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Background: Next-generation sequencing (NGS) panels for mature B-cell

neoplasms (MBNs) are widely applied clinically but have yet to be routinely

used in a manner that is suitable for subtype differential diagnosis. This study

retrospectively investigated newly diagnosed cases of MBNs from our laboratory

to investigate mutation landscapes in Chinese patients with MBNs and to

combine mutational information and machine learning (ML) into clinical

applications for MBNs, especially for subtype classification.

Methods: Samples from the Catalogue Of Somatic Mutations In Cancer

(COSMIC) database were collected for ML model construction and cases from

our laboratory were used for ML model validation. Five repeats of 10-fold cross-

validation Random Forest algorithm was used for ML model construction.

Mutation detection was performed by NGS and tumor cell size was confirmed

by cell morphology and/or flow cytometry in our laboratory.

Results: Totally 849 newly diagnosed MBN cases from our laboratory were

retrospectively identified and included inmutational landscape analyses. Patterns

of gene mutations in a variety of MBN subtypes were found, important to

investigate tumorigenesis in MBNs. A long list of novel mutations was revealed,

valuable to both functional studies and clinical applications. By combining gene

mutation information revealed by NGS and ML, we established ML models that

provide valuable information for MBN subtype classification. In total, 8895 cases

of 8 subtypes of MBNs in the COSMIC database were collected and utilized for

ML model construction, and the models were validated on the 849 MBN cases

from our laboratory. A series of ML models was constructed in this study, and the
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most efficient model, with an accuracy of 0.87, was based on integration of NGS

testing and tumor cell sizes.

Conclusions: The ML models were of great significance in the differential

diagnosis of all cases and different MBN subtypes. Additionally, using NGS

results to assist in subtype classification of MBNs by method of ML has positive

clinical potential.
KEYWORDS

mature B-cell neoplasms (MBNs), pathological diagnosis, next-generation sequencing
(NGS), machine learning (ML), subtype classification
Introduction

Mature B-cell neoplasms (MBNs) are induced by monoclonal

proliferation and expansion of mature B-cell original lymphocytes

(1, 2). According to the 2016 revision of the World Health

Organization classification of lymphoid neoplasms (2), laboratory

diagnosis of MBNs relies on morphology immunology,

cytogenetics, and molecular biology (MICM classification system).

While morphology is considered to be the major feature for the

diagnosis of MBNs, immunophenotype, cytogenetics, and

molecular biology are more informative for MBN pathological

subtype classification, precision therapy, and prognostic

evaluation (2, 3). The significance of genetic testing has been

further emphasized by the identification of an increasing number

of recurrent gene abnormalities in MBNs through the widespread

application of next-generation sequencing (NGS) techniques (4, 5).

Different pathological subtypes of MBNs have been found to

have heterogeneous mutation landscapes (2, 4). The most

recurrently mutated genes identified in chronic lymphocytic

leukemia/small lymphocytic lymphoma (CLL/SLL) are TP53,

NOTCH1, SF3B1, and BIRC3 (6–8). In diffuse large B-cell

lymphoma (DLBCL), EZH2 and GNA13 variants are observed

exclusively in the germinal center B-cell subtype, whereas

CARD11, MYD88, and CD79B variants are characteristic of the

activated B-cell subtype (9, 10). In follicular lymphoma (FL),

variants of EZH2, ARID1A, MEF2B, EP300, FOX01, CREBBP, and

CARD11 have been reported to be associated with prognosis, with

recent addition of recurrent STAT6 andMAP2K1 variants in the list

(11, 12). Abnormalities in ATM, TP53, and CCND1 have been

reported in mantle cell lymphoma (MCL) (13–15), while MYD88

(especially MYD88 L265P) and CXCR4 mutations have been

identified in lymphoplasmacytic lymphoma/Waldenstrom

macroglobulinemia (LPL/WM) (16, 17). Thus, integration of

recent molecular findings into MBN subtype classification is very

encouraging, especially considering cases that are difficult to

subcategorize based on the current MICM classification system.

The establishment and application of machine learning (ML)

have been found to facilitate the development of new tools for

integrating data from a variety of platforms with highly accurate

and detailed assessments for predicting disease prognosis (18–20).
02
In this study, we retrospectively obtained the mutation landscape of

MBNs, established ML models by integrating mutation data and

other laboratory parameters, and then validated these models in the

prediction of MBN subtype classifications.
Materials and methods

Patients and specimens

From January 1st, 2018, to December 31st, 2019, out of all

retrospective cases in our laboratory with morphological

examination and immunophenotypical testing routinely being

used in clinical practice while genetic and genomic tests being

performed occasionally according to referring doctors’ orders, 849

cases of newly diagnosed MBNs were identified and included for

further analyses. Each patient was diagnosed and classified

according to the 2016 revision of the World Health Organization

classification of lymphoid neoplasms (MICM classification system).

In addition, two diagnostic groups were defined in this study based

on the MICM system: 1) initial diagnosis was primarily based on

morphologic and immunophenotypic information, and 2)

comprehensive diagnosis was based on test results from multiple

platforms, including morphology, immunophenotype, NGS, and

some other special tests (such as fluorescence in situ hybridization,

immunofixation electrophoresis, and chromosomal karyotype)

performed according to clinical testing needs.
Pathological morphology and
immunohistochemistry

Bone marrow aspiration smears were prepared and stained with

Wright-Giemsa stain. Bone marrow and lymphoid biopsies were

prepared, fixed with formalin, embedded in paraffin, and stained

with hematoxylin-eosin. Immunohistochemical analyses were

performed on formalin-fixed, paraffin-embedded tissue using

standard techniques with the antibodies required for actual

clinical testing. Routine immunohistochemical staining of cluster

of differentiation (CD) 19 and CD20 was performed, and additional
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stains included CD5, CD10, CD23, CD103, CD25, CD123, CD200,

Ki-67, PAX-5, SOX-11, Cyclin-D1, BCL2, BCL6, and MYC

according to clinical testing needs or doctors’ orders.
Flow cytometry

Flow cytometry (FC) was performed on fresh bone marrow

aspiration and/or peripheral blood samples. The lymphoma-

associated cell surface markers CD19, CD20, CD5, CD10, Kappa,

and Lambda were routinely examined, while the markers FMC7,

CD22, CD23, CD25, CD38, CD138, CD103, CD200, and IgM were

examined according to clinical testing needs or doctors’ orders

based on five-color analyses (FITC, PE, ECD, PC5, and PC7). FC

was performed on Cytomics FC500 Cytometer (Beckman Coulter,

Brea, CA, USA), and the data were analyzed with FCS Express flow

cytometry software (De Novo Software, Los Angeles, CA, USA).
Next-generation sequencing and
variant curation

An NGS panel consisting of 175 genes associated with

hematological malignancy (175-Panel) was applied for all 849

patients in this study (Supplement Table 1). A QIAamp DNA Mini

Kit (Qiagen, Hilden, Germany) was used for DNA extraction from

formalin-fixed paraffin-embedded lymphoid samples, bone marrow

samples, and/or peripheral blood samples, and then a KAPA Library

Amplification Kit (Kapa Biosystems, Wilmington, MA, USA) was

used for library construction. DNA sequencing was performed on an

Illumina NovaSeq6000 system (Illumina, San Diego, CA, USA) with

DNA input of 500 ng on average and sequencing depth of 1000X on

average. Variant calling was performed with the Somatic Variant

Caller Algorithm from Illumina with default filtering settings. The

sequencing data were included if meeting the following minimum

quality control (QC) standards: 50X coverage of target region ≥99%;

average sequencing depth ≥200X; Q30 ≥0.85; and target region

capture rate ≥99%. Variants were interpreted according to the

Standards and Guidelines for the Interpretation and Reporting of

Sequence Variants in Cancer (21). A variant was considered novel if it

was absent in all of the following databases: COSMIC (22), dbSNP

(23), ClinVar (24), gnomAD (25), ExAC (26), HGMD (27), 1000

Genomes (28), and ESP6500 (http://evs.gs.washington.edu/EVS/).

Variants with strong clinical significance (Tier I) and variants with

potential clinical significance (Tier II) were the focus of this

study (21).
Machine learning model construction

ML model construction data were collected from the Catalogue

Of Somatic Mutations In Cancer (COSMIC) database (time range:

database inception through May 20th, 2021) (22). Variant

interpreting procedures were followed according to the same

standard used by our laboratory. The data were divided into a

training dataset and a test dataset with a proportion of 8:2 by
Frontiers in Oncology 03
stratified sampling. In total, eight ML algorithms, namely, Random

Forest (RF), K-Nearest Neighbors, Naive Bayes, Recursive

Partitioning, Neural Network, Gradient Boosting Machine, Logic

Regression, and Support Vector Machines, were used for the pretest

of ML model construction in this study (Supplement Figure 1). The

m×n (the number of cases from ML datasets × the number of ML

model features) data matrix was designed for ML model

construction. ML model features included NGS-related and

tumor cell size-related features (Supplement Table 2). Concerning

NGS-related ML model features, mutated genes with Tier I and/or

Tier II variants were marked as “1 (representing positive by metric

variable)” whereas mutated genes without Tier I and/or Tier II

variants and unmutated genes as “0 (representing negative by

metric variable)” in the matrix. Similarly, tumor cell size was

categorized as small to medium or medium to large, and the cases

with small to medium tumor cell size were marked as “1” while

those with medium to large as “0”. The tumor cell sizes of the cases

in the COSMIC database were broadly represented according to

their pathological subtypes. Five repeats of 10-fold cross-validation

were conducted in the training and internal validation sets. Model

feature selection was based on the method of Recursive Feature

Elimination (RFE). The ML models, COSMIC I (COSMIC IA and

IB) and COSMIC II (COSMIC IIA and IIB), were constructed in

this study. COSMIC I (COSMIC IA and IB) were constructed based

only on NGS results, and COSMIC II (COSMIC IIA and IIB) were

constructed based on combining NGS results and tumor cell size.

COSMIC IB and COSMIC IIB were obtained with the highest

model efficiency after model feature selection of COSMIC IA and

COSMIC IIA, respectively. Model efficiency was defined as the

model that achieved the higher accuracy with the lower number of

genes, and five gradient levels (95~99% of the highest model

accuracy) were used to compare this indicator. Base learners were

selected by considering accuracy (95% CI) and kappa for each

diagnostic class in the validation set.
Statistical analyses

Statistical analyses were performed using R version 4.1.0. ML

model construction was performed using the R software package

“caret”. Mutation landscape analyses were performed using the R

software package “maftools” and viewed with the R software

package “trackViewer”. Patient groups were evaluated by using

the c2 test or Fisher’s exact test. P values<0.05 were considered

statistically significant.
Results

Patient summary and mutation landscape

A total of 849 cases of MBNs were included in this study. The

subtype was identified at initial diagnosis in 458 cases, which was

also the same as their comprehensive diagnosis (54.0%, Group A).

When considering multiple platforms from the MICM classification

system, 139 cases with uncertain subtypes at initial diagnosis were
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http://evs.gs.washington.edu/EVS/
https://doi.org/10.3389/fonc.2023.1160383
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mu et al. 10.3389/fonc.2023.1160383
further identified by comprehensive diagnosis (further-diagnosed

cases, 16.4%, Group B2). Interestingly, 8 cases were different

between the initial diagnosis and comprehensive diagnosis, which

suggests that misdiagnosis existed in the initial diagnosis (refined

cases, 0.9%, Group B1). However, there were still 244 cases with an

uncertain subtype (28.7%, Group C) (Figure 1A). In summary, 9

subtypes of MBNs, namely, Burkitt lymphoma (BL), CLL/SLL,

DLBCL, FL, hairy cell leukemia (HCL), high-grade B-cell

lymphoma (HGBL), LPL/WM, MCL, and marginal zone B-cell

lymphoma (MZBL), were found to be involved.

Overall, 1850 variants present in 107 (61.1%) of the 175 genes

were detected in 690 (81.3%) of the 849 MBN cases (Supplement

Table 1). Among these genes, MYD88 (20.8%), TP53 (14.6%),
Frontiers in Oncology 04
NOTCH1 (8.6%), KMT2D (8.5%), and ATM (6.7%) were the

most recurrently mutated genes in MBNs in our cohort

(Figure 1B). The mutation landscape of each subtype is

summarized in Supplement Table 3. Significantly, CLL/SLL

showed some differences while other subtypes were essentially

consistent with previous studies (6–17). KMT2D was rarely

mutated in CLL/SLL according to previous studies in Western

countries (6–8), but 33 variants in 26 (6.9%) cases of CLL/SLL

were found in this study (one case harbored 5 KMT2D variants and

three cases harbored 2 KMT2D variants) (Figure 1C). In addition,

544 (29.4%) novel variants were identified and are shown in

Supplement Figure 2, and the detailed results are listed in

Supplement Table 4.
A

B

C

FIGURE 1

Grouping procedure and mutation landscape of 849 cases of mature B-cell neoplasms (MBNs). (A) Four groups of 849 MBN cases subcategorized
into initial diagnosis and comprehensive diagnosis. (B) The mutation landscape of the top 20 genes detected in 849 MBN cases. (C) Localization and
frequencies of 33 KMT2D variants in 26 CLL/SLL cases. *: Stop codon.
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Machine learning model construction
based on the COSMIC database

Model training datasets with large sample sizes are essential for

model construction. Here, we used MBN cases from the COSMIC

database to construct ML models to assist with differential

diagnosis. In total, 8895 cases of 8 MBN subtypes (BL, CLL/SLL,

DLBCL, FL, HCL, LPL/WM, MCL, and MZBL) were collected from

the COSMIC database for model construction (Supplement

Table 5). Eight ML algorithms were used for the model

construction pretest, and ultimately, RF was selected for

subsequent ML model construction on the basis of its high

accuracy in the pretest and its proven effectiveness and popularity

in previous studies (29, 30). Detailed results of the ML model

construction pretest are shown in Supplement Figure 1 and

Supplement Table 6.

Next, we constructed ML models using only the NGS results for

the 175-Panel genes (COSMIC IA), and the model accuracy was

0.74 (95% CI: 0.7211-0.7623; Kappa: 0.67) (Supplement Table 7).

Interestingly, we found that a large proportion of incorrect

predictions was due to poor discrimination between CLL/SLL and

DLBCL according to NGS results but with clear differences in tumor

cell size. To improve the model accuracy, based on the NGS

results for the 175-Panel genes, we added tumor cell size to
Frontiers in Oncology 05
the model construction (COSMIC IIA). The model accuracy

of COSMIC IIA was 0.88 (95% CI: 0.8587-0.8900; Kappa: 0.84)

(Supplement Table 7).

The mutation status of the 175-Panel genes was used in the

model construction of COSMIC IA and COSMIC IIA, but not every

gene was of strong diagnostic significance in the subtype differential

diagnosis of MBNs. Thus, we performed model feature importance

analyses to identify the most effective features in these models.

Finally, 104 genes with diagnostic significance (importance

value>0) and only 32 genes with importance values greater than

10 were found in COSMIC IA, while 103 genes with diagnostic

significance and only 24 genes with importance values greater than

10 were found in COSMIC IIA (Supplement Table 2).

By combining feature importance values, we further

constructed more efficient ML models through feature selection

analyses. The results showed that model accuracy improved with

the increase in features in both COSMIC IA and COSMIC IIA

(Figures 2A, B), and a model efficiency indicator of 98% was the

suitable cut-off point in this study. Detailed results are shown in

Supplement Table 8. Consequently, the models had the highest

efficiency when the model feature number was 30 (30 genes) in

COSMIC IA and 16 (14 genes and 2 tumor cell size features) in

COSMIC IIA (Figures 2A, B). Thus, COSMIC IB and COSMIC IIB

were obtained with the highest model efficiency after model feature
A B

C

FIGURE 2

Construction and internal validation of machine learning (ML) models based on the COSMIC database. (A) Model feature selection in COSMIC IA.
When the model feature number was 30 in COSMIC IA, the model had the highest efficiency (COSMIC IB). (B) Model feature selection in COSMIC
IIA. When the model feature number was 16 in COSMIC IIA, the model had the highest efficiency (COSMIC IIB). (C) Model accuracy of COSMIC I
(COSMIC IA and IB) and COSMIC II (COSMIC IIA and IIB) in internal validation.
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selection (RFE, 98% cut-off) of COSMIC IA and COSMIC IIA,

respectively. The model accuracies of COSMIC IB and COSMIC IIB

were 0.73 (95% CI: 0.7119-0.7536; Kappa: 0.65) and 0.87 (95% CI:

0.8522-0.8842; Kappa: 0.83), respectively (Figure 2C and

Supplement Table 7). Overall, we constructed four ML models at

different levels using the COSMIC database, and COSMIC II

(COSMIC IIA and IIB), based on integration of NGS testing and

tumor cell sizes, showed superior effectiveness in the subtype

classification of MBNs.
Frontiers in Oncology 06
Machine learning models
predicted subtype diagnosis
based on the local cohort

To investigate the clinical diagnostic performance of COSMIC

II (COSMIC IIA and IIB) based on local patients, we used clinical

cases from our laboratory to test their actual application. Known-

subtype cases matching the eight subtypes of MBNs collected from

the COSMIC database in this study (603 cases in Group A and
A B

D

E

C

FIGURE 3

External validation of machine learning (ML) models based on local cohort. (A) Model accuracy of COSMIC II (COSMIC IIA and IIB) in each case
group. (B) Model accuracy of COSMIC II (COSMIC IIA and IIB) by subtype in all cases. (C) Model accuracy of COSMIC II (COSMIC IIA and IIB) by
subtype in typical cases (Group A). (D) Model accuracy of COSMIC II (COSMIC IIA and IIB) by subtype in refined cases (Group B1). (E) Model accuracy
of COSMIC II (COSMIC IIA and IIB) by subtype in further-diagnosed cases (Group B2).
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Group B) were used for the next validation. Overall, the model

accuracies of COSMIC IIA and COSMIC IIB for our cases were 0.69

and 0.73, respectively (Figure 3A). In terms of the pathological

features, the ML models had the best prediction accuracy for cases

in Group A with typical morphological and immunophenotype

features; of the difficult cases in Group B, 75.0% in COSMIC IIA

and 87.5% in COSMIC IIB of the refined cases (Group B1), and

56.8% in COSMIC IIA and 60.4% in COSMIC IIB of further-

diagnosed cases (Group B2) were correctly predicted (Figure 3A). In

terms of subtype, overall, the model performance was good in BL

(accuracy of 100% in both COSMIC IIA and IIB), CLL/SLL

(accuracy of 75.9% in COSMIC IIA and 83.0% in COSMIC IIB),

DLBCL (accuracy of 100% in both COSMIC IIA and IIB), HCL

(accuracy of 100% in both COSMIC IIA and IIB), and LPL/WM

(accuracy of 77.3% in COSMIC IIA and 79.0% in COSMIC IIB),

whereas it was not as effective in MCL (accuracy of 46.2% in

COSMIC IIA and 11.5% in COSMIC IIB) and MZBL (accuracy of

11.1% in COSMIC IIA and 9.3% in COSMIC IIB) (Figure 3B).

Detailed results of each group are shown in Figures 3B–E. In

summary, using ML models to assist in morphological and

immunological diagnosis demonstrated positive clinical potential

in both groups and most subtypes of MBNs.

In addition, the MBN subtype classification models, COSMIC I

(COSMIC IA and IB) and COSMIC II (COSMIC IIA and IIB), are

available as web-based open-source resources that can be accessed widely

by clinicians and the public to predict the subtype of MBNs (https://

kingmed.shinyapps.io/cosmic_i/ and https://kingmed.shinyapps.io/

cosmic_ii/).
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Analyses of the causes of incorrect model
prediction results

We further summarized the incorrectly predicted cases of each

subtype in Supplement Table 7 and analyzed the reasons for

incorrect model prediction results based on COSMIC IIB

(Figure 4). First, 60.9% (39/64) of CLL/SLL cases that were

incorrectly predicted as FL harbored KMT2D variants, which are

considered relatively specific molecular characteristics of FL in

Western populations but highly recurrent in Chinese CLL/SLL.

Thus, population differences were one of the possible reasons for

incorrect model predictions, suggesting that clinicians should pay

attention to ethnicity when interpreting NGS results for subtype

differential diagnosis. Second, 92% (23/25) of all incorrectly

predicted LPL/WM cases had no MYD88 L265P or CXCR4

variants, which are considered specific molecular characteristics

in LPL/WM and helpful for the differential diagnosis of LPL/WM,

indicating that an atypical mutation landscape was another possible

reason for incorrect model predictions. Such atypical cases need

more support from other special platforms, such as immunofixation

electrophoresis, in differential diagnosis clinically. Third, there were

some cases harboring variants specific to other subtypes, such as

BRAF V600E in CLL/SLL, which caused these cases to be more

likely to be misdiagnosed and made differential diagnosis more

difficult, showing that the overlap of the mutation landscape among

different subtypes was also a possible reason for incorrect model

predictions. Consequently, although the case may have typical

variants supporting the diagnosis of a certain subtype, other
FIGURE 4

The proportion of cases incorrectly predicted by COSMIC IIB within each subtype of mature B-cell neoplasms (MBNs) based on comprehensive
diagnosis. *: Number of incorrectly predicted cases (Incorrectly predicted rate, Total number of predicted cases).
frontiersin.org

https://kingmed.shinyapps.io/cosmic_i/
https://kingmed.shinyapps.io/cosmic_i/
https://kingmed.shinyapps.io/cosmic_ii/
https://kingmed.shinyapps.io/cosmic_ii/
https://doi.org/10.3389/fonc.2023.1160383
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mu et al. 10.3389/fonc.2023.1160383
possible subtypes should also be considered and excluded. Finally,

we noted that the size of the NGS panel also had some impact on

incorrect model prediction, including the problems of over-

consideration and incomplete-consideration. While 16 (2.7%)

cases with incorrect predictions in COSMIC IIB were correctly

predicted in COSMIC IIA, 37 (6.1%) cases with incorrect

predictions in COSMIC IIA were correctly predicted in COSMIC

IIB (Supplement Table 7). Over-consideration mainly occurred in

CLL/SLL (accuracy of 75.9% in COSMIC IIA vs. 83.0% in COSMIC

IIB), FL (accuracy of 36.4% in COSMIC IIA vs. 54.5% in COSMIC

IIB), and LPL/WM (accuracy of 77.3% in COSMIC IIA vs. 79.0% in

COSMIC IIB), for which COSMIC IIB showed higher accuracy,

while incomplete-consideration mainly occurred in MCL (accuracy

of 46.2% in COSMIC IIA vs. 11.5% in COSMIC IIB) and MZBL

(accuracy of 11.1% in COSMIC IIA vs. 9.3% in COSMIC IIB), for

which COSMIC IIA showed better model performance (Figure 3B).

Detailed results of each group are shown in Figures 3B–E.
Discussion

NGS has been widely applied in routine MBN clinical detection,

but its application in the differential diagnosis of MBNs is still

uncertain (31, 32). This study retrospectively investigated 849 newly

diagnosed cases of MBNs to investigate mutation landscapes in

Chinese patients with MBNs and to combine mutational

information and ML into clinical applications for MBNs,

especially for subtype classification.

Based on the cohort of newly diagnosed MBNs from our

laboratory, two diagnostic groups, namely, initial diagnosis and

comprehensive diagnosis, were defined to investigate the current

status of the clinical diagnosis of MBNs. Conventional morphology

and immunology testing remained the primary and necessary

platform for the differential diagnosis of MBNs and were capable

of diagnosing the majority of cases (54.0%) with typical pathological

features. In addition, a subset of cases (17.3%) required multiple

platform testing to complement and confirm the initial pathological

diagnosis. However, there was still a notable proportion of cases

(28.7%) in which a definitive diagnosis of the MBN subtype was not

obtained through the comprehensive diagnostic system, suggesting

major clinical challenges in the differential diagnosis of MBNs and

the need to develop adjunctive assisting diagnostic methods based

on existing NGS testing platform.

The combined application of NGS and ML in the differential

diagnosis of MBNs is still uncertain. To explore a suitable ML

model for the differential diagnosis of MBNs, a series of ML models

were constructed. Among these models, COSMIC IIB had the best

efficiency and greatest model accuracy, and its model features were

well represented. Tumor cell size distinguished the subtype of small

B-cell lymphomas and large B-cell lymphomas. In small B-cell

lymphomas, MYD88 L265P and BRAF V600E are recognized as

typical variants of LPL/WM and HCL, respectively (16, 33). CXCR4

is another commonly mutated gene in LPL/WM (17, 34). NOTCH1

variants and SF3B1 variants are highly enriched in CLL/SLL (7, 8).

Variants of KMT2D, CREBBP, and BCL2 have emerged as

hallmarks of FL (35, 36). Significantly, KMT2D variants have
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been rarely reported in CLL/SLL in previous Western studies but

showed a high occurrence in this study, consistent with another

Chinese study (37, 38), indicating that KMT2D variants are

probably unique molecular characteristics in the subset of

Chinese patients with CLL/SLL. Variants of NOTCH2 and

TNFAIP3 are characteristic of MZBL (39, 40). CCND1 variants

have been identified recurrently in MCL (14, 15). In large B-cell

lymphomas, MYC and ID3 are recurrently mutated in BL, while

MYD88 L265P is commonly observed in DLBCL (9, 41, 42). These

genes used for differential diagnosis in ML models were consistent

with clinical findings and basic research, demonstrating the validity

of the ML models.

To evaluate the application of ML models in diverse clinical

situations, we designed corresponding case groups in this study.

The best predicting accuracy was observed in typical cases (Group

A) with ML models, indicating that cases with typical

morphological features generally had typical molecular

abnormalities, and consequently, the NGS results and model

prediction results were highly consistent with the multiple

platform testing results (2). The cases in Group B were difficult

cases, including refined cases (Group B1) and further-diagnosed

cases (Group B2). A series of refined cases were correctly predicted,

valuable for reminding clinicians of the possibility of misdiagnosis,

and large numbers of further-diagnosed cases were correctly

predicted, which could be useful in differential diagnosis when the

initial diagnosis is uncertain. The ML models confirmed the

diagnosis of typical cases and suggested a potential subtype

diagnosis for difficult cases.

Nevertheless, our study has multiple limitations that must be

carefully considered. First, due to the lack of a large cancer database

based on the Chinese population, using the COSMIC database,

which mainly represents Western populations, to construct the ML

model may underestimate the population diversity associated with

genetic background. In addition, incorrect prediction cases with

obvious mutational characteristics could be analyzed for the

possible reasons for their incorrectly predicted, but there were

still many cases that could not be analyzed due to the complexity

of ML. The incorrectly predicted cases influenced by the size of the

NGS panel should also be considered seriously. However, we still

obtained excellent prediction results, and multiple strategies can be

applied to improve these limitations in future research— the utility

of extensive local databases can address genetic background bias

while the addition of more testing platforms is vital for the

interpretation of model prediction results and the improvement

of model accuracy. As the local cancer database becomes

increasingly larger with more comprehensive collections of

clinical testing platform results, we believe that the model based

on the local cancer database will play a greater role in the differential

diagnosis of MBNs.

In conclusion, this study applied NGS to clinical practice via

ML-assisted differential diagnosis of MBNs, and the ML models

showed great significance at various levels. Despite several

problems, NGS still shows a great deal of potential as an

independent additional diagnostic tool for the clinical diagnosis

process, especially for some special subtypes and difficult cases.

With an increasingly accurate and comprehensive mutation
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landscape of MBN cases reported and combined with more

platform results, the application of NGS in clinical diagnosis will

be increasingly extensive and useful.
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Procedures of the machine learning (ML) model construction pretest.

SUPPLEMENTARY FIGURE 2

Novel variants in 849 cases of mature B-cell neoplasms (MBNs) cases. (A) The
proportion of novel variants and known variants in different mutation types.

(B) The proportion of novel variants in each subtype of MBNs. (C) The

proportion of novel variants and known variants in the 15 most recurrently
mutated genes.
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