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Jing Li1†, Ying Song1,2†, Yongchang Wu1, Lan Liang1,
Guangjun Li1 and Sen Bai1*

1Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University,
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Purpose: Image segmentation can be time-consuming and lacks consistency

between different oncologists, which is essential in conformal radiotherapy

techniques. We aimed to evaluate automatic delineation results generated by

convolutional neural networks (CNNs) from geometry and dosimetry

perspectives and explore the reliability of these segmentation tools in rectal

cancer.

Methods: Forty-seven rectal cancer cases treated from February 2018 to April

2019 were randomly collected retrospectively in our cancer center. The

oncologists delineated regions of interest (ROIs) on planning CT images as the

ground truth, including clinical target volume (CTV), bladder, small intestine, and

femoral heads. The corresponding automatic segmentation results were

generated by DeepLabv3+ and ResUNet, and we also used Atlas-Based

Autosegmentation (ABAS) software for comparison. The geometry evaluation

was carried out using the volumetric Dice similarity coefficient (DSC) and surface

DSC, and critical dose parameters were assessed based on replanning optimized

by clinically approved or automatically generated CTVs and organs at risk (OARs),

i.e., the Planref and Plantest. Pearson test was used to explore the correlation

between geometric metrics and dose parameters.

Results: In geometric evaluation, DeepLabv3+ performed better in DCS metrics

for the CTV (volumetric DSC, mean = 0.96, P< 0.01; surface DSC, mean = 0.78,

P< 0.01) and small intestine (volumetric DSC, mean = 0.91, P< 0.01; surface DSC,

mean = 0.62, P< 0.01), ResUNet had advantages in volumetric DSC of the bladder

(mean = 0.97, P< 0.05). For critical dose parameters analysis between Planref and

Plantest, there was a significant difference for target volumes (P< 0.01), and no

significant difference was found for the ResUNet-generated small intestine (P >

0.05). For the correlation test, a negative correlation was found between DSC

metrics (volumetric, surface DSC) and dosimetric parameters (dD95, dD95, HI, CI)
for target volumes (P< 0.05), and no significant correlation was found for most

tests of OARs (P > 0.05).
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Conclusions: CNNs show remarkable repeatability and time-saving in automatic

segmentation, and their accuracy also has a certain potential in clinical practice.

Meanwhile, clinical aspects, such as dose distribution, may need to be

considered when comparing the performance of auto-segmentation methods.
KEYWORDS
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1 Introduction

Preoperative radiotherapy is currently considered to be the

standard treatment for locally advanced rectal cancer and has

been proven to reduce local recurrence (1–3). With the

development of radiotherapy technology, such as intensity

modulated radiotherapy (IMRT) and volumetric modulated arc

therapy (VMAT), the target volume can receive a highly conformal

dose distribution (4). In addition, it has been proven that IMRT and

VMAT are dosimetrically superior to other conformal techniques in

protecting organs at risk (OARs) in rectal cancer (5). Thus, the

accurate delineation of the clinical target volume (CTV) and OARs

is crucial for treatment planning in rectal cancer.

Interobserver differences occur during manual delineation,

which depend on oncologists’ clinical experience, resulting in

significant changes in dose distributions (6). Multiple studies have

applied deep learning methods to automatic segmentation to solve

the problem of time consumption and the lack of consistency in

manual contouring (7–9). Based on the planning computed

tomography (pCT) images, the oncologists’ delineated regions of

interest (ROIs) as a training set. These structures are imported into

deep learning models with CT images, and their corresponding

features are extracted to train models according to the framework

characteristics of different models.

The accuracy of automatic segmentation requires clinical

evaluation. Objective evaluation metrics such as the volumetric

Dice similarity coefficient (volumetric DSC) and Hausdorff distance

(HD) are widely used, and some studies have carried out dosimetry

assessments (10–12). However, clinical evaluation of the quality of

deep learning delineation has limitations (13). Considering the

different accuracy requirements of CTVs and OARs in clinical

practice, it is necessary to combine their clinical importance and

tolerant errors and carry out a comprehensive evaluation from the

perspectives of geometry and dosimetry.

We carried out a retrospective study of radiotherapy patients

with rectal cancer. CTV and OARs were segmented manually as the

ground truth (GT), two convolutional neural networks we have

trained—DeepLabv3+ and ResUNet—were used for automatic

delineation (13), and a common method Atlas-based Auto

segmentation (ABAS) was used as a comparison. Our research

aimed to explore the clinical impact of auto-segmentation results

from a dosimetric perspective.
02
2 Materials and methods

2.1 Patient data

The retrospective study was approved by the ethics committee

of West China Hospital in 2019, with no extra health risks and no

need for patient consent. Rectal cancer patients from February 2018

to April 2019 at West China Hospital were chosen randomly and

metastases in advanced patients were ignored. Each patient was

immobilized in a supine position with arms over the head using a

radiotherapy thermoplastic mold, and this position was applied

during simulation and treatment. The contrast-enhanced CT

images (tube voltage, 120 kVp; matrix size, 512 × 512; voxel

resolution, 0.9 × 0.9 × 3.0 mm in left-right, antero-posterior and

cranio-caudal directions) were acquired as patient pCT on the same

CT scanner (SOMATOM Definition AS, Siemens Healthcare).

Based on the pCT, a radiation oncologist manually segmented

the CTV and OARs of rectal cancer by referring to Radiation

Therapy Oncology Group consensus guidelines. Then, the

structures were modified and approved by a senior expert

physician and labelled as ground truth, including CTVGT,

bladderGT, small intestineGT, left femoral headGT and right

femoral headGT.
2.2 Automatic segmentation

DeepLabv3+ and ResUNet, two typical CNNs, were used for

automating delineation. DeepLabv3+ employs an atrous spatial

pyramid pooling module and concat aggregation for the

extraction and integration of high-level features, and ResUNet

has shortcut connections for each level of features (13). The pCT

images of all patients were imported into the models to obtain

the mask of each structure on every CT slice. The two-

dimensional masks were then converted to a three-dimensional

structure in DICOM format, imported to the treatment planning

system (TPS), and labelled as ROIDeepLabv3+ and ROIResUNet,

respectively. The network models were uploaded onto github

(https://github.com/hujunjiescu/DeepRadiology_rectum), and

the architecture diagram was shown in Figure 1.

CNN models had the same training settings. The contouring

tasks were worked out based on the Pytorch deep learning
frontiersin.org
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framework using Python. The experiments were performed on a

Linux operating system workstation with the CPU Intel Xeon E5-

2620 v3@ 2.4GHz, GPU NVIDIA Tesla K40 Xp, and 64 GB RAM.

The loss function for the optimization was the weighted cross-

entropy, which was defined as:

J   =  −
1
No

N
i=1oC

c=1w
cyci ln (a

c
i )

where N, C, w, y, and a denoted the batch size, number of

classes, weight factor, ground truth sets, and prediction sets,

respectively. The batch size N was set at 10, the weight factor w at

2, and the total training epoch T at 100. The stochastic gradient

descent method was used to optimize the network with the initial

learning rate set as 0.01, which was multiplied by (1 − t
T )

0:9 for

the epoch t. The segmentation results were rewritten into

DICOM RT structure (RS) files based on their original

spatial resolutions.

The ABAS worked on CT datasets using a multi-patient atlas.

We randomly selected 5 atlas patients from the CNN training set,

then their pCT images and manual contoured structures were

imported to ABAS software (Version 2.01.00, Elekta CMS, Inc.).

The Simultaneous Truth And Performance Level Evaluation

(STAPLE) algorithm was used to fuse the multiple single-subject

atlas auto-segmentation sets into one multi-subject auto-

segmentation set (6).
Frontiers in Oncology 03
2.3 Treatment plans
To evaluate the clinical dosimetry value of the two automatic

delineation methods, a two-round optimization protocol was

performed using TPS (Raystation, version 4.7.5, Raystation

Laboratories, Stockholm, Sweden): 1) The corresponding PTV

was obtained based on CTV expanded with a three-dimensional

margin of 5 mm; 2) The dose prescription was set to 50.4Gy/28

fraction to the PTV; 3) Two full arcs, one from 181 to 180°

clockwise and the other from 180 to 181° counterclockwise, were

designed using the VMAT technique and 6 MV photons; 4) The

initial optimization parameters applied to the first round VMAT

planning were shown in Table 1, and in the second round, the

weight of Parameter4 was set to 100, and the weight of Max EUD

objectives was set to 0.01.

Taking the difficulty of CTV delineation into consideration, we

divided the results of the three auto-segmentation methods into

CTV and OAR groups and introduced them as optimization

objectives separately to obtain Plantest: 1) the plan optimized

using CTVDeepLabv3+ and OARGT labelled Plan1; 2) the plan

optimized using CTVResUNet and OARGT labelled Plan2; 3) the

plan optimized using CTVABAS and OARGT labelled Plan3; 4) the

plan optimized using CTVGT and OARDeepLabv3+ labelled Plan4; 5)

the plan optimized using CTVGT and OARResUNet labelled Plan5;

and 6) the plan optimized using CTVGT and OARABAS labelled
A

B

FIGURE 1

Convolutional neural network architecture diagram: (A) architecture of DeepLabv3+ for segmentation, and (B) architecture of ResUNet for
segmentation. The two networks had been implemented using data sets from 199 patients (training set with 98 cases, validation set with 38 cases,
and test set with 63 cases) in previous study (13).
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Plan6. In addition, we obtained a Planref optimized using ROIGT,

calculated characteristic dose parameters of ROIGT in all plans, and

compared parameters extracted from Plantest with those from the

Planref respectively.
2.4 Evaluation metrics and
statistical analysis

In terms of geometry, two DSCs were used to evaluate

quantitatively, which were calculated on the overlap of the ROI

structures. The ROIs were converted from RS files to thresholding

masks, and the masks were divided into slices corresponding to the

CT images. The mathematical operations were carried out based on

all mask slices of a certain structure and the average was obtained as

DSC value.

The volume similarity was usually evaluated by volumetric

DSC, calculated using:

Volumetric DSC  ¼  
2(V1∩

 V2)
V1∪ V2

where V1 were the ROIs of ground truth set and V2 were the

corresponding auto-segmentation structures. Volumetric DSC

varies between 0 (no overlap) and 1 (complete overlap), which
Frontiers in Oncology 04
indicates the degree of overlap between ROIGT and auto-

segmentation results.

To characterize the proportion of the contour edges that need

to be redrawn, the surface DSC was applied to assess the

agreement between just the surface of two contours (14). The

surface DSC represents the proportion of units with acceptable

distance, and the acceptable tolerance t was defined as the 95th

percentile of the distance difference contoured by two oncologists

for each structure. As shown in Figure 2, the masks of two ROIs to

be compared were used to extract the contour surface and labelled

S, then the surface border was expanded by t both inside and

outside to get B(t). Currently, the parts of one structure’s S that

does not coincide with the other structure’s B(t) were regarded as

exceeding the tolerance.

In addition, the clinical practicability of contours delineated

automatically is evaluated by the accuracy of the dose distribution

in plan design. The characteristic dosimetry parameters of ROIGT in

every plan were extracted for comparison. D2 (Dn representing the

absolute dose of n% volume) and D98 were extracted to signify hot

spots and cold spots for all structures, respectively (4). V50.4 for

CTV indicated whether CTV received enough dose, while the

conformal index (CI  ¼   TVRI
TV � TVRI

VRI
, where TV is target volume,

TVRI is the target volume covered by the 95% prescription dose, and

VRI is the volume of the 95% prescription dose) and homogeneity

index (HI  ¼   D2-D98
D50

) were used to evaluate PTV (15, 16). Moreover,

relative dose parameters Vn (volume percentage receiving radiation

≥ n Gy) related to acute or late toxicity of OARs were obtained for

all plans, including V30, V40, V50 of the bladder, V15, V45, V50 of

the small intestine, and V40, V45 of the femoral head (17–20).

The collected data were analyzed using SPSS Statistics software

(version 26.0, SPSS Inc., Chicago, IL, United States). Normality tests

were performed on all datasets of geometric and dosimetric

parameters. Paired samples t tests or Wilcoxon signed rank tests

were chosen for group comparison with statistical significance set at

P value< 0.05 (2-tailed). To make a more intuitive comparison, we

calculated the absolute difference between the dose parameters

extracted from the Planref and the Plantest, denoted as DAbs, and

carried out a statistical description. In particular, Vn, HI, and CI

were relative values and directly subtracted, while Dn were absolute

values and converted to normal ized dose di fference

(dDn  =  
jDntest plan

-Dnreference plan
j

prescription dose � 100%) (21, 22). In addition, we

used the Pearson test to check whether volumetric and surface

DSC were correlated and explore whether the geometric metrics of a

structure were correlated with its corresponding dose parameters,

and the degree of linear correlation.
3 Results

Forty-seven rectal cancer patients were included in the study.

The median age was 54 years, with a interquartile range (IQR) of

13.97, and other characteristics are shown in Table 2. For patients

diagnosed with stage IV disease, the study ignored metastases in the

training and evaluation. In 5 cases, the structures were not

successfully generated from the ABAS software.
TABLE 1 Initial planning objective set for plan optimization.

Parameter
(Pi)

ROI Description Weight

P1 PTV Min Dose 50.4Gy 60

P2 PTV Max Dose 52.42Gy 90

P3 PTV Min DVH 50.9Gy to 95%
volume

100

P4 PTV Uniform Dose 51.21Gy 0.2

P5 Bladder
Avoid

Max DVH 40Gy to 52%
volume

20

P6 Bladder
Avoid

Max EUD 28Gy, Parameter
a 1

1

P7 Small
intestine
Avoid

Max DVH 30Gy to 30%
volume

20

P8 Small
intestine
Avoid

Max EUD 20Gy, Parameter
a 1

1

P9 Femoral
Head Right

Max DVH 40Gy to 5%
volume

20

P10 Femoral
Head Right

Max EUD 1500, Parameter a
1

1

P11 Femoral
Head Left

Max DVH 40Gy to 5%
volume

20

P12 Femoral
Head Left

Max EUD, Parameter a 1 1

P13 External Dose Fall-Off [H]50.4Gy [L]
25.2Gy, [D]2.8 cm

15
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The statistical analysis results of volumetric and surface DSC

are shown in Figure 3. In general, the volumetric and surface DSC of

the three automatic segmentation results were significantly

different, except for the surface DSC of the bladder structure

delineated by DeepLabv3+ and ResUNet (P = 0.78). For CTV,

DeepLabv3+ showed the best performance on volumetric DSC

(mean = 0.96, P< 0.01) and surface DSC (mean = 0.96, P< 0.01).

The DSCs of CNNs automatic contouring bladder were significantly

higher than those of ABAS (P< 0.01), although there was no

significant difference in surface DSC between the two CNNs, the

mean value of ResUNet was slightly higher than that of DeepLabv3

+ (BladderDeepLabv3+ vs. BladderResUNet, 0.82 vs. 0.85, P = 0.78). In

the delineation of the small intestine, DeepLabv3+ showed

significant advantages, whose mean DSCs (volumetric DSC, 0.91;

surface DSC, 0.62) were greater than those of the other two groups

(P< 0.01), as well as a lower standard deviation (volumetric DSC,

0.05; surface DSC, 0.10). For the segmentation of the right and left

femoral head, ABAS achieved the best performance, then the

ResUNet, and DeepLabv3+ ranked the last based on the
Frontiers in Oncology 05
volumetric DSC (mean for the right femoral head, ABAS vs.

ResUNet vs. DeepLabv3+, 0.94 vs. 0.85 vs. 0.84, P< 0.01) and

surface DSC (mean for the right femoral head, ABAS vs. ResUNet

vs. DeepLabv3+, 0.84 vs. 0.70 vs. 0.67, P< 0.01), despite more

outliers in volumetric DSC of ABAS. The ground truth and the

automatic delineation of a random case were shown in Figure 4.

The DAbs of the dose parameters between Plantest and Planref
were shown in Table 3, and it contained descriptive statistics and

results of statistical tests. We observed a statistical difference in dose

distribution of real CTV between the Planref and Plan 1-3 (P< 0.01),

which used automatically delineated CTV as an inverse

optimization parameter. The difference, however, was that some

dose parameters of real OAR in Plan1 were not significantly

different from the Planref (P > 0.05), which showed a similar

trend to the outperformance of DeepLabv3+ in geometric

evaluation. When we introduced the auto-segmentation OAR

groups into the inverse plan, we found that only critical dose

parameters of the small intestine between Plan5 and the Planref
had no statistical difference (P > 0.05), but the small intestine

generated by ResUNet was not optimal in the geometric assessment

(volumetric DSC, mean = 0.84; surface DSC, mean = 0.52).

Although the volumetric and surface DSCs of all structures were

numerically different, there was a correlation between them

(P< 0.01). The correlation analysis results of geometric metrics

and dose parameters were shown in Table 4. The volumetric and

surface DSCs of CTV generated by ResUNet were correlated with all

dose parameters in target volume (P< 0.05) in Plan2, on the other

hand, the volumetric DSC of the three CTV groups were correlated

with dD95, dD98, HI, and CI (P< 0.05) respectively in Plan 1-3 . For

the bladder, the volumetric DSC of ResUNet results was correlated

with all dose parameters of the bladder in Plan5, and dD2 in Plan 4-

6 was correlated with both DSC metrics. There were few correlation

indexes in the small intestine, only volumetric DSC vs. V15 and

surface DSC vs. V45/V50. In the results of bilateral femoral heads,

both DSC metrics of two CNNs were correlated with the

corresponding dD2 in Plan 4-5.
A

B

C

FIGURE 2

Calculation method of surface DSC. (A) acceptable tolerance t value, (B) surface DSC formula, (C) the calculation process taken CTV as an example,
in which the red lines in S1 ∩ B2ðtÞ; and S2 ∩ B1ðtÞ; were the part that exceeds the tolerance.
TABLE 2 Characteristics of 47 patients.

Characteristic Value

Sex

Male 23 (49%)

Female 24 (51%)

Age

Median (range) 54 (28-83)

Cancer classification

I 4 (9%)

II 5 (11%)

III 32 (68%)

IV 6 (13%)
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4 Discussion

In our retrospective study, geometric and dosimetric

evaluations of CTV and OARs for rectal cancer were carried out

using manually segmented structures as the ground truth, while

commercial software ABAS generated structures as reference. The

results showed that the CNNmodels had a remarkable performance

in accuracy and repeatability of automatic segmentation, but their

performance in geometric metrics and dose parameters was not

completely consistent.

The effect of automatic segmentation requires objective metrics

for evaluation. Volumetric DSC is the most commonly used metric

and describes the degree of overlap between two structures;

however, it weights all misplaced segmentations equally and

cannot characterize the distance of the ROI surface. For example,

a structure with more proportion needs to be modified slightly and

takes a long time may obtain a high volumetric DSC, while a

structure requiring a large amount of modification locally and a

short time-consuming may have a low volumetric DSC. For the

description of surface distance, a commonly used metric is the HD,

which represents the maximum of the shortest distances from any

delineated point to the other contour (23). At the same time, the

limitation lies in its description of the maximum surface distance

rather than the degree of surface difference of the entire structure.

Therefore, our study includes the surface DSC. This metric has the
Frontiers in Oncology 06
function of subjective and objective assessment, which contains

tolerable interobserver subjective errors, describes the degree of

overlap from the perspective of the entire structure, and to a certain

extent characterizes the potential cost of modification. Some studies

have counted the time spent on performing manually correcting

auto-contouring (24). In our previous study, we calculated the

computing time of CNNs, in which the average time for

generating a case was about 28 s for DeepLabv3+ and 35 s for

ResUNet; and we recorded the manual correction time of the

results, in which the average cost for CTVDeepLabv3+, CTVResUNet,

and all OARs was about 11 min, 7 min, and below 5 min

respectively (13). With large inter-observer variability, it can

still be determined that the manual contouring time is much

greater than the total time of automatic contouring and

manual modification.

Besides geometric accuracy, the effect of automatically

generated ROIs on treatment planning should also be considered.

Since the dose distribution is affected by mechanical and physical

factors and cannot fully fit the edge of the structure, parts of the

automatic contouring that are not perfectly consistent with clinical

ground truth may be covered by the isodose lines, which perhaps

can be considered as the “robustness” of the structure. Therefore,

the evaluation of automatic delineation results should be combined

with dosimetry results rather than a single geometric evaluation.

There are many methods for dose evaluation; the simplest is to
FIGURE 3

Statistical analysis results of volumetric and surface DSC. The paired- sample tests were performed between the three auto-segmentation results at a
significance level of 0.05(2-tailed), and the missing data in the ABAS dataset (n=42) were replaced with the mean.
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transplant a reference plan into different ROI sets and calculate the

dose parameters for comparison (15). However, these parameters

do not exist dose distribution replanned using different

optimization objects is hardly consistent with the reference plan.

Another method is to generate a plan for each group of ROIs and

compare their dose characteristics without any reference. We

consult the evaluation method for interobserver variation, which

assesses plans generated from different ROI sets by calculating the

dose parameters of the reference structures (25). Based on this

method, we add the definition of “ground truth”, design plans using

CTV and OAR groups separately and carry out dosimetry

evaluation by ROIGT. The results indicate that some crucial dose

parameters in the actual plan have no significant difference from the

reference plan even if the structure of automatic segmentation

cannot completely overlap with ROIGT, especially in the

automatically delineated OARs. Interestingly, it can be seen from

Plan1 that DeepLabv3+ has a smaller effect on OAR dose

distribution, following a similar trend to its dominance in DSC

metrics. However, ResUNet-generated small intestine did not show

an advantage in the geometric assessment, but its dose parameters

in Plan5 did not differ from those in Planref. Therefore, we cannot

only pursue the improvement of geometric metrics, perhaps the

performance assessment of auto-segmentation methods should be
Frontiers in Oncology 07
combined with dose evaluation, as the latter is more relevant to

clinical outcome (26).

At present, our institution has established an integrated

platform for automatic delineation (including head, chest,

abdomen, pelvis, etc.), which is connected to TPS and CT

workstations through the hospital’s internal network. The

platform can realize CT image transmission, conversion between

RS files and masks, and continuous input of abnormal cases (such as

recognizing the skull as the femoral head) to improve network

performance. This is also a key step in the real application of

artificial intelligence to the clinic. The auto-segmentation

assessment should integrate subjective and objective methods, but

the subjective assessment will introduce inter-observer variability,

so it needs multi-center external validation (27). This is a limitation

of this study, and we plan to extend the integrated platform to other

hospitals and collect data for external validation. In addition, the

dose evaluation method also needs to be further improved. In this

study, all structures are divided into CTV and OAR groups, and the

results may be more targeted and reliable if each structure is taken

as a separate variable of the optimization object. In terms of analysis

methods, the paired test of dose parameters was used in this study;

and what if directly compare RT Dose files and assess dose

difference from both global and local perspectives.
FIGURE 4

A case of structures comparison. The red line represents ground truth, the yellow line represents automatic segmentation of DeepLabv3+, the blue line
represents automatic segmentation of ResUNet.
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TABLE 3 Statistical analysis of dose parameter difference between test and reference plans.

ROI
Dose

Parameter

Plan1
(CTVDeepLabv3

+

and OARGT)

Plan2
(CTVResUNet

and OARGT)

Plan3
(CTVABASt

and OARGT)

Plan4
(OARDeepLabv3

+

and CTVGT)

Plan5
(OARResUNet

and
CTVGT)

Plan6
(OARABAS and

CTVGT)

Pa DAbs
b P DAbs P DAbs P DAbs P DAbs P DAbs
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a. P values (2-tailed) marked with * indicated results of paired samples Wilcoxon signed rank test for original dose parameters, while the unmarked P values were the results of paired samples t tests.
b. DAbs were the absolute difference between specific dose parameters extracted from the test plans and the reference plan, described by the median (IQR). In particular, the difference of Dn was
normalized according to the dDn formula.
P values with no statistical significance were bold.
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5 Conclusion

In this study, we evaluated the automatic segmentation

results from the perspectives of geometry and dosimetry. The

results showed the advantages of speed and repeatability of deep

learning in ROI delineation, which is of great help to the routine

workflow of radiotherapy. The auto-segmentation function of

CNNs is a stability tool for VMAT and IMRT treatment plan

design, and it may have further potential in adaptive

radiotherapy, which requires repeat CT scans and CTV

delineation before each treatment fraction (28). Moreover, with

the advancement of MR-Linac, automatic segmentation based on

magnetic resonance images has been applied to adaptive

radiotherapy, which poses a great challenge to the speed,

accuracy, and effect on the dose distribution of the networks

(29, 30).

The characteristics of convolutional neural networks are

different, and the segmentation effect on the ROIs of rectal cancer

also differs. We can integrate the two networks or classify them

according to the advantageous structure of each network; however,

whether further exploration can bring better results requires a

comprehensive clinical evaluation.
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