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Prostate cancer is among the most common diseases worldwide. Despite recent

progress with treatments, patients with advanced prostate cancer have poor

outcomes and there is a high unmet need in this population. Understanding

molecular determinants underlying prostate cancer and the aggressive

phenotype of disease can help with design of better clinical trials and improve

treatments for these patients. One of the pathways often altered in advanced

prostate cancer is DNA damage response (DDR), including alterations in BRCA1/2

and other homologous recombination repair (HRR) genes. Alterations in the DDR

pathway are particularly prevalent in metastatic prostate cancer. In this review,

we summarise the prevalence of DDR alterations in primary and advanced

prostate cancer and discuss the impact of alterations in the DDR pathway on

aggressive disease phenotype, prognosis and the association of germline

pathogenic1 alterations in DDR genes with risk of developing prostate cancer.

KEYWORDS

DNA damage response, homologous recombination repair, alterations, prognosis,
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Introduction: prostate cancer and
treatment landscape

Prostate cancer is the third most common cancer worldwide, with 1,414,259 new cases

and 375,304 deaths in 2020, and the 5th leading cause of cancer deaths worldwide (1, 2).

Approximately 80% of men with prostate cancer are diagnosed with localised prostate

cancer, and their 10-year survival is up to 99% if diagnosed early. Approximately 10–20%

of men with advanced prostate cancer will develop castration-resistant prostate cancer
1 Throughout the text, germline or somatic alterations mean pathogenic/likely pathogenic, or

deleterious/likely deleterious, loss-of-function alterations.
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(CRPC) within five years, and at least 84% of these men will have

metastases at the time of CRPC diagnosis. Men with metastatic

CRPC have poor outcomes (3–5).

Metastatic prostate cancer is a broad term used to describe a

range of advanced disease states that are no longer organ-confined.

This group includes de novometastatic castration-sensitive prostate

cancer (mCSPC), as well as cancers that progress during or after

androgen deprivation therapy (ADT), termed metastatic castration-

resistant prostate cancer (mCRPC) (6). Based on clinical trials,

median overall survival (OS) for patients with mCRPC is

approximately three years, and is even less in the real-world

setting (7). Approximately half of patients with mCRPC may

receive only one line of active treatment, with diminishing benefit

observed with the use of subsequent therapies (5, 8–11).

A variety of life-prolonging agents are approved for the mCRPC

population overall, however the most used medicines for patients

with mCRPC remain mainly chemotherapy (docetaxel/cabazitaxel)

and new hormonal agents (NHAs; e.g abiraterone and

enzalutamide) (8, 12–14). Once patients with mCRPC have failed

NHA, the benefit from approved therapeutic options appears

substantially diminished (12, 15–22). As such, there is a high

unmet medical need for patients who have progressed after NHA

treatment, and many efforts to find more effective treatment options

have failed in the past decade. Recently, poly(ADP-ribose)

polymerase inhibitors (PARPi) treatment as monotherapy

demonstrated radiographic progression-free survival (rPFS) and

OS improvement in biomarker-selected patient populations with an

underlying alteration in the homologous recombination repair

(HRR) pathway (HRRm, or BRCA1/2 alterations) (23–29) and

have been approved as monotherapy for patients with HRR

mutant (HRRm) mCRPC post NHA (25, 30, 31). The mechanism

of action of PARP inhibitors as monotherapy is described in

Figure 1. The androgen receptor, in addition to its role in binding

androgen and stimulating prostate cancer cell growth (32), also

contributes towards the general repair of DNA damage, including

damage not normally repaired by HRR (33–35). This demonstrates

that androgen receptor and PARP are both important for the repair

of DNA damage in prostate cancer cells and highlights the

importance of crosstalk (interaction) between both mechanisms.

This evidence provided the rationale for the clinical development of

co-administration of NHAs and PARP inhibitors (36). The clinical

benefit of PARPi in combination with NHA has been demonstrated

in biomarker-selected and biomarker-unselected populations in

first-line mCRPC (Table 1) (36–39) and approvals have been

granted in some regions (40).

Despite recent progress in treatments for metastatic disease,

there is a high unmet need in this patient population (5, 41).

Understanding the biology underlying primary and metastatic

prostate cancer, and the differences in prognosis, can help

improve prostate cancer treatment and patient outcomes.
Prostate cancer genomic landscape

Comprehensive molecular characterisation through genetic

profiling has revealed a complex and heterogenous genomic
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landscape of prostate cancer. Multiple landmark genomics studies

have identified some of the most recurrent altered genes and

pathways in advanced prostate cancer, including genes involved

in androgen signalling (50%), PI3K signalling (40%), the cell cycle

(24%), WNT/beta-catenin signalling (19%), as well as genes

involved in DNA damage response (DDR; 27%), with significant

enrichment of all pathways observed in mCRPC (42–46).

Alterations in the RAS pathway, including hotspots in BRAF or

deleterious alterations in NF1 or RASA1 are detected at lower

prevalence than other genes, at around 8% (43). These studies

have also highlighted the presence of distinct genomic subtypes

defined by rearrangements involving the ERG transcription factor

(46%), or hotspot mutations in SPOP (8–11%) and FOXA1 (3%)

(44). Due to the highly complex nature of this disease, patients with

prostate cancer could greatly benefit from better means of

molecular stratification to better select appropriate anti-

cancer therapies.
Prevalence of alterations in the HRR/DDR
pathway in prostate cancer

Here we discuss alterations in the DDR pathway, which are

frequent in prostate cancer and particularly in advanced stages of

disease. DDR is a tightly coordinated pathway that enables cells to

control and regulate DNA damage that arises every day.

Accumulating damage can lead to mutations and promote

genomic instability, which is one of the hallmarks of cancer

development (47, 48). Alterations in DDR genes are found to be

frequently mutated in many types of cancer, including prostate

cancer, where around 23–31% of patients with advanced prostate

cancer have been reported to have alterations in DDR genes (43, 45,

46, 49).

As reviewed recently by Morgado & Mateo (50), DDR mutant

cancer has been a term used broadly to describe genomic alterations

in any gene involved in DDR, including HRR or mismatch repair

(MMR) alterations, which have different implications and

therapeutic targets in primary and metastatic prostate cancer.

Within DDR genes, alterations in genes involved in HRR are

most prevalent (23–28%) in mCRPC, with alterations in other

pathways of DDR, such as MMR (3–4%) or Fanconi anaemia

(FA; around 5%), found at lower prevalence (42, 43, 49, 51, 52).

DNA repair is a complex process that involves sensing DNA

damage and downstream signalling cascades to promote DNA

repair by recruiting DDR factors and triggering cell cycle

checkpoints to allow cells to repair DNA (53, 54). Cancer cells

often deregulate the DDR pathway via genomic alterations or

epigenetic silencing of DDR genes, which can lead to genomic

instability – one of the hallmarks of tumourigenesis (47).

Alterations in some of the DDR genes, particularly genes involved

in HRR in prostate cancer, are associated with worse prognosis and

a higher likelihood of developing metastatic disease (55). The HRR

pathway is an accurate pathway that regulates the repair of DNA

damage, such as double-strand breaks (DSBs). This pathway relies

on the presence of sister chromatid, and therefore only operates in S

and G2 stages of the cell cycle when the homologous chromatid is
frontiersin.org
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available, whereas the NHEJ pathway takes place in all stages of the

cell cycle or in quiescent cells. The HRR pathway is also required for

repair of DSBs arising during inter-strand crosslink repair, a process

that includes FA factors and other pathways such as nucleotide

excision repair and translesion synthesis (47, 48, 56). There are

multiple DDR factors that have a direct and indirect role in the HRR

pathway: DNA damage sensors (i.e. MRN complex and ATM),

signal mediator proteins (i.e. BARD1, BRCA1, PALB2, BRCA2,

FANCL, RAD54L), effector proteins directly involved in DNA

repair (i.e. RAD51, RAD54L) via strand invasion and replication

fork stabilisation, downstream signalling to trigger cell cycle

checkpoints (ATM, CHEK2, CHEK1) or regulating transcription

of HRR genes (i.e. CDK12); (Figure 1E) (57, 58).

Multiple genes in the HRR pathway are altered in several types

of cancers, including in prostate cancer; these include: BRCA1,

BRCA2, ATM, CDK12, PALB2, BRIP1, CHEK1, CHEK2, RAD51B,

RAD51C, RAD51D, RAD54L, BARD1 and FANCL (Table 2).

The most well characterised genes involved in HRR are tumour

suppressor genes BRCA1 and BRCA2 (also referred to as ‘BRCA’

genes), alterations in which have been associated with prostate

cancer as well as breast, ovarian and pancreatic cancer (61). BRCA1

and BRCA2 proteins play a key role in HRR, where BRCA1 plays a

role in the early step of determining DSB repair pathway choice to
Frontiers in Oncology 03
promote resection and channel it to HRR, for which interaction

with BARD1 is important. Later, BRCA1 interacts with PALB2 to

bring BRCA2, which promotes RAD51 filament formation and

strand invasion, a key step in HRR (62, 63). RAD54L plays a

supportive role by promoting RAD51 filament stabilisation (58)

BARD1 and BRIP1 are important BRCA1 interacting partners,

promoting repair pathway choice, DNA repair and DDR

checkpoints (64, 65). There are other important HRR genes that

play a direct or indirect role in HRR, such as a kinase, ATM, which

is involved in response to DSBs by phosphorylating key DDR

proteins to propagate signalling to promote repair or to arrest the

cell cycle. ATM directs repair of DSBs associated with replication to

HRR by promoting efficient DNA resection (66). One of the key

downstream targets of ATM is CHEK2 kinase, the phosphorylation

of which leads to activation of the G1 checkpoint (67–70). On the

other hand, CHEK1 kinase is phosphorylated by ATR and is

involved in triggering G2/M as well as intra-S checkpoints (68,

69, 71–73). CDK12, a kinase with an indirect role in HRR, regulates

transcription of HRR genes (74, 75). Alterations in CDK12 lead to a

unique tandem duplication genotype (76).

In prostate cancer, alterations in genes involved in HRR are

enriched in later/advanced stages of disease compared with primary

prostate cancer (46, 55).
TABLE 1 Clinical trials involving PARP inhibitors in mCRPC evaluating the predictive value of BRCA mutation/HRR mutation/HRD status.

Study Phase Treatments Target
population

DDRm pro-
spective
selection

Primary endpoint Findings Reference

PARPi (single agent)

PROfound III

Two arms (2:1): Olaparib
300 mg BID vs

physician’s choice of
enzalutamide or
abiraterone

mCRPC post
NHA

Yes
rPFS in Cohort A
(BRCA1/2m and/or
ATMm) by BICR

HR 0.34 (95% CI 0.25–
0.47), median 7.4 vs 3.6

months
(25)

TRITON-3 III

Two arms (2:1):
Rucaparib 600 mg BID vs

physician’s choice of
docetaxel, enzalutamide

or abiraterone

mCRPC post
NHA

Yes rPFS by BICR

BRCA subgroup: HR
0.50 (95% CI 0.36–0.69),
11.2 vs 6.4 months; in
the total population: HR
0.61; (95% CI 0.47–
0.80), median 10.2 vs

6.4 months

(28)

TALAPRO-1 II
Single arm: Talazoparib
1 mg/day

mCRPC post
1–2 cycles
TBC and
NHA

Yes Best ORR (RECIST)
ORR: 29.8% (95% CI

21.2–39.6)
(26)

TRITON-2 II
Single arm: Rucaparib
600mg BID

mCRPC post
1 cycle TBC
and NHA

Yes
Confirmed ORR
(RECIST)

ORR: 43.5% (95% CI
31.0–56.7)

(29)

GALAHAD II
Single arm: Niraparib
300mg/day

mCRPC post
1 cycle TBC
and NHA

Yes
Confirmed ORR in
BRCAm (RECIST)

ORR: 34.2% (95% CI
23.7–46.0)

(27)

TOPARP-A II
Single arm: Olaparib
400mg BID

mCRPC post
docetaxel

No
Composite RR
(PSA + RECIST + CTC)

ORR in HRRm: 33%
(95% CI 20–48)

(23)

TOPARP-B II
Two arms (1:1): Olaparib
400 mg BID vs olaparib

300mg BID

mCRPC post
TBC

Yes
Composite RR
(PSA + RECIST + CTC)

400 mg: ORR 54% (95%
CI 39–69); 300 mg: 37%

(95% CI 23–53)
(24)

(Continued)
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Around 10−11% of patients with primary cancer harbour HRR

alterations, whereas between 23% and 28% of patients with

mCRPCs have loss-of-function mutations in genes involved in the

HRR pathway of DDR in the tumour (Table 2).

In the PROfound clinical trial (a randomised, open-label, Phase

III trial evaluating the PARP inhibitor olaparib in men with mCRPC

who had disease progression while receiving a new hormonal agent,

e.g. enzalutamide or abiraterone), an alteration in one or more of 152

prespecified HRR genes was detected in 28% of over 4000 patients

screened (25). Very similar prevalence of HRRmwas also observed in

the Phase III PROpel trial (double-blind, Phase III trial of abiraterone
2 Although PPP2R2A was originally included in 15 HRR genes, no benefit of

olaparib over control therapy was noted in patients with alterations in

PPP2R2A in the PROfound trial (84)

Frontiers in Oncology 04
and olaparib versus abiraterone and placebo in patients with mCRPC

in the first-line setting), where patients were enrolled regardless of

HRR status; 28% of patients enrolled had alterations in HRR genes

(37). Comparable prevalence of HRR/DDR genomic alterations were

also observed in other clinical trials and datasets involving advanced

prostate cancer tumours. In the TOPARP-A clinical trial (Phase II

trial in which patients with mCRPC were treated with olaparib), 33%

of patients harboured genomic alterations specific to DDR genes (23).

Chung et al. used real-world data from routine prospective genomic

profiling and showed that 23% of patients had alterations in genes

involved in the HRR pathway (49) and a similar prevalence of HRR

gene mutations was also demonstrated by Abida et al. in 429 patients

with mCRPC (42).

Mutations in the BRCA genes (BRCA1 and/or BRCA2) are the

most prevalent HRR gene mutations in mCRPC (with BRCA2more

prevalent than BRCA1), with ATM being the second most
TABLE 1 Continued

Study Phase Treatments Target
population

DDRm pro-
spective
selection

Primary endpoint Findings Reference

PARPi + NHA combinations

PROpel III

Two arms (1:1): Olaparib
300 mg BID +

abiraterone (1000 mg) +
prednisone or

prednisolone (5 mg) once
daily vs placebo +

abiraterone (1000 mg) +
prednisone or

prednisolone (5 mg) once
daily

1L mCRPC
(no prior
chemo or
NHA in
metastatic
setting)

No rPFS by investigator
HR: 0.66 (95% CI 0.54–
0.81), median 24.8 vs

16.6 months
(37)

Magnitude III

Two arms (1:1):
Niraparib 200 mg +

abiraterone (1000 mg) +
prednisone or

prednisolone (10 mg)
once daily versus placebo
+ abiraterone (1000 mg)

+ prednisone or
prednisolone (10 mg)

once daily

1L mCRPC
(no prior
chemo or <4
months prior
NHA in
metastatic
setting)

Yes
rPFS in patients with
HRRm, by BICR

HR: 0.73 (95% CI 0.56–
0.96), median 16.5 vs

13.7 months
(38)

TALAPRO-2 III

Two arms (1:1):
Talazoparib 0.5 mg/day +
enzalutamide 160 mg
once daily vs placebo +
enzalutamide 160 mg

once daily

1L mCRPC No rPFS by BICR

In ITT (all comers) HR:
0.63 (95% CI 0.51–
0.78), median NR vs

21.9 months

(39)

Study 8 II

Two arms (1:1): Olaparib
300 mg BID +

abiraterone (1000 mg) +
prednisone or

prednisolone (5 mg)
versus once daily placebo
+ abiraterone (1000 mg)

+ prednisone or
prednisolone (5 mg) once

daily

mCRPC post
docetaxel and
no prior NHA
in metastatic
setting

No rPFS by investigator
HR: 0.65 (95% CI 0.44–
0.97), median 13.8 vs

8.2 months
(36)
f

1L, first line; BICR, blinded independent central review; BID, twice daily; BRCA1/2m, mutations in BRCA1 and BRCA2; CI, confidence interval; CTC, Circulating Tumour Cells; DDRm, DNA
Damage Repair gene mutations; HR, hazard ratio; HRRm, homologous recombination repair gene mutations; mCRPC, metastatic castration-resistant prostate cancer; NHA, new hormonal
agent; NR, not reached; ORR, objective response rate; PARPi, poly(ADP-ribose) polymerase inhibitors; PSA, prostate-specific antigen; rPFS, radiological progression-free survival; RR, response
rate; TBC, Taxane Based Chemotherapy.
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frequently mutated (23, 43, 46, 49). In mCRPC, prevalence of

BRCAm ranges from around 11% to 13%, and ATMm from 4%

to 6% (Table 2). The next most prevalent mutations in HRR genes

in mCRPC are CDK12 (1.3–8%), CHEK2 (1.4–2%), PALB2 (0.3–

3%), and CHEK1 (0.9–2%) (Table 2). The prevalence of alterations

in other HRR genes in prostate cancer is low and ranges between 0%

and 1.8% (Table 2).

In summary, between around 23–28% of patients have

deleterious alterations in HRR/DDR genes in metastatic prostate

cancer, with most studies reporting alterations in the tumour

(Table 2) (25, 37, 42, 49)

The origin of alterations in DDR genes found in tumour can be

either germline or somatic. The relative ratio of pathogenic

germline to somatic mutation events in DDR is highly dependent

on the HRR genes interrogated. Lai et al. (52) identified that

the ratio of germline to somatic alterations in BRCA1/2 genes

was roughly 1:1, whereas other HRR genes such as ATM and

CDK12 had a much higher ratio of HRRm that were somatic

in origin relative to germline with 70% of ATM alterations and

89% of CDK12 alterations being somatic, based on a validated

computational algorithm (77). The prevalence of germline

alterations in HRR genes in mCRPC is 12% (78), with 6% in

BRCA1/2, ATM 1.6%, CHEK2 1.9% and other HRR genes below
Frontiers in Oncology 05
1%. In primary prostate cancer the overall prevalence of germline

DDR alterations is lower at 4.6%, with highest prevalence of 1% in

ATM, and 0.6% in BRCA1 and 0.2% in BRCA2 (78).

Loss of function of both alleles is needed for inactivation of HRR

gene function. Biallelic loss-of-function rate of HRR gene mutations in

prostate cancer is high at 73%, with the highest rate in BRCA2 (>90%)

and ATM (around 75%); beyond these, the rate is variable (ranging

between under 10% for BRIP1 and over 60% for CDK12) (52),

suggesting alterations in HRR genes are important drivers of

tumourigenesis for prostate cancer. Biallelic inactivation rate was high

for both germline and somatic BRCA alterations (52, 79), suggesting

both play an important role in prostate cancer tumourigenesis.

Beyond HRR gene alterations described above, epigenetic

silencing of another HRR gene – XRCC3 – has been reported in

prostate adenocarcinoma (80). XRCC3 is one of the RAD51

paralogues and its role in HRR has been previously reported (81).

Interestingly, XRCC3 alterations were mutually exclusive with

alterations in BRCA genes in a pan-cancer dataset, similar to

other HRR genes, which confirms its functional importance in the

HRR pathway. Depletion of this gene sensitised cells to PARP

inhibition preclinically (80), which warrants further investigation of

loss of XRCC3 expression as a potential biomarker for PARPi

sensitivity in clinic.
Repair via HRR

Cell survival Cell death

Erroneous repair/
genomic instability

HRR machinery

HRR proficient 
cell

HRR-deficient cell 
(eg BRCAm)

E

A

PARP enzymes 
mediate repair of 

DNA SSBs via BER

PARP

D

DSB

B

PARP inhibitors 
inhibit PARP and 

trap PARP enzyme 
at sites of DNA SSBs

mono

PARP
PARPi

C

Broken replication forks lead 
to DSBs due to collision 

with replication machinery

PARP
PARPi

BRCA1
BRCA2

PALB2
RAD51

RAD51B,C,D

BARD1
BRIP1

FANCL

RAD54L

CDK12

ATM

CHEK1 CHEK2

Cell cycle checkpoint

FIGURE 1

Mechanism of action of PARP inhibitors (as monotherapy) in HRR deficient background (A) Poly(ADP-ribose) polymerase (PARP) enzymes are recruited
to sites of DNA single-strand breaks (SSBs) and mediate their repair via base excision repair (BER). (B) PARP inhibitors inhibit PARP and trap PARP enzyme
at sites of SSBs. (C) In replicating cells, due to collision of trapped PARP with replication machinery, broken replication forks occur, which lead to
double-strand breaks (DSBs). (D) In normal cells or HRR proficient cells, such DSBs get repaired via an accurate DNA repair process of HRR, with some
of the key HRR factors depicted in panel (E) In HRR-deficient cells, such as BRCA mutant cells or with alteration in another HRR gene, lack of efficient
HRR repair leads to erroneous DNA repair and subsequent genomic instability and cell death. (E) HRR is an accurate DNA repair pathway, which
operates in S/G2 cells where the sister chromatid is present. HRR factors include DNA damage sensors and factors involved in direct repair [BRCA1,
BRCA2, PALB2, RAD51 and RAD51 paralogues (B–D)], as well as DNA repair by either interacting with key HRR factors (BARD1, BRIP1, FANCL, RAD54L) or
regulating HRR gene expression (CDK12), as well as key kinases inducing cell cycle arrest to allow repair to occur (ATM, CHEK1, CHEK2).
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Genomic instability/HRD in prostate cancer

A consequence of deficiency in the HRR pathway (HRD) is the

accumulation of DNA damage leading to genomic instability

signatures, or scars, over time. In addition to alterations in HRR

genes, HRD/genomic instability can be another way to identify

patients who might benefit from PARP inhibitors. HRD has been

associated with a clinical benefit for PARP inhibitor treatment in

ovarian cancer (82–85) and to platinum-based chemotherapy in

breast cancer (86); however, there is lack of evidence of clinical

utility of HRD in other tumour types.

In prostate cancer, genomic instability/HRD (as measured by

genome-wide loss of heterozygosity [gLOH]) is generally lower than

in ovarian, breast or pancreatic cancers (52, 79). Biallelic alterations

in BRCA genes or HRR genes are associated with higher gLOH/

HRD scores compared with BRCA wild type (wt) or HRR wt

prostate cancer tumours, respectively, which is consistent with

these alterations leading to deficiency in the HRR pathway (52,

79). However, there are no data on the clinical utility of gLOH/HRD

scores in prostate cancer. The distinction between HRD-positive

and HRD-negative tumours, based on genomic instability in

prostate cancer, is not clear relative to ovarian and breast cancer.

The cut-off to identify HRD-positive tumours in prostate cancer
Frontiers in Oncology 06
would need to be robustly defined, and this is likely to be more

challenging than in ovarian cancer due to a lower dynamic range in

prostate cancer. Interestingly, Zurita et al. assessed the relationship

between genome instability and clinical features and identified that

higher genomic instability was associated with higher risk of disease

progression to CRPC (87). Recently, a functional biomarker of HRR

has been developed based on measuring nuclear foci formed by the

key HRR factor, RAD51, at DNA damage sites, which is currently

being implemented in clinical trials (88).

Beyond HRR, alterations in other genes in the DDR pathway are

relatively low, however some are potentially actionable. Deficiency

in MMR is the underlying cause of the microsatellite instability-

high (MSI-H) phenotype, which is a biomarker of response to

immune checkpoint blockade therapy (89). Prevalence of

alterations in the MMR pathway (MLH1, MSH2, MSH6, PMS2)

or MSI-H in prostate cancer is much lower than HRRm, at around

3–5% (49). Interestingly, mutual exclusivity between genomic

instability/HRD and MSI-H has been reported across tumours

(79, 90). In prostate cancer, 12.8% of BRCA1 and 3.4% of BRCA2

alterations co-occurred with MSI-H, and 46.3% of MSI-H had at

least one HRR gene mutation; however, most BRCA mutations in

the MSI-H segment were monoallelic (90, 91).
Increased prevalence of HRR alterations in
metastatic vs primary/early prostate cancer

Enrichment of BRCA1/2, ATM and CDK12 mutations in

advanced prostate cancer has been documented in the literature

by several studies (43, 45, 49, 92). Armenia et al. performed a large

study that analysed 680 primary tumours and 333 metastatic

samples and identified HRR defects in 10% and 27% of the

primary and metastatic samples, respectively (43). Similarly,

Abida et al. (45) observed an increase in HRR alterations

according to disease progression, with 10% of HRR alterations

detected in primary tumours, 14% in castration-sensitive prostate

cancer and 27% in CRPC. The high representation of BRCA2

mutations in advanced/metastatic prostate cancer is considered to

be a consequence of BRCA2 mutations being associated with a

particularly aggressive phenotype (49, 93–95) rather than these

mutations (e.g. androgen receptor mutations and amplifications)

being acquired under treatment with standard therapies (96). An

increase in the prevalence of DDR alterations in metastatic

compared with primary prostate cancer could either be due to

disease progression or therapy exposure, or could be due to a worse

prognosis for patients with mutations/alterations in DDR genes

(DDRm) prostate cancer. Recent analysis of paired tumour samples

from patients with prostate cancer (treatment-naïve and metastatic

tumour samples) showed that in most cases, alterations in DDR

genes were already present in the primary prostate cancer sample,

suggesting that this is an early event in tumourigenesis (97). On the

contrary, alterations of AR/TP53/RB1 are enriched at later disease

stages (97). These data suggest that genomic instability associated

with alterations in HRR genes leads to a more aggressive disease,

which is more likely to metastasise, highlighting the need to treat

those patients early.
TABLE 2 Prevalence of HRRm in primary and metastatic prostate cancer.

Gene Prevalence range
primary PC (%)

Prevalence range
in mCRPC (%)

References

BRCA1/
BRCA2

2.5–6.5 11–13

(23, 43, 45,
46, 49, 51)

ATM 0.5–3 4–6

BRCA1/
2/ATM

6–7 13–19

CDK12 2–3 1.3–8

CHEK2 0–1 1.4–2

PALB2 0–1 0.3–3

RAD51B 0 0–0.7

RAD51C 0–0.9 0–1.8

RAD51D 0–0.6 0–0.6

RAD54L 0 0–0.6

BRIP1 0–0.3 0–0.3

CHEK1 0–1 0.9–2

BARD1 0–0.4 1.2–1.4

FANCL 0–0.7 1.2

HRRm 10–11 23–28
Pathogenic/likely pathogenic or deleterious/likely deleterious alterations were included, and
variants of uncertain significance were excluded where possible. Data from available public
sources may differ in the determination of pathogenicity of mutations. Some of the datasets
(42, 43, 59) have been reanalysed by AstraZeneca using cBioPortal (60). Co-occurring HRR
gene mutations were excluded from analysis of total HRRm prevalence where possible. Some
of the germline variants were excluded in MSK-IMPACT and MSK-DFCI datasets (43, 59)
due to patients consent.
HRRm, homologous recombination repair gene mutations; mCRPC, metastatic castration-
resistant prostate cancer; PC, prostate cancer.
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Increased prostate cancer risk for germline
alterations in DDR genes

Family history is an important risk factor to be considered for

development of prostate cancer. Germline alterations in MMR

genes (MLH1, MSH2, MSH6, PMS2) and the HRR pathway

(BRCA1/2, ATM, PALB2, CHEK2), particularly BRCA and ATM,

are associated with increased risk of hereditary prostate cancer, as

reported by National Comprehensive Cancer Network (NCCN)

guidelines (98). The proportion of patients with prostate cancer

with germline mutations in DDR genes increases from around 5%

in primary cancer to 12–16% in mCRPC, indicating a more

aggressive nature of disease with germline DDR alterations (46,

78, 99).

Men with germline pathogenic BRCA1/2 mutations have an

increased risk of prostate cancer and the relative increase in risk of

prostate cancer in men <65 years ranges from 1.8-fold to 3.8-fold

for germline BRCA1m carriers (100, 101) and from 2.5-fold to 8.6-

fold for germline BRCA2m carriers (102–105) compared with non-

carriers. A large meta-analysis of 8 cohort, 7 case control, 4 case

series, 28 frequency and 11 survival studies found that being a

BRCA mutation carrier (BRCA1 and/or BRCA2) was associated

with a significant increase in prostate cancer risk (odds ratio

[OR] =1.90; 95% CI 1.58, 2.29), with BRCA2 mutations being

associated with a greater risk of prostate cancer than BRCA1

(106) (Table 3). Lifetime risk of cancer ranged between 19–61%
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for BRCA2 carriers, and 7–26% for BRCA1 carriers (108). A

prospective study, IMPACT, which is evaluating targeted

screening using prostate-specific antigen (PSA) in men with

germline pathogenic BRCA1/2 mutations, has reported a higher

incidence of prostate cancer in BRCA2 carriers compared with

controls at interim analysis (114). Furthermore, germline

pathogenic BRCA2 mutations are associated with a particularly

aggressive phenotype and poor outcomes (93, 94). Germline

pathogenic mutation status of BRCA and ATM distinguishes risk

for lethal and indolent prostate cancer and is associated with earlier

age at death and shorter survival time (115). Germline pathogenic

variants in ATM lead to an approximate fourfold elevated risk of

developing prostate cancer, and in addition, they are more likely to

develop the disease earlier (109, 116). Beyond BRCA genes, there is

evidence of elevated prostate cancer risk for CHEK2 heterozygotes

(110, 111) and increased incidence of germline pathogenic CHEK2,

BRIP1 and PALB2 mutations in familial cases of prostate cancer

(Table 3) (64, 112, 117).

In addition to prostate cancer, HRR genes are associated with

increased risk of breast, ovarian and pancreatic cancer (BRCA1,

BRCA2, ATM, BRIP1, PALB2, BARD1, CHEK2, RAD51C and

RAD51D). Alterations in some of the DDR genes are associated

with cancer predisposition syndromes (e.g. BRCA1, BRCA2, ATM,

FANCL, PALB2, RAD51C, BRIP1, FA genes, MMR genes) (64, 100,

101, 110, 115, 116, 118–127). Germline pathogenic mutations in

MMR genes (MLH1, MSH2, MSH6 and PMS2) are the key cause of
TABLE 3 Hereditary cancer risk for HRR genes.

Gene name Prostate cancer risk

RR or OR (95% CI) References

BRCA1 RR 1.8–3.8 (101, 108, 100)

OR 1.35 (1.03–1.76)
OR 1.83 (0.35–9.51)

(106, 107)

BRCA2 RR 2.5–8.6 (102–105, 108)

OR 2.64 (2.03–3.47)
OR 3.92 (1.34–11.47)

(106, 107)

ATM OR 4.4 (2.0–9.5)
OR 3.83 (1.09–13.41)

(107, 109)

CHEK2 Higher risk suggested (OR 1.837) increased incidence of CHEK2 mutations in family cases compared with
unselected cases and the general population
OR 0.47 (0.15–1.45)

(107, 110, 111)

PALB2 Family segregation case (112)

BRIP1 Increased prevalence in familial and young-onset cases compared with controls
OR 2.4 (0.25, 23.4)

(105, 113)

RAD51C Unknown

RAD51D Unknown

BARD1 OR 0.32 (0.03–3.55) (107)

CDK12a, CHEK1, RAD54L,
RAD51B, FANCLb

Unknown
aCDK12, not likely to be associated as very few/no germline mutations; most are somatic; bFANCL, associated with cancer predisposition syndrome Fanconi anaemia. CI, confidence interval;
HRR, homologous recombination repair; OR, odds ratio; RR, relative risk, SRR, standardised relative risk.
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Lynch syndrome (LS) – an inherited cancer predisposition

syndrome leading to increased risk of particularly colorectal

cancer and other LS-associated cancers. Patients with LS have a

twofold elevated risk of incidence of prostate cancer compared with

the general population (128).
Prognosis for HRRm prostate cancer

Among HRR alterations, germline pathogenic BRCA mutations

in particular are associated with a more aggressive prostate cancer

and worse outcomes for patients with localised prostate cancer and

mCRPC compared to non-carriers. The presence of a germline

pathogenic BRCA mutation in prostate cancer is associated with a

more aggressive phenotype, such as higher Gleason scores, nodal

involvement and presence of metastases at diagnosis, as shown in

large retrospective analyses (93, 94). BRCA2 was reported to be an

independent prognostic factor in a multivariate analysis, where

patients with germline pathogenic BRCA mutations had overall

worse outcomes than non-BRCAm patients in a cohort with

localised disease as well as in the overall cohort (93, 94). Another

study reported that the combined rate of germline BRCA/ATM

alterations was significantly higher in patients with lethal prostate

cancer than in patients with localised prostate cancer, and patients

with germline BRCA/ATM alterations with either localised disease

or a diagnosis with metastases, had a shorter prostate-cancer-

specific survival compared with non-carriers (129).

Once prostate cancer becomes castration-resistant and

progresses to a metastatic stage (mCRPC) the disease is not

curable and treatment must focus on extending life, delaying

disease progression and improving quality of life (130, 131).

Germline mutations in HRRm have been found in around 12% of

patients with mCRPC (78). There has been conflicting evidence

reported for the association of HRRm and prognosis for patients

with mCRPC. Annala et al. reported worse outcomes for germline

DDR carriers (17/22 were gBRCAm) compared with non-carriers

when treated with first-line androgen receptor signaling inhibitors

(132). However, more recently Antonarakis et al. reported that

patients with BRCA/ATM mutations (n=9) do better on first-line

NHA than those without mutations in these genes (133). These

findings are based on a relatively small number of patients with

HRRm. A retrospective analysis showed similar OS outcomes for

patients with metastatic prostate cancer and with germline

mutations in DDR genes compared with those without; however,

somatic alterations in DDR genes were not assessed, and a

significant proportion of patients were treated with PARPi or

platinum-based chemotherapy, which might have contributed to

better outcomes for patients with DDRm (50, 96). A prospective

study, PRO-REPAIR, evaluated prevalence of germline DDR

mutations and their impact on outcomes for patients with

mCRPC (99). This trial enrolled unselected patients with mCRPC

and screened for germline alterations in 107 DDR genes with the

primary objective to assess the impact of germline alterations in

ATM/BRCA1/BRCA2/PALB2 on cause-specific survival (CSS) from

diagnosis of mCRPC. In PRO-REPAIR, 16% of patients had a

germline mutation in a HRR gene (most commonly BRCA and
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ATM alterations). Although numerically the CSS was shorter in

patients with ATM/BRCA1/BRCA2, the difference was not

statistically significant; however, patients with germline BRCA2

mutation had considerably shorter CSS than non-carriers and

BRCA2 was an independent prognostic factor, where sequence

and type of treatment may impact the outcomes (99). Castro

et al. reported that treatment sequence is important for prognosis,

with patients with mCRPC and DDR mutations having worse

outcomes overall but better outcomes following first-line NHA

treatment (99). These observations might explain conflicting

observations in different studies. In addition to alterations in

HRR genes, genomic instability might also be associated with

worse outcomes, such as with risk of biochemical recurrence and

metastases (134, 135).
Treatment options for patients with DDRm
prostate cancer

High unmet clinical need and poor prognosis for patients with

prostate cancer and DDR has triggered an active development of

targeted treatment options for these patients (136). As described

above, based on the principle of synthetic lethality, cells deficient in

the HRR pathway are sensitive to PARP inhibitors (137, 138)

(Figure 1). PARP inhibitors as monotherapy have demonstrated

efficacy in patients with evidence of deficiency in the HRR pathway

in the tumour and have been approved for treatment of HRRm

mCRPC (136). The clinical benefit of PARPi in combination with

NHA has been demonstrated in biomarker-selected and biomarker-

unselected populations in first-line mCRPC (Table 1) (36–39), with

approval in some regions, providing additional efficacious

treatment options for these patients.

Platinum-based chemotherapy also leads to DNA damage,

which is repaired by HRR pathway. Increased platinum sensitivity

in tumours deficient in HRR pathway (ie BRCAm) has been

reported in other tumour types, such as breast or ovarian cancer

(139, 140) Retrospective analyses indicated encouraging anti-

tumour activity of platinum-based chemotherapy in advanced

prostate cancer patients with BRCA alterations or some DDR

alterations with higher PSA response rates in patients with DDR/

BRCA alterations compared to patients without (141–143),

although these findings need to be validated in a prospective setting.

ATM-deficient cells are dependent on ATR activity, which leads

to sensitivity to ATR inhibition preclinically; clinical trials with

ATR inhibitors as monotherapy or in combinations are ongoing,

including in biomarker-selected patients with ATM- or DDR-

deficiency in advanced solid tumours, including prostate cancer,

as reviewed recently by Ngoi et al. (144).

Anti-PD1 antibody (Pembrolizumab) is approved by the Food

and Drug Administration (FDA) to treat cancers with MMR

mutations or MSI-H, including prostate cancer (145, 146).

CDK12 inactivation results in tandem duplications in the genome

leading to increased fusions and mutations and might lead to

increased antigens. Clinical trials with immune checkpoint

inhibitors are ongoing for patients with CDK12m and advanced

prostate cancer (147–149).
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Conclusions/takeaway

Prostate cancer is the third most common cancer worldwide, and

metastatic prostate cancer is associated with poor outcomes and high

mortality. There are various genomic alterations commonly

associated with prostate cancer, and alterations in the HRR

pathway of DDR are prevalent in prostate cancer, ranging from

23–28% (25, 42, 43, 46, 78). Germline alterations in several HRR

genes, such as BRCA, ATM and others, are associated with increased

prostate cancer risk, and are generally associated with worse

prognosis for patients with prostate cancer. Alterations in DDR

genes in tumours tend to be an early event in prostate

tumourigenesis and are associated with more aggressive disease and

likelihood of metastasis (97). With current breakthroughs regarding

targeted treatments, PARP inhibitors as monotherapy are an option

for patients with HRR alterations in mCRPC, who have progressed

on NHA (136) and in some countries, are available in combination

with NHA in a broad population of 1L mCRPC (36, 55, 99). Clinical

trials are ongoing that are evaluating ATR inhibitors in all solid

tumours, including prostate cancer, as reviewed by Ngoi et al. (144).

Given the association of some DDR genes with worse prognosis, and

DDR alterations being an early event in prostate cancer, future

clinical trials for patients with DDRm and an earlier stage of

disease are important to improve outcomes for these patients.
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Glossary

ADT androgen deprivation therapy

BER base excision repair

BRCAm mutations in BRCA1 and BRCA2

CI confidence interval

CRPC castration-resistant prostate cancer

CSS cause-specific survival

DDR DNA damage response

FA Fanconi anaemia

gLOH genome-wide loss of heterozygosity

HRD homologous recombination deficiency

HRR homologous recombination repair

LS Lynch syndrome

mCRPC metastatic castration-resistant prostate cancer

mCSPC metastatic castration-sensitive prostate cancer

MMR mismatch repair

MSI-H miscrosatellite instability-high

NCCN National Comprehensive Cancer Network

NHA new hormonal agent

OR odds ratio

OS overall survival

PARP Poly(ADP-ribose) polymerase

PARPi Poly(ADP-ribose) polymerase inhibitor

PSA prostate-specific antigen

rPFS radiographic progression-free survival

RR relative risk

SRR standardised relative risk

SSBs single-strand breaks.
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