA), fPSA/tPSA, prostate volume (PV), prostate-specific antigen

density (PSAD), (fPSA/tPSA)/PSAD, and the prostate MRI results of these

patients were recorded. After univariate and multivariate logistic analyses,

statistically significant predictors were screened to build and compare machine

learning models based on LogisticRegression, XGBoost, GaussianNB, and

LGBMClassifier to determine more valuable predictors.

Results: Machine learning prediction models based on LogisticRegression,

XGBoost, GaussianNB, and LGBMClassifier exhibit higher predictive power than

individual metrics. The area under the curve (AUC) (95% CI), accuracy, sensitivity,

specificity, positive predictive value, negative predictive value, and F1 score of the

LogisticRegression machine learning prediction model were 0.932 (0.881–

0.983), 0.792, 0.824, 0.919, 0.652, 0.920, and 0.728, respectively; of the

XGBoost machine learning prediction model were 0.813 (0.723–0.904), 0.771,

0.800, 0.768, 0.737, 0.793 and 0.767, respectively; of the GaussianNB machine

learning prediction model were 0.902 (0.843–0.962), 0.813, 0.875, 0.819, 0.600,

0.909, and 0.712, respectively; and of the LGBMClassifier machine learning

prediction model were 0.886 (0.809–0.963), 0.833, 0.882, 0.806, 0.725, 0.911,

and 0.796, respectively. The LogisticRegression machine learning prediction
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model has the highest AUC among all prediction models, and the difference

between the AUC of the LogisticRegression prediction model and those of

XGBoost, GaussianNB, and LGBMClassifier is statistically significant (p < 0.001).

Conclusion: Machine learning prediction models based on LogisticRegression,

XGBoost, GaussianNB, and LGBMClassifier algorithms exhibit superior

predictability for patients in the PSA gray area, with the LogisticRegression

model yielding the best prediction. The aforementioned predictive models can

be used for actual clinical decision-making.
KEYWORDS

prostate cancer, gray area PSA, machine learning, LogisticRegression, XGBoost,
GaussianNB, LGBMClassifier
Introduction

Prostate cancer (PCa) is an extremely common malignancy in

men, its incidence being second only to lung cancer among all

malignant tumors in men (1). Approximately 1.31 million new PCa

cases are diagnosed each year globally, and nearly 10 million men

currently have PCa. Out of these 10 million patients, approximately

700,000 suffer from metastatic PCa, which causes nearly 400,000

deaths each year, a death toll that is expected to more than double

by 2040 (2). Therefore, it is becoming increasingly important to

screen more accurately for PCa at an early stage.

Prostate specific-antigen (PSA) is a specific secretion of the

prostate gland, which is a key marker of the initial diagnosis of the

disease (3). However, this serum PSA level is influenced by various

factors, such as ejaculation, acute prostatitis, urinary retention,

catheterization, digital rectal examination (DRE), cystoscopy, and

additional operations, thus affecting the accuracy of PSA diagnosis

for patients (4). Clinically, PSA within the range of 4–10 ng/mL is

defined as being in the gray zone (5). The possibility of PCa in the

Chinese population with PSA in this range is about 25%, and the same

is approximately 40%with the world population (6), and these patients

are more likely to be missed for PCa or to have a non-essential

puncture biopsy. In a study with 2426 patients, Xu B et al. found that

the positive rate of PCa biopsy was only 25.77% for patients in the PSA

gray zone (7). The diagnosis of PCa in the gray zone of PSAhas become

a key issue in urological research.

Machine learning can independently replicates human

cognition and make decisions based on its perceived environment

to achieve predetermined goals (8). Zhang S et al. proposed an

interpretable deep learning framework for describing and

interpreting human brain states (9). Furthermore, Lee C et al.

developed a novel machine learning model for predicting non-

metastatic PCa in men based on the Surveillance, Epidemiology,

and End Results (SEER) database (10). Madhur Nayan et al. used

machine learning to predict the progress of active PCa surveillance

(11). Nevertheless, to date, only a few studies have used machine
02
learning to forecast PCa with PSA in the gray zone. In the current

study, four machine learning algorithms were compared.
Materials and methods

Data collection, the introduction of
relevant variables, and handling of
missing values

Information was collected from December 01, 2014 to

December 01, 2022 from the Department of Urology, The First

Affiliated Hospital of Nanchang University, from patients with a

pathological diagnosis of prostate hyperplasia or PCa (any PCa) and

prior PSA of 4–10 ng/mL. According to the exclusion and inclusion

criteria followed in this study, 756 patients were finally selected (596

patients with prostate hyperplasia and 160 patients with PCa). Age,

free prostate-specific antigen (fPSA), total prostate-specific antigen

(tPSA), fPSA/tPSA, prostate volume (PV), prostate-specific antigen

density (PSAD), (fPSA/tPSA)/PSAD, absolute neutrophil count

(NEUT), lymphocyte absolute count (LYM), platelet count (PLT),

neutrophil absolute count/lymphocyte absolute count (NLR),

absolute platelet count/absolute lymphocyte count (PLR), alkaline

phosphatase (ALP), and prostate MRI results were recorded for

the samples.

The MRI findings of the prostate were abnormal, the

abnormality being defined as PI-RADS score >= 3. The PI-RADS

score is the combined clinical presentation of mpMRI

(multiparametric MRI) with DWI (diffusion-weighted imaging),

T2WI (T2-weighted imaging of the prostate), and DCE (dynamic

contrast enhancement). This score has considerable clinical

significance in the diagnosis of PCa (12).

The cases were divided Into prostate hyperplasia and PCa

groups based on the pathological findings. Most of the sample

data of this study were relatively complete, and the primary

limitation was the presence of PSA only in some samples that did
frontiersin.org
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not contain fPSA data. However, the missing data were padded

using the random forest algorithm.
Inclusion and exclusion criteria

Inclusion criteria: 1, PSA in the range of 4–10 ng/mL; 2, a clear

pathological diagnosis and no history of prostate surgery; 3, the

relevant prediction metrics are complete. Exclusion criteria: 1,

patients with acute prostatitis, acute urinary retention, within 48

h of cystoscopy and catheterization and within 1 week of DRE; 2,

patients taking drugs that may affect outcomes, such as 5-alpha

reductase inhibitors; 3, patients having more than two

prostate punctures.
Predictive variable screening

First, the overall distribution of the 14 variables included in this

study was analyzed, and then a univariate logistic analysis was

performed on each variable to screen for statistically significant

predictors. After the Collinearity Diagnostics of predictor variables,

multivariate logistic analysis was performed after screening out

variables with no covariance and multiple indicators with

independent influences. Machine learning models were selected to

be incorporated for modeling in conjunction with actual

clinical situations.
Building machine learning models

Sample imbalance in machine learning refers to an imbalance in

the number of samples per category in a dataset. When building the

model, it is biased towards samples with larger proportions,

resulting in a low generalization ability. The ideal ratio of positive

to negative samples for building the model is 1:1. In this study, the

sample data for the PCa group: and prostate hyperplasia group was

160:596, and therefore, the sample showed an imbalance. Sample

imbalance commonly originates from an over-sampling of under-

represented categories or under-sampling of over-represented

categories. Herein, over-sampling the PCa group, which is a small

percentage of the total population, resulted in less accurate true

data. To address this issue, the prostate hyperplasia group was

randomly under-sampled, thereby altering the PCa group: prostate

hyperplasia group to 160:320 (1:2).

To reduce model overfitting and ensure its stability and

generalization ability, the total number of samples is considered

to be low. The model is thus constructed using five-fold cross-

validation on the dataset, which is divided into five parts. Each part

is uncrossed and all the parts are of the same size. In descending

order, four of the five replicas are selected as the training set and one

as the validation set, and five separate model training and validation

runs were performed. The final results of the five validation runs
Frontiers in Oncology 03
were averaged as the validation error of the model. The flow chart of

this research is shown in Figure 1.
Statistical analysis

The statistical analysis of the sample data was initially

performed using SPSS 26.0 software. Continuous and categorical

variables were expressed as mean ± standard deviation and

percentage (%), respectively. Independent sample t-tests were

performed to determine the differences between the groups.

Differences in the AUC values of machine learning algorithms

between groups were compared using De Lon’s non-parametric

approach (4). The machine learning algorithms were constructed

and compared using python version 3.10.
Results

After filtering according to the inclusion and exclusion criteria,

a total of 765 cases were collected, including 596 in the prostate

hyperplasia group and 160 in the PCa group. The case information

for both groups is shown in Table 1. The comparison yielded

statistically significant differences in the 11 predictors of tPSA,

fPSA, fPSA/tPSA, PV, PSAD, (fPSA/tPSA)/PSAD, ALP, NLR, PLR,

NEUT, and prostate MRI abnormalities. Age, LYM, and PLT were

not statistically significant between the two groups. The overall

mean of tPSA, PSAD, NLR, PLR, and ALP in the PCa group was

greater than that in the prostate hyperplasia group (p < 0.05).

Conversely, the overall mean of the fPSA, fPSA/tPSA, PV, and

(fPSA/tPSA)/PSAD in the PCa group were smaller than those in the

prostate hyperplasia group (p < 0.05).

Univariate logistic analysis was performed on the

aforementioned statistically significant predictors, the results of

which are presented in Table 2. In addition, the ROC curves for

each predictor variable are shown in Figure 2. The AUC for the

predictive efficacy of prostate MRI abnormalities was 0.839, and the

AUCs for (fPSA/tPSA)/PSAD and PSAD were 0.818 and

0.769, respectively.
FIGURE 1

Flow chart of the cross-validation study.
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The results of the Collinearity Diagnostics for the above

variables are given in Table 3. Among these, PSAD, NLR, PLR,

NEUT, MRI, and ALP are variables with covariance index VIF

values less than 10, indicating no covariance.

After including variables with VIF<10 for multivariate logistic

analysis, PASD, and MRI variables were found to have p-values less

than 0.001, and PASD and MRI were determined to be the

independent risk factors for outcome variables (Table 4).
Frontiers in Oncology 04
Results of machine learning models for
LogisticRegression; XGBoost; GaussianNB;
LGBMClassifier

In the overall sample, N = 120 cases (25.00%) were randomly

selected as the test set. The remaining samples were used as the

training set for five-fold cross-validation. ROC curves for the

validation and test sets of LogisticRegression, XGBoost,
TABLE 1 Distribution of variables and comparison of differences between the two groups of cases.

Projects Prostatic hyperplasia group (N = 596) Prostate cancer group (N = 160) p-value

Age (years) 74.324 ± 6.984 74.250 ± 3.162 0.846

tPSA(ng/ml) 6.569 ± 1.502 7.061 ± 1.186 <0.001

fPSA(ng/ml) 1.501 ± 0.778 1.071 ± 0.338 <0.001

fPSA/tPSA 0.226 ± 0.095 0.154 ± 0.049 <0.001

PV(cm3) 60.089 ± 14.446 46.774 ± 12.594 <0.001

PSAD(ng/ml. cm3) 0.116 ± 0.038 0.166 ± 0.062 <0.001

(fPSA/tPSA)/PSAD 2.162 ± 1.057 1.085 ± 0.554 <0.001

NEUT(*109/L) 4.730 ± 1.839 5.135 ± 0.713 <0.001

LYM(*109/L) 1.396 ± 0.543 1.333 ± 0.612 0.235

PLT(*109/L) 209.865 ± 65.421 212.410 ± 46.315 0.576

ALP(U/L) 89.432 ± 24.840 96.804 ± 19.687 <0.001

NLR 3.817 ± 2.088 4.511 ± 1.627 <0.001

PLR 166.984 ± 71.286 189.305 ± 84.711 0.003

MRI abnormalities[n(%)]

no(0) 497(83.389%) 25(15.625%)
<0.001

yes(1) 99(16.611%) 135(84.375%)
NEUT, absolute neutrophil count; LYM, lymphocyte absolute count; PLT, platelet count; ALP, alkaline phosphatase; NLR, neutrophil absolute count/lymphocyte absolute count; PLR, absolute
platelet count/absolute lymphocyte count.
The bold numbers indicate the statistical differences.
TABLE 2 Results of univariate logistic analysis.

Projects AUC Sensitivity Specificity Youden’s index Optimal threshold

tPSA 0.609 0.850 0.404 0.254 6.010

fPSA5 0.664 0.396 0.925 0.321 1.570

fPSA/tPSA 0.748 0.676 0.819 0.495 0.190

PV 0.748 0.532 0.831 0.363 59.190

PSAD 0.769 0.644 0.743 0.387 0.140

NEUT 0.662 0.863 0.559 0.421 4.530

(fPSA/tPSA)/PSAD 0.818 0.624 0.925 0.549 1.700

ALP 0.632 0.581 0.721 0.303 95.650

NLR 0.650 0.594 0.716 0.310 4.160

PLR 0.574 0.588 0.638 0.225 170.520

MRI 0.839 0.844 0.834 0.678 1.000
NEUT, absolute neutrophil count; ALP, alkaline phosphatase; NLR, neutrophil absolute count/lymphocyte absolute count; PLR, absolute platelet count/absolute lymphocyte count.
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GaussianNB, and LGBMClassifier are shown in Figure 3. The AUC

values of their validation sets were 0.918 (0.855–0.979), 0.893

(0.814–0.971), 0.906 (0.839–0.974), and 0.893 (0.814–0.972),

respectively. Furthermore, the AUC values of the measured sets

were 0.935 (0.893–0.977), 0.933 (0.891–0.976), 0.935 (0.893–0.977),

and 0.939 (0.899–0.980), respectively (Table 5). Since the AUC of

the validation set did not exceed that of the test set, or the excess

ratio was less than 10%, the fit was considered successful. All the

aforementioned models can be used for this dataset.
Categorical multi-model construction and
the comparison of respective ROC curves

The best performer in the training set was XGBoost, while that in

the validation set was LogisticRegression (both ranked according to

AUC) (Figure 4). A comparison of the training and validation sets
Frontiers in Oncology 05
shows that the results do not match (Table 6). XGBoost most likely

resulted in overfitting, while LogisticRegression demonstrated relatively

excellent stability and is therefore recommended as the optimal

prediction model. From the change of AUC during the training of

each model, it is observed that the AUCs of the training and validation

sets are finally stable and well-matched above 0.8 (Figure 5).
DeLong test for categorical multi-model
AUC values

The DeLong test is used to verify whether the AUC values of the

two sets of machine learning models are statistically different

(Table 7). From Table 7, it is evident that the difference between

LogisticRegression and the three machine learning models

XGBoost, GaussianNB, and LGBMClassifier is significant

(p<0.001). The remaining machine learning models do not differ

from each other in a statistically significant way.
Discussion

PCa is one of the most prevalent cancers in the world (13).

Approximately 25% of patients with PSA between 4.0 and 10.0 ng/

mL were found to have PCa, compared with approximately 40

percent in the United States (14). Currently, artificial intelligence is

widely used in medicine. Machine learning algorithms accept

predictor variable metrics as inputs and provide variable metrics

as outcomes and build appropriate machine learning models.

Machine learning can also predict the current input data based

on an existing model, which considers the prediction metrics and

considerably improves the prediction accuracy. This technique

exhibits a better prediction performance than individual

prediction metrics, so its application prospects are numerous (15,

16). Related studies have demonstrated the tremendous value of

machine learning models for PCa diagnosis and the assessment of

prognosis (17–20). For example, Satoshi Nitta et al. used age, PSA,

PV, and urine leukocyte count as predictors to build a PCa
A B

FIGURE 2

ROC curves for each predictor variable: (A) ROC curves of tPSA, fPSA, fPSA/tPSA, PV, PSAD, and ENEUT; (B) ROC curves of (fPSA/tPSA)/PSAD, ALP,
NLP, PLR, and prostate MRI abnormalities.
TABLE 3 Covariance VIF values for each predictor variable.

Projects VIF

fPSAtPSA 57.783

fPSA 35.782

ftPSAD 19.838

PV 11.935

tPSA 10.932

PSAD 9.452

NLR 3.454

PLR 2.265

NEUT 2.039

MRI 1.113

ALP 1.059
NEUT, absolute neutrophil count; ALP, alkaline phosphatase; NLR, neutrophil absolute
count/lymphocyte absolute count; PLR, absolute platelet count/absolute lymphocyte count.
Bold numbers indicate items included in subsequent studies.
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TABLE 4 Results of multivariate logistic analysis of predictor variables.

Projects Estimate SE Z p

NEUT 0.103 0.107 0.962 0.336

ALP 0.009 0.005 1.829 0.067

PLR 0.002 0.002 0.976 0.329

NLR -0.056 0.116 -0.482 0.63

PSAD 25.198 3.187 7.906 <0.001

MRI 3.542 0.294 12.047 <0.001
F
rontiers in Oncology
 06
NEUT, absolute neutrophil count; ALP, alkaline phosphatase; NLR, neutrophil absolute count/lymphocyte absolute count; PLR, absolute platelet count/absolute lymphocyte count.
The bold numbers mean statistically different. Bold numbers indicate items included in subsequent studies.
A B

D

E F

G H

C

FIGURE 3

ROC curves for machine learning models for LogisticRegression, XGBoost, GaussianNB, and LGBMClassifier; (A, C, E, G) ROC curves of four machine
learning methods on the validation set; (B, D, F, H) ROC curves of four machine learning methods applied on the test set.
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prediction model based on Random Forest, Support Vector

Machines (SVM), and artificial neural networks (ANNs) (21).

Wouter Bulten et al. built a machine learning model to grade the

Gleason score and compared it with professional pathologists. The

results indicated that this model had diagnostic values comparable

to professional pathologists (22). Simon P Hood et al. developed an

ensemble machine learning predictive model to predict low and

high-risk PCa (23). Further, Patrick Schelb et al. classified PCa
Frontiers in Oncology 07
based on MRI by machine learning combined with PI-RADS

scoring (24). Similarly, numerous studies of machine learning in

the classification of PCa and prostate enlargement have been

conducted to date (25–30). Fewer studies, however, have targeted

patients in the gray zone of PSA. In addition, the machine learning

model built for the overall range of PSA is not well suited for PCa

with PSA in the gray zone. Meanwhile, in their study of the utility

and limitations of cadaveric examination in organ transplantation,
A B

FIGURE 4

ROC curves of categorical multivariate models: (A) Training sets; (B) Validation sets.
TABLE 5 Results of the validation and test sets of four machine learning models.

Data set AUC
(95% Cl) Accuracy Sensitivity Specificity Positive predictive

value
Negative predictive

value
F1

score

LogisticRegression

Validation
set

0.918
(0.855–
0.979)

0.811 0.88 0.844 0.666 0.914 0.758

Test set
0.935
(0.893–
0.977)

0.875 0.886 0.855 0.872 0.877 0.879

XGBoost

Validation
set

0.893
(0.814–
0.971)

0.792 0.914 0.762 0.659 0.88 0.765

Test set
0.933
(0.891–
0.976)

0.85 0.909 0.829 0.81 0.872 0.856

GaussianNB

Validation
set

0.906
(0.839–
0.974)

0.794 0.906 0.799 0.64 0.922 0.749

Test set
0.935
(0.893–
0.977)

0.875 0.886 0.855 0.872 0.877 0.879

LGBMClassifier

Validation
set

0.893
(0.814–
0.972)

0.8 0.914 0.766 0.67 0.893 0.771

Test set
0.939
(0.899–
0.980)

0.883 0.909 0.868 0.875 0.888 0.892
front
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Desley Neil et al. (31, 32) found that although PCa is incidentally

detected at the cadaveric examination of organ donors, the

likelihood of this disease increases with donor age. Thus, this

poses new requirements and challenges for PCA diagnosis. It is to

be noted that machine learning is particularly important in the

diagnosis of PCa in organ transplantation.
Frontiers in Oncology 08
The differences in the 11 predictors of tPSA, fPSA, fPSA/tPSA, PV,

PSAD, (fPSA/tPSA)/PSAD, ALP, NLR, PLR, NEUT#, and prostate

MRI abnormalities were statistically significant as seen in the general

patient data. Notably, while the mean age of the PCa group was greater

than that of the prostate enlargement group, the difference was not

statistically significant. Themean PV in the PCa group was also smaller
TABLE 6 Results of the machine learning categorical multi-model.

Training sets

Models AUC(95% CI) Accuracy Sensitivity Specificity Positive predictive
value

Negative predictive
value

F1
score

LogisticRegression
0.913 (0.883–

0.943)
0.815 0.913 0.771 0.663 0.935 0.768

XGBoost
0.949 (0.929–

0.969)
0.872 0.900 0.852 0.752 0.942 0.819

GaussianNB
0.914 (0.885–

0.944)
0.854 0.824 0.863 0.790 0.890 0.806

LGBMClassifier
0.934 (0.910–

0.958)
0.852 0.881 0.833 0.732 0.928 0.799

Validation sets

Models AUC(95% CI) Accuracy Sensitivity Specificity Positive predictive value Negative predictive value F1 score

LogisticRegression
0.932 (0.881–

0.983)
0.792 0.824 0.919 0.652 0.920 0.728

XGBoost
0.813 (0.723–

0.904)
0.771 0.800 0.768 0.737 0.793 0.767

GaussianNB
0.902 (0.843–

0.962)
0.813 0.875 0.819 0.600 0.909 0.712

LGBMClassifier
0.886 (0.809–

0.963)
0.833 0.882 0.806 0.725 0.911 0.796
fron
A B

DC

FIGURE 5

Extent ofmatching of the validation and test sets of the fourmachine learningmethods: (A) LogisticRegression; (B) XGBoost; (C)GaussianNB; (D) LGBMClassifier.
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than that in the prostate hyperplasia group, which is consistent with the

overall range of the relevant literature in which PV in PCa is larger than

that in prostate hyperplasia. This may be owing to the error caused by

the limited sample size. In the univariate logistic analysis of predictive

variables, the AUC of prostate MRI abnormalities to determine PCa

was 0.84. This predictor has an elevated predictive efficacy for PCa. In

addition, the prediction performances for (fPSA/tPSA)/PSAD and

PSAD are also better, and this is consistent with the findings of

ZhangYiyan et al. (30). Since PSA is influenced by numerous factors

and the variability is not particularly significant when PSA is in the gray

zone, the use of PSAD is more valuable than that of PSA in terms of

predictive performance. As claimed by S. M. Bruno et al. (33) in a

prospective study, PASD is a strong predictor of PCa because it can

exclude the influence of elevated PSA due to prostatitis on the

diagnosis. Therefore, the inclusion of PASD in this study is also

essential. Since all fPSA/tPSA and (fPSA/tPSA)/PSAD are derived

indicators, they exhibited covariance in the covariance analysis. After

multivariate logistic analysis of tPSA, NLR, PLR, ALP, PSAD, and

prostate MRI predictors, the difference in the predictive index of PSAD

and prostate MRI abnormalities was significant (p<0.001), and PSAD

and prostate MRI abnormalities were the independent risk factors for

PCa with PSA in the gray zone. Owing to the development of

reflectomics, the future application of radiomics in the PCa diagnosis

bears potential, as described by M. Ferro et al. (34) in their review on

the application of radiomics in PCa. Although the study of radiomics is

primarily focused on mpMRI, it integrates several other factors to

render the PCa diagnosis more accurate and sensitive. Unfortunately,

only mpMRI was used as a predictor in the current study.

Herein, the validation sets for the four machine learning models

have AUC values of 0.918, 0.893, 0.906, and 0.893, accuracies of 0.811,

0.792, 0.794, and 0.800, and F1 scores of 0.758, 0.765, 0.749, and 0.771,

respectively. This demonstrates the better performance of

LogisticRegression over that of GaussianNB and LGBMClassifier on

the validation sets, and the performance of LGBMClassifier is

comparable to that of XGBoost. In the classification multi-model

validation, the LogisticRegression model demonstrated the best

predictive efficacy (AUC = 0.932) and the difference with XGBoost,

GaussianNB, and LGBMClassifier was statistically significant

(p<0.001). Bermejo et al. showed that a single indicator, PSA, is not

adequately effective in diagnosing PCa. Nevertheless, when logistic

regression and decision tree models are built by combining age, DRE,

PSA, mpMRI, and other relevant indicators, both models achieve

better accuracy (35). All the aforementioned studies, although

different from the subject of this study, illustrate the remarkable

value of machine learning models in PCa diagnosis and prediction
Frontiers in Oncology 09
capabilities. Previous studies on the diagnosis of PCa were compared

using other predictive methods, such as I. M. Perez et al.’s

biparametric MRI (bpMRI) as the main predictor (36). The AUC

values of the resulting prediction models in the development and

validation queues were 0.83 (0.77–0.89) and 0.80 (0.75–0.85), lower

than those of the machine learning models in this study. In another

study, S. Parekh et al. (37) used three predictive model coves

(PROMOD, ERSPC RC, and ANN) with AUC values of any PCa

(0.82 vs 0.70 vs 0.90) and csPCa (0.82 vs 0.78 vs 0.92). All these values

are lower than the AUC values of the machine learning models in the

current study, especially the LogisticRegression algorithm.

Although a total of 756 cases were included in this study, the

sample size is still limited and prone to bias. Moreover, although the

sample number ratio of the prostate hyperplasia group to the PCa

group was maintained at 1:2 to ensure a balanced sample, the total

sample size being modest, it was prone to problems such as

overfitting and poor generalization ability. Therefore, an increase in

sample size was needed to ensure the reliability of the results. In

addition, information about prostate puncture, such as the number of

needles in the puncture, transperineal, or transrectal, and whether

MRI ultrasound fusion was performed or not (38), are not recorded

in this study, which should be included in subsequent studies.

Conclusion

Machine learning prediction models based on LogisticRegression,

XGBoost, GaussianNB, and LGBMClassifier algorithms for PCa with

PSA in the gray region exhibit remarkable predictive power, and the

LogisticRegression machine learning model has higher predictive

performance than the rest of the models. The aforementioned

machine learning models can be used for practical clinical decision-

making to assist physicians in the personalized diagnosis and

treatment of patients.
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