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An anoikis-related gene
signature predicts prognosis and
reveals immune infiltration in
hepatocellular carcinoma
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Chen-jing Lin3, Wen-ya Zhao3, Jing-ren Huang1, Ling Tian3*

and Dian-na Gu2*

1Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China, 2Department of
Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,
3Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School
of Medicine, Shanghai, China
Background: Hepatocellular carcinoma (HCC) is a global health burden with

poor prognosis. Anoikis, a novel programmed cell death, has a close interaction

with metastasis and progression of cancer. In this study, we aimed to construct a

novel bioinformatics model for evaluating the prognosis of HCC based on

anoikis-related gene signatures as well as exploring the potential mechanisms.

Materials andmethods:We downloaded the RNA expression profiles and clinical

data of liver hepatocellular carcinoma from TCGA database, ICGC database and

GEO database. DEG analysis was performed using TCGA and verified in the GEO

database. The anoikis-related risk score was developed via univariate Cox

regression, LASSO Cox regression and multivariate Cox regression, which was

then used to categorize patients into high- and low-risk groups. Then GO and

KEGG enrichment analyses were performed to investigate the function between

the two groups. CIBERSORT was used for determining the fractions of 22

immune cell types, while the ssGSEA analyses was used to estimate the

differential immune cell infiltrations and related pathways. The “pRRophetic” R

package was applied to predict the sensitivity of administering chemotherapeutic

and targeted drugs.

Results: A total of 49 anoikis-related DEGs in HCC were detected and 3 genes

(EZH2, KIF18A and NQO1) were selected out to build a prognostic model.

Furthermore, GO and KEGG functional enrichment analyses indicated that the

difference in overall survival between risk groups was closely related to cell cycle

pathway. Notably, further analyses found the frequency of tumor mutations,

immune infiltration level and expression of immune checkpoints were

significantly different between the two risk groups, and the results of the

immunotherapy cohort showed that patients in the high-risk group have a
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better immune response. Additionally, the high-risk group was found to have

higher sensitivity to 5-fluorouracil, doxorubicin and gemcitabine.

Conclusion: The novel signature of 3 anoikis-related genes (EZH2, KIF18A and

NQO1) can predict the prognosis of patients with HCC, and provide a revealing

insight into personalized treatments in HCC.
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Introduction

Hepatocellular carcinoma (HCC), the most prevalent type of liver

cancer, is the fourth leading causes of cancer-related death in the

world (1). Owing to untypical early symptoms and highly

heterogeneous nature, most HCC patients are diagnosed at later

stage and lose the opportunity for radical surgery (2). Despite new

treatment methods for HCC, such as radiofrequency ablation (RFA),

transcatheter arterial chemoembolization (TACE), tyrosine kinase

inhibitors (TKIs) and immunotherapy, the prognosis of advanced

HCC still remains poor (3). Alarmingly, globally HCC mortality is

expected to go up steeply to 41% by 2040 (4). As far, stage-based

clinical practice is insufficient for the demands of precision medicine,

it is indispensable to identify novel prognostic models for HCC and

assist the doctors to choose suitable targets for personalized therapy.

Metastasis is the major cause of death from HCC. Notably,

anoikis, a specific form of cell apoptosis, was first described in

epithelial and endothelial cells and was found to play a vital role in

cancer invasion and metastasis (5, 6). It occurs when cells lose

attachment to extracellular matrix (ECM), or adhere to an

inappropriate type of ECM, acting as physiological barrier to

metastasis (7). Anoikis-resistance is a critical culprit in the

metastasis and progression of cancer. In the past decade, we have

observed an increasing research progression in the area of tumor

anoikis-resistance. Ye et al. found that nuclear MYH9 conferred

anoikis resistance to gastric cancer cells and promoted gastric

cancer cell metastasis by identifying the CTNNB1 promoter (8).

AndWang et al. revealed that CPT1A-mediated fatty acid oxidation

could promote colorectal cancer cell metastasis by inhibiting

anoikis (9). In addition, a study from UK showed that

overexpression of ERBB4 would promote resistance to anoikis

and confer enhanced metastatic capacity in Ewing sarcoma (10).

Delineation of novel factors that mitigate anoikis-resistance will

open a new avenue for designing therapeutic alternative to trigger

cancer cell death and extended survival time. Of note, prognostic

model based on the genes related to anoikis had already been

established in endometrial carcinoma, glioblastoma and head and

neck squamous cell carcinoma, which all displayed excellent

predictive ability (11–13). However, few studies have systematically

evaluated the link between the anoikis-related genes and the

prognosis of HCC patients. Hence, we analyzed the signature of

the anoikis-related genes in HCC by using TCGA and ICGC database
02
and constructed a novel prognostic model, and further elucidated the

biological functions and immunity-related to the model.
Materials and methods

Data acquisition

Gene expression data and corresponding clinical information

for patients with liver hepatocellular carcinoma (LIHC) were

downloaded from The Cancer Genome Atlas (TCGA) database

and The International Cancer Genome Consortium (ICGC)

database. The TCGA-LIHC data were used as the training cohort,

while those from ICGC were served as the external validation

cohorts. Samples with follow-up less than 30 days in TCGA-

LIHC data were excluded in this study. In total, 342 patients with

HCC were enrolled in the training cohort and 243 patients in the

external validation cohort. Transcriptome data were normalized

based on the Fragments Per Kilobase of exon model per Million

mapped fragments (FPKM). Another set of RNA sequencing data

including 268 HCC tumor samples and 243 adjacent non-tumor

samples were obtained from Gene Expression Omnibus (GEO) data

portal (GSE25097). Similarly, the RNA-seq expression data and

corresponding clinical information were also downloaded from the

GEO data portal (GSE14520) for additional external validation.
Identification of anoikis-related DEGs

The anoikis-related genes (ARGs) were extracted from GeneCards

(14), and a total of 496 genes were selected with a relevance score >0.4.

The “DESeq2” R package was utilized to screen differentially expressed

genes (DEGs) (|log2(fold change)| >1 & adjusted p value <0.05)

between tumor tissue and tumor adjacent tissue in TCGA count

data (15). Then GEO2R was utilized to screen DEGs (|log2(fold

change)| >1 & adjusted p-value <0.05) in GSE25097 (16).
Functional exploration of DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses were conducted using the
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“clusterProfiler” R package to further observe the pathways and

functions of anoikis-related genes (17).
Establishment and validation of risk
score model

The univariate Cox regression analysis was used to screen

ARGs and genes with a P value<0.05 were considered statistically

significant. Then the Least absolute shrinkage and selection

operator (LASSO) Cox regression was performed by using the

“glmnet” R package to prevent overfitting and construct a gene

signature (18). Finally, the multivariate Cox regression analysis

was performed to identify strongly correlated genes and build the

prognostic gene signature. The risk scores were calculated using

the following equation: risk score=∑gene Cox coefficient × gene

expression. The median value of risk score was utilized to divide

the patients into the high-risk and low-risk group. To evaluate the

predictive sensitivity of the model, the Kaplan–Meier (KM)

survival curve and the time-dependent receiver operating

characteristic (ROC) curves were drawn via the “Survival ROC”

R package.
Nomogram construction

All independent prognostic factors were used to construct a

prognostic nomogram by the “rms” and “survival” R package. The

1-, 2-, 3-, 5-, and 10-year survival probability for patients with HCC

could exactly be predicted by total points, sum points of every

factor. Calibrate curves and C-Index values were plotted to estimate

the reliability of the survival prediction.
Functional enrichment analysis

In the low-risk and high-risk groups, DEGs (|log2(fold change)|

>1.5 and adjusted p value <0.05) were screened using the “limma” R

package. Then, Gene set enrichment analysis (GSEA) was performed

via the “clusterProfiler” R package to explore signaling pathways (19).

Subsequently, the protein-protein interaction (PPI) network for the

overlapping DEGs was performed in the STRING database (https://

string-db.org/). PPI network interactions file with medium confidence

scores ≥ 0.4 was downloaded. We used the open-source software

Cytoscape (v 3.9.1) to build PPI network view and to screen out hub

genes in the DEGs. According to the median value of hub genes’

expression, HCC patients in the TCGA and ICGC were categorized

into low- and high- group to further explore prognosis relevance.
Immune infiltrate analysis

The ESTIMATE (Estimation of STromal and Immune cells

in Malignant Tumour tissues using Expression data) algorithm

was performed to calculate the stromal score, immune score,

tumor purity and ESTIMATE score between high-risk and low-
Frontiers in Oncology 03
risk groups (20). Immune score and stromal score were

employed to assess the immune cell infiltration and the

presence of stroma in the TME, and the sum of the stromal

and immune scores was evaluated by ESTIMATE score. The cell-

type identification by estimating relative subsets of RNA

transcripts (CIBERSORT) analysis was used to evaluate the

relative abundance of 22 immune cell types between them (21).

The statistical significance of the deconvolution results was

assessed to filter out the samples with less significant accuracy

by a derived P-value (P < 0.05). And the infiltrating scores of 16

immune cells and 13 immune-related pathways were calculated

by applying the single-sample gene set enrichment analysis

(ssGSEA) method from the “GSVA” R package (22). The

“c2.cp.kegg.v7.4.symbols” files were downloaded from the

MSigDB database for GSVA analysis. Moreover, Pearson

correlation analysis was utilized to explore the association

between risk score and the expression of the immune

checkpoint genes, such as PD-1, PD-L1 and CTLA-4. P value <

0.05 was considered statistically significant.
Drug sensitivity analysis

The “pRRophetic” R package was used to calculate the half-

maxima l inh ib i tory concentra t ion ( IC50) va lues o f

chemotherapeutic and targeted drugs for each HCC sample (23).

Moreover, transcriptome data and clinical data of the IMvigor210

immunotherapy cohort (bladder cancer) were obtained using the

“IMvigor210CoreBiologies” R package.
Mutation analysis

We downloaded the mutation data of TCGA-LIHC patients

from TCGA database. The “maftools” R package was used to assess

the mutation profile between the low-risk and high-risk group (24).

We also calculated the tumor mutation burden (TMB) score for

every HCC patient (25).
TISCH2

TISCH2 (Tumor Immune Single-cell Hub 2) is a scRNA-seq

database (http://tisch.comp-genomics.org/), which aims to

characterize tumor microenvironment (TME) at single-cell

resolution (26). In this study, we used TISCH2 database to

decipher expression of the 3 anoikis-related genes in TME of

hepatocellular carcinoma.
Statistical analysis

DEGs were screened using the Wilcoxon test. Box plot analyses

were performed using the Wilcoxon rank-sum test. We used the K-

M curve to do univariate survival analyses, with comparison by log-

rank test. P value < 0.05 was defined as statistically significant.
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Statistical analyses were done by R version 4.2.1 (R Foundation for

Statistical Computing, Vienna, Austria).
Results

Totals of 342 and 243 patients with HCC from TCGA and

ICGC data were selected as the training and external validation

group, respectively. The flowchart of the study is shown in Figure 1.
Determination of anoikis-related DEGs

A total of 9423 DEGs were collected after analysis of the gene

expression data of HCC samples and corresponding control tissues

in TCGA cohort. Then these DEGs were intersected with the

anoikis-related gene set to get 122 ARGs in TCGA (Figure 2A).

Next, the ARGs in TCGA were verified with the DEGs in

GSE25097. Finally, 49 DEGs related to anoikis were determined

for further analysis (Figure 2B).
Functional analysis of anoikis-related
genes in HCC

According to the results of GO functional analysis, we found that

the most highly enriched biological processes of 49 ARGs were

regulation of apoptotic signaling pathway, mitotic cell cycle phase

transition and epithelial cell proliferation (Figure 2C). KEGG pathway

analysis showed that the microRNAs in cancer, PI3K-Akt signaling

pathway and cell cycle were mainly enriched (Figure 2D). These

findings indicated the potential molecular mechanisms involved in

the regulation of HCC progression by anoikis-related DEGs.
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Construction and validation of anoikis-
related prognosis signature

We performed a univariate Cox regression and found that 23 of

DEGs have potential prognostic significance (P<0.05). Then, a

LASSO logistic regression analyses was conducted to further

screen 4 key anoikis-related prognostic genes (Figures 3A, B). 3

genes (EZH2, KIF18A, NQO1) were finally identified by

multivariate Cox regression to build a prognostic model as

follows: risk score= (EZH2 × 0.141741668) + (KIF18A ×

0.190725435) + (NQO1 × 0.001887712). Subsequently, 342

patients from TCGA-LIHC were divided into low- and high-risk

group according to the median value of risk score. PCA analysis

showed that the two groups could be well-distinguished by the

ARGs (Figure 3G). Then the K-M curve showed that the high-risk

group had worse clinical outcome than that of low-risk group

(HR=2.30, 95% CI =1.59-3.34) (Figure 3C). The area under the

time-dependent ROC curves (AUCs) for 1‐, 2‐ and 3‐year were

0.785, 0.725, 0.674, respectively, demonstrating a favorable

prediction performance of the prognostic model (Figure 3E). To

ensure the prediction value of the identified anoikis-related

prognosis signature, 171 HCC patients were randomly selected

from the TCGA-LIHC cohort as the testing set. Similar to the

results obtained from the training set, the constructed model

exhibited great performance for OS prediction (Supplementary

Figures S1A-C-E).

We also validated the prediction performance of gene signature

in independent external validation set. According to the same

formula, 243 patients with HCC from ICGC data were used to

verify this prognostic model. As the same results in TCGA, K-M

curve revealed that the patients in the high-risk group had a

significantly worse OS than their low-risk counterparts (HR=4.74,

95% CI =2.27-9.90) (Figure 3D). PCA analysis further confirmed
FIGURE 1

Flow chart of the study.
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two remarkably different risk groups (Figure 3H). And the 1-, 2-

and 3-year AUCs of the training group were 0.750, 0.689, 0.732,

respectively (Figure 3F), which indicated the predictive reliability of

model in both training and validation group. Consistent with the

results in the TCGA training cohort and the ICGC external

validation group, we observed similar trends in another external

validation group GSE14520 (Supplementary Figures S1B–F).

Moreover, we plotted heatmaps of expression difference in the 3

independent prognostic genes and displayed the impact of risk

scores on risk ranking, survival time and survival status in TCGA

training group and ICGC external validation group (Supplementary

Figure S2). Meanwhile, we explored the protein expression of the 3

genes in the Human Protein Atlas and found them all strongly

stained in HCC specimens compared with normal liver specimens

(Supplementary Figure S3). The results further verified that the

signature had significant prognostic value for HCC patients.
Creating predictive nomograms

To expand the application of the prognostic model,

individualized nomograms were constructed. In the training

group, gender, stage and risk score were selected in the final

model (Figure 4A). In the validation group, gender, stage, prior

malignancy and risk score were chosen in the final model

(Figure 4B). The C‐index values for prediction model were 0.715,

0.795 in the training group and validation group, respectively

(Figure 4E). The nomograms displayed excellent predictive ability

for OS for HCC patients. Moreover, the calibration curve showed

good uniformity in both training and validation model, indicating

an appropriate predictive accuracy (Figures 4C, D).
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Functional analysis

To investigate biological process between the two risk groups,

we obtained the DEGs via the “limma” R package from both

training and validation group. Then we intersected them and

finally obtained 229 overlapping DEGs (Figure 5C). Primary

information of 229 DEGs was summarized in Supplementary

Table 1. The GO function enrichment analyses showed that the

DEGs were mainly associated with nuclear division, mitotic nuclear

division and chromosome segregation (Figure 5A). The KEGG

enrichment analyses revealed that the DEGs were enriched in cell

cycle, oocyte meiosis and cellular senescence (Figure 5B). GSEA

analyses showed that cell cycle signaling pathway was enriched in

the high-risk group, while PPAR signaling pathway was enriched in

the low-risk group (Figures 5D–G). The results may help to explain

why high-risk group had worse overall survival.
Exploration of TIME

To explore the correlation of anoikis-related gene signature

with immunotherapy, we next performed ESTIMATE algorithm to

compare the difference in tumor immune microenvironment

(TIME) between two groups. The results displayed that the

stromal score tended to decrease in the high-risk group although

not significant in the ICGC validation cohort (Figures 6A, B). By

GSVA analysis, we found that the expression of KEGG immune

pathways linked with complement and coagulation cascades was

lower, while the expression of IL−17 signaling pathway was higher

in that high-risk group compared with the low-risk group

(Supplementary Figure S1G). Regarding 22 types of TIICs in
DA

B

C

FIGURE 2

Anoikis-related gene screening and functional analysis. (A) Anoikis-related DEGs in TCGA. (B) Further validation in GSE25097. (C) GO enrichment
analysis of 49 anoikis-related DEGs in HCC. (D) KEGG pathways analysis of 49 anoikis-related DEGs in HCC.
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HCC from the CIBERSORT algorithm, we observed significantly

higher proportions of M0 macrophages and lower proportions of T

cells CD4 memory resting in the high-risk group (Figures 6C, D).

Besides, the results of ssGSEA algorithm showed the high-risk

group gained lower ssGSEA score in the immune pathways,

including the type I IFN response and type II IFN response
Frontiers in Oncology 06
(Figures 6E–H). These data indicated that high-risk group may

contribute to tumor immune dysfunction in HCC. As for Pearson

correlation analysis of immune checkpoints, the heat map showed

that the expression of immune checkpoints, especially CD47, was

found to have a positive correlation with risk score (Figures 6I, J). In

short, these results suggested that the anoikis-related gene
D

A B

E F

G H

C

FIGURE 3

Evaluation and validation of 3-gene signature in TCGA cohort and ICGC cohort. (A) LASSO coefficient profiles of 23 prognostic genes of HCC.
(B) LASSO regression with tenfold cross-validation found 4 prognostic genes using the minimum l. (C) Kaplan–Meier curves for OS in TCGA cohort.
(D) Kaplan–Meier curves for OS in ICGC cohort. (E) Time-dependent ROC curves for OS in TCGA cohort. (F) Time-dependent ROC curves for OS in
ICGC cohort. (G) PCA plot of risk score in TCGA cohort. (H) PCA plot of risk score in ICGC cohort.
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FIGURE 4

Development and validation of the predictive nomogram. (A, B) The nomogram construction based on the TCGA cohort and ICGC cohort.
(C, D) The Calibration plot of the nomogram in training and validation groups. (E) C-index values of the nomogram.
D
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G
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FIGURE 5

Functional analysis based on the DEGs between the two-risk groups in the TCGA and ICGC cohort. (A) Barplot graph for GO enrichment (the longer
bar means the more genes enriched, and the increasing depth of red means the differences were more obvious; q-value: the adjusted p value).
(B) Bubble graph for KEGG pathways. The larger bubble means the more genes enriched, and the increasing depth of red means the differences
were more obvious. q-value, the adjusted p value. (C) PPI network of 229 DEGs. (D–G) Two representative Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways via GSEA in TCGA cohort (D, E), ICGC cohort (F, G).
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FIGURE 6

Evaluation of tumor microenvironment and immune checkpoints of anoikis-related prognostic signature. (A, B) Comparison between the estimate
score, immune score, stromal score, and tumor purity based on risk groups in TCGA cohort (A) and ICGC cohort (B). (C, D) Comparison between
the subtypes of immune cells based on risk groups in TCGA cohort (C) and ICGC cohort (D). (E, F) Immune cell infiltration analysis based on risk
groups in TCGA cohort (E) and ICGC cohort (F). (G, H) Immune-related pathways infiltration analysis based on risk groups in TCGA cohort (G) and
ICGC cohort (H). (I, J) The correlations between the risk score and the expression of the immune checkpoint genes in TCGA cohort (I) and ICGC
cohort (J). *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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signatures might affect the efficacy of immunotherapy in

HCC patients.
Evaluation efficacy of cancer therapeutic
agents in different risk groups

To assess the therapeutic efficacy of chemotherapeutic and

targeted drugs for HCC in low-risk and high-risk group, we used

the “pRRophetic” R package to calculate the half inhibitory

concentration (IC50) of six commonly used drugs (5-fluorouracil,

cisplatin, doxorubicin, gemcitabine, gefitinib, and sorafenib) for

treating HCC (Figure 7). The analysis showed that sorafenib had a

high drug response to the low-risk group (Figure 7F). In contrast, 5-

fluorouracil, doxorubicin and gemcitabine were observed to present

a significant response to high-risk group (Figures 7A–C). Moreover,

to verify whether the prognostic model we built could effectively

predict the efficacy of immunotherapy, we applied the IMvigor210

database as an external anti-PD-L1 cohort. We discovered that

patients in complete response/partial response (CR/PR) group had

higher risk scores compared with those in stable disease/progressive

disease (SD/PD) group (Figure 7G). And the ROC curve depicted

that the risk score model displayed a great predictive effect to ICIs

response (Figure 7I). These findings demonstrated that grouping
Frontiers in Oncology 09
based on the ARGs could promote individualized therapy for HCC

patients, and patients in the high-risk group may be more likely to

benefit from immunotherapy.
The relationship between anoikis-related
gene signature and mutation profile
in HCC

To assess whether the mutation profile differed between the high-

risk and low-risk group, the somatic mutation data of 333 HCC

patients from TCGA was used for analysis. We exhibited the top 30

mutated genes in two risk groups, the gene with the highest mutation

frequency is TP53 (46%) in the high-risk group and that in the low-

risk group is CTNNB1 (33%) (Figures 8A, B). Besides, more

mutations were discovered in patients in the high-risk group

compared with those in the low-risk group. As shown in

Figure 8C, there was no significant correlation between riskScore

and TMB (r=0.13, p=0.015). For further comparative studies, the

high-risk group was divided into the high-risk&Low-TMB subgroup

and high-risk&high-TMB subgroup based on the median value of

TMB. Subsequently, the K-M curve showed that the high-risk group

exhibited significant prognostic difference in the high and the low

TMB value subgroups (P=0.018, Figure 8D). These findings might
D
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FIGURE 7

Evaluation of chemosensitivity and immunotherapeutic responses to PD-L1 by the risk model. (A–F) Therapeutic efficacy of 5-Fluorouracil (A),
Gemcitabine (B), Doxorubicin (C), Cisplatin (D), Gefitinib (E), and Sorafenib (F) in different risk groups. (G) The comparison of risk score between SD/
PD and CR/PR two groups in IMvigor210 cohort. (H) Kaplan–Meier curves for OS in IMvigor210 cohort. (I) ROC curves of risk score in predicting the
immunotherapy response.
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contribute novel insight into the intrinsic connection between the

individual somatic mutations and the anoikis-related gene signature.
PPI network construction and hub
genes screening

The STRING database was utilized to construct an interaction

network between proteins encoded by the 229 DEGs (Figure 8E).

ANLN, NDC80, AFP, ESR1, CA9, UCHL1, CYP3A4, CDK1, SFN,

AURKB were identified as the top 10 hub genes. Detailed information

on 10 genes was listed in Supplementary Table 2. Depending on the

median expression of the 10 genes, patients were grouped into low- and

high-expression groups to further explore the differences in survival. The

K-M curve analysis showed that high-expression groups of ANLN,

AURKB, CDK1, NDC80 were consistent with shorter OS, while

CYP3A4 and ESR1 demonstrated opposite results (Supplementary

Figures S4A–L). To further investigate whether these 6 hub genes

were clinically independent prognostic factors, we performed

multivariate COX regression and found that ANLN was an

independent prognostic gene in both training and validation cohorts

(Supplementary Figures S4M, N). Subsequently Pearson correlation

analysis showedANLN exhibited a significantly positive correlationwith

the expression of the immune checkpoint gene CD47 (Supplementary
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Figure S5C). Additionally, from the GSCALite website (http://

bioinfo.life.hust.edu.cn/web/GSCALite/), we found that patients with

high expression of ANLNwere less likely to benefit frommultiple drugs,

such as 5-FU and Methotrexate (Supplementary Figure S5A).
Correlation between the three anoikis-
related genes and the tumor
microenvironment of HCC

We evaluated the expression of the three anoikis-related genes

(NQO1, KIF18A, EZH2) in the four single-cell sequencing HCC

datasets of GSE146115, GSE166635, GSE98638, GSE140228 datasets

from TISCH2 database. The distribution and number of various cell

types of the HCC datasets were visualized in Figures 9A–P. The

results showed NQO1 was mainly expressed in malignant cells

(Figure 9Q), while KIF18A and EZH2 were highly expressed in

Tprolif cells (Figures 9R, S).
Discussion

HCC is one of the most lethal malignant tumors, with a 5-year

survival rate of just 3% (27). Due to the high levels of intratumoral
D E

A B C

FIGURE 8

The mutation profile and TMB among low-risk and high-risk groups. (A) Mutation profile in the high-risk group. (B) Mutation profile in the low-risk
group. (C) The relationship between the anoikis-related risk signature and TMB. (D) Kaplan–Meier curves for HCC patients stratified by TMB in high-
risk group. (E) PPI network construction and top ten hub genes screening.
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heterogeneity in HCC, effective treatment modalities are still scarce.

The incidence and mortality rates of HCC nearly mirror each other.

The incidence rate in Eastern Asia of HCC is 17.7 per 100,000

persons, whereas the corresponding mortality rate was 16.0 (28).

Therefore, it is still necessary to find biomarkers for predicting

prognosis and evaluating therapeutic response to optimize clinical

decision-making for HCC patients.

Anoikis is a type of programmed cell death, which is activated

when cells are detached from extracellular matrix (ECM) (29).

Cancer cells must develop anoikis resistance before forming

metastatic foci in distant organs. Also, anoikis tolerance is

responsible for the treatment failure of several types of cancer.

Therefore, there is an urgent need to explore the anoikis-related

genes on invasive mobility and their role in predicting the prognosis

of cancer. Along with the rapid development of various types of

sequencing technologies, bioinformatics analysis has become an

important tool for the research of molecular mechanism in cancer

(30, 31). Zhao et al. constructed a 7 anoikis-related genes signature

to predict the survival of Low-grade glioma (LGG) patients (32),

Chen et al. identified 5 prognostic anoikis-related genes (CHEK2,

PDK4, ZNF304, SNAI2, SRC) to establish a risk-predictive model

for clear cell renal cell carcinoma (33), which all exhibited great

predictive performance and implemented as a stratification factor

for individualized treatment. Moreover, Sun et al. also revealed the

potential relationships between anoikis-related genes and

glioblastoma (13). Similarly, anoikis also plays a critical role in

HCC metastasis. Therefore, the anoikis-related model may also be

utilized to predict the prognosis of HCC patients. To our best
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knowledge, limited research has been conducted on the

establishment of prognostic model using anoikis-related gene

in HCC.

In our study, we proposed robust 3-gene signature, namely

EZH2, KIF18A and NQO1. EZH2 plays a vital role in cell cycle

progression (34), DNA damage repair and cellular senescence (35),

and regulates relative signaling pathways in cell lineage

determination (36). A study from Greece found EZH2 is

regulated by ERK/AKT and targets integrin alpha2 gene to

control epithelial–mesenchymal transition (EMT) and anoikis in

colon cancer cells (37). Recently, Lei et al. demonstrated that

circSYPL1 promotes the proliferation and metastasis of HCC via

the upregulation of EZH2 expression by competing with hsa-miR-

506-3p (38). As for KIF18A, it is a member of the kinesin

superfamily and works as a master regulator of chromosome

aggregation and centromere movements. In a previous study,

KIF18A has been identified as a potential therapeutic target for

human breast cancer (39). Luo et al. also suggested that KIF18A

may promote proliferation, invasion and metastasis of HCC cells by

promoting the cell cycle signaling pathway, the Akt signaling

pathway and the MMP-7/MMP-9-related signaling pathways

(40). NQO1 is a gene that encodes a cytoplasmic 2-electron

reductase. Researchers have found that NQO1 is associated with

aging and early pathological changes in Alzheimer’s disease (AD)

(41, 42). Moreover, Shimokawa et al. reported that modulation of

NQO1 activity could intercept anoikis resistance and suppresses

HCC metastasis (43), while Yang et al. drew a conclusion that

NQO1 could promote an aggressive phenotype in hepatocellular
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FIGURE 9

Expression of 3 anoikis-related genes in LIHC TME-associated cells. (A, C) The cell types and their distribution in LIHC_GSE146115 and
LIHC_GSE166635 datasets. (B, D) Distribution of NQO1 in different cells in LIHC_GSE146115 and LIHC_GSE166635 datasets. (E, G, I) The cell types
and their distribution in LIHC_GSE146115, LIHC_GSE98638 and LIHC_GSE140228 datasets. (F, H, J) Distribution of KIF18A in different cells in
LIHC_GSE146115, LIHC_GSE98638 and LIHC_GSE140228 datasets. (K, M, O) The cell types and their distribution in LIHC GSE98638,
LIHC_GSE140228 and LIHC_GSE146115 datasets. (L, N, P) Distribution of EZH2 in different cells in LIHC GSE98638, LIHC_GSE140228 and
LIHC_GSE146115 datasets. (Q) Expressions of NQO1 in LIHC_GSE146115 and LIHC_GSE166635 datasets. (R) Expressions of KIF18A in
LIHC_GSE146115, LIHC_GSE98638 and LIHC_GSE140228 datasets. (S) Expressions of EZH2 in LIHC GSE98638, LIHC_GSE140228 and
LIHC_GSE146115 datasets.
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carcinoma via enhancing ERK-NRF2 signaling (44). From our

work, after analysis of 4 HCC scRNA-seq datasets, we found that

two of the 3-gene signature, KIF18A and EZH2 had correlation

coefficient with Tprolif cells, which indicated KIF18A/EZH2/

Tprolif cells axis might be a pathway in initiation and progression

of HCC. And NQO1 was mainly expressed in malignant cells. In

summary, these three genes play a vital role in anoikis and are

closely related to the prognosis of HCC.

Moreover, we established a nomogram for clinical-decision

support. Nomogram, a visual statistical tool, was wildly used in

prognostic prediction of cancer patients (45). In the current study,

combining the 3-anoikis gene signature, gender, prior malignancy

and TNM stage, a prognosis nomogram with excellent performance

was constructed. The C-index of the nomograms constructed based

on TCGA and ICGC database were 0.715, 0.795, respectively. Since

these independent prognostic factors included in nomogram

construction are easy to obtain from the clinical practice, the

nomogram may be used routinely in the future.

Immunotherapy has attracted worldwide attention for its anti-

cancer activity (46). In the past decade, the immunotherapeutics

targeting PD-1/PD-L1 and CTLA-4 has achieved gratifying results

on HCC patients (47, 48). However, only a limited number of HCC

patients benefited from it, the efficacy of immunotherapy is affected by

many factors specific to the individual, such as the unique TIME, the

expression of the immune checkpoint genes and the related gene

mutation levels. Tumor immune microenvironment (TME) has a

significant impact on tumor progression process and therapy

response, so that many researchers would conduct immune cell

infiltration and TME analysis of tumors of their interest (49–51). In

our work, with the application of CIBERSORT algorithm and ssGSEA

approach, we found that macrophage M0 infiltration was greater in the

high-risk group, while T cells CD4memory resting was less infiltration.

And the high-risk group had decreased infiltration in the immune

pathways, including the type I IFN response and type II IFN response.

These findings suggested that the higher immunosuppression and

lower immunoreactivity in TME may account for the worse

prognosis for high-risk patients with HCC. Moreover, we found that

the expression of the majority of immune checkpoint genes was

positively correlated with the risk score. Taken together, these results

suggested that the anoikis-related gene signatures might affect the

efficacy of immunotherapy in HCC patients and the model could be

identified as an immunotherapy indicator.

To further establish the relationship between the anoikis-related

model and ICI therapy, we included 348 patients with urothelial cancer

from IMvigor210 cohort for further analysis. We observed that there

was statistically significant difference in the overall survival between

high-risk and low-risk groups. As well, patients in complete response/

partial response (CR/PR) group had higher risk scores than those in

stable disease/progressive disease (SD/PD) group. Moreover, given that

chemotherapy is still the gold standard for cancer treatment, we also

evaluated the effectiveness of the anoikis-related model in

distinguishing chemotherapy outcomes. In our study, we found the

high-risk group had high sensitivity to 5-fluorouracil, doxorubicin and

gemcitabine, while the low-risk group was more sensitive to sorafenib.

The above results verified the anoikis-related model may aid in the

development of individualized treatment of HCC patients.
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Needless to say, the study still has some limitations. First, the

study relied solely on publicly available datasets, which might bring

selection bias, the real-world prospective cohort studies would be

needed to validate the results. Second, due to the shortage of public

data on HCC patients receiving anti-PD-L1 antibody, we used the

IMvigor210 cohort (bladder cancer) as external immunotherapy

cohort. Meanwhile, the underlying mechanisms of ARGs needed

further experimental verification.

In conclusion, our study constructed a novel anoikis-related 3-

gene signature (EZH2, KIF18A and NQO1), which exhibited

favorable prediction performance. We also assessed the

differences in immunotherapy response and chemotherapeutic

drug sensitivity between the two risk groups, thereby providing a

new insight for clinical treatment.
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SUPPLEMENTARY FIGURE 1

The risk model performance. (A) Kaplan–Meier curves for OS in TCGA testing
cohort. (B) Kaplan–Meier curves for OS in GSE14520 cohort. (C) Time-
Frontiers in Oncology 13
dependent ROC curves for OS in TCGA testing cohort. (D) Time-
dependent ROC curves for OS in GSE14520 cohort. (E) PCA plot of risk

score in TCGA testing cohort. (F) PCA plot of risk score in GSE14520 cohort.

(G) Heatmap illustrating the result of GSVA.

SUPPLEMENTARY FIGURE 2

Risk score distribution, survival status and heatmap of expression profiles in

low- and high-risk groups.

SUPPLEMENTARY FIGURE 3

Immunohistochemical images obtained from the Human Protein Atlas.

SUPPLEMENTARY FIGURE 4

Survival analysis of 10 hub genes from 229 DEGs. (A–L) Kaplan–Meier curves

of 6 hub genes in TCGA cohort (A–F), ICGC cohort (G–L). (M, N)Multivariate
Cox regression analysis was carried out for the OS of 6 hub genes in TCGA

cohort (M) and ICGC cohort (N).

SUPPLEMENTARY FIGURE 5

Evaluation of chemosensitivity and the mutation level of hub genes from
229 DEGs.
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