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immunological and prognostic
biomarker for kidney renal clear
cell carcinoma
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Gasdermin (GSDM)-mediated cell lytic death plays an essential role in immunity

and tumorigenesis. Despite the association of gasdermin B (GSDMB) with the

tumorigenesis of various cancers, whether GSDMB functions as a prognostic

biomarker in renal cell carcinoma remains poorly understood. Here, we explored

the potential immunological functions and the prognostic value of GSDMB

across multiple tumors with The Cancer Genome Atlas (TCGA) and Genotype-

Tissue Expression (GTEx) databases, including analyzing the relationship

between GSDMB expression and prognosis, tumor– immune system

interactions, immunomodulators, and immune cell infiltration of different

tumors. Importantly, elevated expression of GSDMB is an essential factor for

the poor prognosis of kidney renal clear cell carcinoma (KIRC) patients,

suggesting that it might be helpful to predict a survival benefit from a clinical

therapy regimen. Furthermore, GSDMB expression promoted the level of CD4+

T-cell infiltration of the tumors but is significantly negatively associated with

immature dendritic cells (iDCs) in KIRC. Additionally, we identified TNFRSF25 and

TNFSF14 as immunostimulators highly correlated with GSDMB expression. Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO)

enrichment analyses showed that GSDMB and its interacting proteins might

affect tumor growth through the serine metabolism pathway. Our current results

demonstrate a promising therapeutic strategy targeting GSDMB and provide new

insights into GSDMB as an immunological and prognostic biomarker for KIRC.
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Introduction

Cancer remains the leading cause of death worldwide and a

challenging obstacle to improved life expectancy (1). Unfortunately,

traditional chemotherapy options for cancers have significant side

effects mitigated by immunotherapy-based approaches (2, 3). Over

the past decade, immune checkpoint inhibitors (ICIs), especially the

anti-PD-1/PD-L1 or anti-CTLA4 antibodies, have shown excellent

prospects in many cancers. However, the tumor-infiltrating

lymphocyte (TIL) level dramatically determines the efficacy of the

immunotherapies overcoming tumor-driven immunosuppression

(2). Interestingly, tumor-specific neoantigens and tumor

mutagenicity are related to tumor immunogenicity, affecting the

efficacy of the immune-checkpoint therapy (2, 3). In contrast, ICIs

a re ine ff ec t i ve in immune “co ld” tumors wi th low

lymphocyte infiltration.

Pyroptosis is lytic cell death and a critical effector pathway of

innate immunity, which can promote “cold” tumor to “hot” tumor

conversion (4). Historically, pyroptosis was initially defined as a

caspase-1/4/5/11-mediated cell death with cytokine secretion (4).

However, recently, the gasdermin (GSDM) family members were

identified as the driving pore-forming effector proteins for

membrane rupture and pyroptosis (5). The expression of GSDMs

was closely related to many biological processes, including cancer-

related pathways, drug resistance, immune subtype, and tumor

microenvironment regulation (6). GSDMs comprise six human

paralogous genes, GSDMA, GSDMB, GSDMC, GSDMD, GSDME

(also known as DFNA5), and PJVK (also known as DFNB59), of

which only GSDMB (or GSDML) is not found in rodents (5, 7).

Gasdermins have an N-terminal pore-forming domain and a C-

terminal inhibitory domain, which can be cleaved by caspase-1 or

caspase-11/4/5 (8). Upon caspase cleavage, the N-terminal domain

binds to membrane phospholipids and oligomerizes to form pores

on the plasma membrane (9–16). In multiple cancer types, GSDM

family genes tended to be upregulated compared with adjacent

normal tissues, while there is no inherent uniform pattern in the

expression of each GSDM gene (6). GSDME is cleaved and activated

by caspase-3, similar to GSDMD by caspase-1/11 (5, 10, 16), and

can switch caspase-3-driven apoptosis to pyroptosis, making cancer

cells more sensitive to cytotoxic agents (17). However, all six GSDM

members have marked intra- and inter-cancer heterogeneity

concerning corresponding gene expression levels (6). Also,

GSDMs are widely related to different cancers, making it

impossible to determine whether a particular GSDMs gene is an

oncogene or a tumor suppressor gene without selecting a cancer

type (6).

The human GSDMB gene has six alternatively spliced

transcripts and consists of 12 exons (18). GSDMB is involved in

pyroptosis caused by granzyme A (GZMA) secreted by cytotoxic T

lymphocytes (CTLs) and natural killer (NK) cells. GZMA

predominantly cleaves at residue Lys244 within the interdomain

linker to activate the GSDMB N-terminal leading to pore formation

and release of pro-inflammatory cytokines (19, 20). Also, Shigella

flexneri can secrete IpaH7.8 to ubiquitinate and target GSDMB for

26S proteasome degradation to evade natural killer cell responses
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(21). To further identify the potential functions of GSDMB, we

analyzed the pan-cancer expression of GSDMB, including mRNA

expression, clinical survival and prognosis, immune cell infiltration,

and potential signal pathways from The Cancer Genome Atlas

(TCGA) database to explore the potential mechanism of

tumorigenesis and tumor inhibition among different cancer

species (9, 22) (Figure S1).

Renal cell carcinoma (RCC) is the most common malignant

kidney tumor, accounting for approximately 80%–90% of renal

malignancies and 2%–3% of systemic malignant tumors (23). RCC

consists of various pathological subtypes characterized by distinct

genetic variants, histological changes, and various responses to

therapies, including kidney renal clear cell carcinoma (KIRC)

(~75%), kidney chromophobe (KICH, ~5%), and kidney renal

papillary cell carcinoma (KIRP; 10%~16%) (24). However,

approximately 15% of RCC patients, due to the lack of reliable

and specific diagnostic biomarkers, progress to distant metastases at

clinical diagnosis and have a poor prognosis (23, 25). Through

continuous development over the past two decades, systemic

therapy of RCC includes the VEGF-tyrosine kinase inhibitors or

the anti-VEGF antibodies, mTOR pathway inhibition, and ICIs

(26). Among them, the development of ICIs has transformed the

management of advanced RCC. However, most RCC patients still

do not experience durable clinical benefits due to susceptibility to

drug resistance (27). Recently, GPX1 is reported as a biomarker for

the diagnosis and prognosis of kidney cancer, while DDX1 may

serve as a prognostic marker for renal cancer (23, 28). Nevertheless,

due to the susceptibility to drug resistance of patients with advanced

renal cancer, there is still an urgent need to discover specific

diagnostic biomarkers and new therapeutic targets for RCC to

improve the life quality of patients with advanced renal cancer (23).
Results

Clinical feature analysis and prognostic
value of GSDMB in different cancers

To assess the relevance of GSDMB for clinical prognosis

(Figures 1, S2), we analyzed the association between GSDMB

expression and overall survival (OS), cancer stage, and tumor

grade across different human cancers (Figures 1A–C, S2). Log-

rank analysis showed that GSDMB gene expression in KIRC had the

highest impact on OS (p < 0.0001) and, to a less extent, in prostate

adenocarcinoma (PRAD) (p < 0.05). GSDMB gene is an

unfavorable prognostic marker in KIRC and PRAD and a

favorable prognostic marker in bladder urothelial carcinoma

(BLCA) and skin cutaneous melanoma (SKCM) (Figure 1A).

GSDMB has a positive protective effect on the prognosis of BLCA

(p < 0.0001) and SKCM (p = 0.00729) tumor patients in BLCA

tumors with a prognosis of approximately 6 years. Compared with

patients with low expression of GSDMB, high expression of

GSDMB can protect patient survival by more than 40%.

However, in KIRC tumors, high expression of GSDMB has the

opposite effect, reducing the 8-year survival rate of patients with a
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FIGURE 1

Associations between GSDMB and clinical features. (A) Associations between GSDMB expression and overall survival across human cancers. Kaplan–
Meier survival curves for GSDMB gene expression were associated with overall survival. Patients were divided into high- and low-expression groups
defined by the expression level of GSDMB gene (median was the cutoff). (B) Associations between GSDMB expression and stage across human
cancers. Spearman’s correlation coefficient (rho) for GSDMB gene expression is positive in KIRC, PAAD, and rectal carcinoma (READ). Spearman’s
correlation coefficient (rho) for GSDMB gene expression is negative in BLCA, COAD, and LUAD. (C) Associations between GSDMB expression and
grade across human cancers. Spearman’s correlation coefficient (rho) for GSDMB gene expression is positive in KIRC, OV, and HNSC and negative in
STAD. Spearman’s rank correlation rho represents the direction of association between X (independent variable) and Y (dependent variable). The
magnitude of Spearman’s correlation increases as X and Y become closer to a perfect monotonic function of each other. When X and Y are entirely
monotonically correlated, Spearman’s correlation coefficient becomes 1. GSDMB, gasdermin B; KIRC, kidney renal clear cell carcinoma; PAAD,
pancreatic adenocarcinoma; READ, rectal carcinoma; BLCA, bladder urothelial carcinoma; COAD, colon adenocarcinoma; LUAD, lung
adenocarcinoma; KIRC, kidney renal clear cell carcinoma; OV, ovarian serous cystadenocarcinoma; HNSC, head and neck squamous cell carcinoma;
STAD, stomach adenocarcinoma.
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prognosis of 20% (Figure 1A). Additionally, the “Clinical” module

of TISIDB was used to analyze the association between GSDMB and

the clinical progression (stage) of different cancers (Figures 1B, C).

Results showed that the expression of GSDMB has a significant

positive relationship with the disease stage of KIRC tumor patients

(p < 0.0001). Also, there is a high expression of GSDMB in

advanced KIRC tumors and high-grade KIRC tumors (p =

0.000139) (Figures 1B, C). Contrastingly, low expression of the

GSDMB was associated with poor OS and prognosis for BLCA (p <

0.0001) and SKCM (p = 0.00729) (Figures 1A, S3). Further analysis

of the relationship between the BLCA tumor stage and GSDMB

expression showed that the expression of GSDMB was inhibited in

advanced BLCA tumors (p = 0.00123), which is consistent with the

clinical prognostic data.
Promoter methylation analysis of GSDMB

Promoter methylation regulates gene expression in different

cancers (29, 30). Methylation analysis showed that promoter

methylation negatively correlated with GSDMB expression level

in KIRC (p < 0.001), uterine corpus endometrial carcinoma

(UCEC) (p < 0.01), lung adenocarcinoma (LUAD) (p < 0.001),

and pancreatic adenocarcinoma (PAAD) (p < 0.001) (Figures 2A–

D). The promoter methylation level of GSDMB negatively regulated

the degree of tumor development and tumor differentiation of

KIRC (Figure 2A). Also, it negatively regulated UCEC tumor

development stage 1, stage 2 and stage 3, and differentiation

grade 3 (Figure 2B) and significantly negatively regulated the

progression of LUAD tumors, in which tumor onset was

associated with TP53 mutation (p < 0.05) (Figure 2C). Moreover,

GSDMB was negatively regulated in the progression and

differentiation of PAAD tumors, primarily stage 2 (p < 0.001) and

grades 1 to 3 (Figure 2D). The promoter methylation levels of

GSDMB have distinct effects on protein expression in different

cancers. Surprisingly, high promoter methylation levels of GSDMB

are related to poor prognosis of KIRC patients, similar to UCEC,

LUAD, and PAAD, which showed contrasting clinical outcomes

based on GSDMB expression. Meanwhile, at the protein level and

compared with normal tissues, GSDMB protein expression was

higher in KIRC, UCEC, LUAD, and PAAD (Figures 3A–D, S4B).

The methylation level of the promoter regulates the protein level of

GSDMB, and the analysis results also support this conclusion.
Tumor–immune system
interactions analysis

We next investigated the relationship between the abundance of

TILs and the expression, copy number, methylation, and mutation

of GSDMB by using the database containing 28 TIL types of

immune-related characteristics from Charoentong’s study (31,

32). For each cancer type, the relative abundance of TILs was

inferred by the gene set variation analysis (GSVA) based on the
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gene expression profile. The analysis results show that in KIRC (rho

= −0.503) and PRAD (rho = −0.378), but not in other cancers,

immature dendritic cells (iDCs) may be regulated by GSDMB gene

(Figures 4A, B; S5). iDCs are generally associated with scouting

functions through endocytosis but can differentiate into mature

DCs through pattern recognition receptor (PRR) simulation and

contribute to antigen presentation functions (33). Therefore, DCs

are dominant partners of T cells, indispensable for initiating

adaptive immune responses (34). The high expression of GSDMB

in KIRC is related to the low expression levels of iDCs in TILs,

which may be one of the fundamental reasons for the poor clinical

prognosis of KIRC patients with high GSDMB expression

(Figure 1A). However, the level of TILs in BLCA patients with

high GSDMB expression is generally low, which may reveal why the

clinical prognosis of this type of BLCA patient has been abysmal for

more than 8 years (Figure 1A). This is a long-term slow effect on the

combat effectiveness of the systemic immune system.
GSDMB regulates immunomodulators
in KIRC

To unveil the relationship between different immunomodulators

and GSDMB expression, copy number, methylation, or mutation,

534 samples in the TISIDB database were analyzed using Spearman’s

correlation test. Two immunomodulators, TNFSF14 and TNFRSF25,

were found to regulate GSDMB gene expression in cancers

(Figures 4C, D). TNFSF14 is positively correlated with GSDMB in

KIRC (rho = 0.459, p < 0.0001), SKCM (rho = 0.307, p < 0.0001), and

ovarian serous cystadenocarcinoma (OV) (rho = 0.251, p < 0.0001)

patients (Figures 4C, D). Meanwhile, TNFRSF25 is positively

correlated with GSDMB expression in KIRC (rho = 0.795, p <

0.0001), PRAD (rho = 0.657, p < 0.0001), SKCM (rho = 0.587, p <

0.0001), head and neck squamous cell carcinoma (HNSC) (rho =

0.416, p < 0.0001), BLCA (rho = 0.36, p < 0.0001), and LUAD (rho =

0.332, p < 0.0001) as well (Figures 4C, E). The two

immunomodulators (TNFSF14 and TNFRSF25) were consistently

highly expressed in KIRC (collected from Charoentong’s study) and

were therefore selected for further analysis.

TNFSF14 can activate TNFRSF3/LTBR as a costimulatory signal

for T-cell proliferation and interferon-g (IFN-g) production; however,
this pathway is regulated by the decoy receptor TNFRSF6B and the

interaction with TNFRSF14/HVEM (35). Previous reports have

demonstrated that IFN-g can induce the protein expression of

GSDMB in cells (19). Combined with our analysis results, IFN-g and
GSDMB are likely to form a positive closed loop through TNFSF14.

TNFRSF25 is the receptor of TNFSF12/APO3L/TWEAK, which

regulates lymphocyte homeostasis and mediates direct interaction

with the adapter protein TRADD to initiate NF-kB activation and

induce apoptosis (36–38). Notably, TNFRSF25 was prevalently and

significantly positively correlated with high GSDMB expression in

different tumors (Figures 4C, E). The results suggest that the role of

GSDMB gene may be involved in the pathway of NF-kB activation and

induction of apoptosis related to TNFRSF25 and TRADD.
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GSDMB-related immune
infiltration analysis

The tumor microenvironment (TME) is complex and

dynamic, with various types of cells, including endothelial cells,

fibroblasts, immune cells, and stromal cells (39). Mechanistically,

cytokines in TME modulate immune function and can lead to

weak immune response and tumor progression (39). In addition,
Frontiers in Oncology 05
immunosuppressive TME is associated with tumor occurrence,

growth, and metastasis (40). TILs and TME are vital factors for

tumor growth and disease progression. Therefore, we assessed the

potential correlation between GSDMB expression and immune

cell infiltration in different cancers (Figures 5, S6). CD4+ T

lymphocytes, responsible for eliminating and controlling various

infections, in KIRC patients (partial.cor = 0.291, p < 0.0001) were

positively correlated with the expression of GSDMB. When a
A

B

D

C

FIGURE 2

The promoter methylation level of GSDMB in different cancers. The promoter methylation of the GSDMB in KIRC (A), UCEC (B), LUAD (C), and PAAD (D)
with different stages, grades, and TP53 mutant pathways were analyzed through the UALCAN from the CPTAC dataset. Based on GSDMB promoter
methylation profiles by sample types, promoter methylation levels of GSDMB were significantly reduced in KIRC, UCEC, LUAD, and PAAD primary
tumors compared with normal. Based on GSDMB promoter methylation profiles by individual cancer stages/tumor grade, promoter methylation levels of
GSDMB were significantly reduced in KIRC, UCEC, LUAD, and PAAD. The beta value indicates DNA methylation level ranging from 0 (unmethylated) to 1
(fully methylated). Different beta value cutoff has been considered to indicate hyper-methylation [beta value: 0.7–0.5] or hypo-methylation [beta value:
0.3–0.25]. *p < 0.05; **p < 0.01; ***p < 0.001. GSDMB, gasdermin B; KIRC, kidney renal clear cell carcinoma; UCEC, uterine corpus endometrial
carcinoma; LUAD, lung adenocarcinoma; PAAD, pancreatic adenocarcinoma; CPTAC, Clinical Proteomic Tumor Analysis Consortium.
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naive CD4+ T cell is activated by antigen-presenting cells, it can

develop into several different functional T helper (TH) cells. The

immune response activity of CD4+ TH1 cells is mainly mediated

by the production of its hallmark cytokine IFN-g (41). Therefore,
GSDMB can be induced by IFN-g.
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Similarly, other TILs can be used as auxiliary judgment

indicators for clinical disease diagnosis and prognosis. For

example, in the BLCA tumor microenvironment with high

GSDMB expression, the infiltration levels of CD8+ T cells

(partial.cor = −0.315, p < 0.0001), macrophages (partial.cor =
A

B

D

C

FIGURE 3

The protein expression levels of GSDMB in different cancers. (A–D) The expression levels of the GSDMB protein between normal tissue and primary
tissue of KIRC (A), UCEC (B), LUAD (C), and PAAD (D) with different stages and grades were analyzed through the UALCAN from the CPTAC dataset.
Based on GSDMB proteomic expression profiles of sample types, GSDMB protein expression was significantly increased in KIRC, UCEC, LUAD, and
PAAD primary tumors compared with normal tissue. Based on GSDMB proteomic expression profiles of individual cancer stages, GSDMB protein
expression was significantly increased in the KIRC cancer stage 1, UCEC cancer stage 1, LUAD cancer stage 1, LUAD cancer stage 2, PAAD cancer
stage 1, PAAD cancer stage 2, and PAAD cancer stage 3 compared with normal. Based on GSDMB proteomic expression profiles of tumor grade,
GSDMB protein expression was significantly increased in KIRC tumor grade 2, UCEC tumor grade 1, UCEC tumor grade 2, LUAD tumor grade 2,
PAAD tumor grade 2, and PAAD tumor grade 3. Z-values represent standard deviations from the median across samples for the given cancer types.
*p < 0.05; **p < 0.01; ***p < 0.001. GSDMB, gasdermin B; KIRC, kidney renal clear cell carcinoma; UCEC, uterine corpus endometrial carcinoma;
LUAD, lung adenocarcinoma; PAAD, pancreatic adenocarcinoma; CPTAC, Clinical Proteomic Tumor Analysis Consortium.
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−0.204, p < 0.0001), and dendritic cells (partial.cor = −0.215, p <

0.0001) were low; in the same PRAD tumor microenvironment with

high GSDMB expression, the infiltration level of CD8+ T cells

(partial.cor = −0.248, p < 0.0001) was low, and the infiltration level
Frontiers in Oncology 07
of CD4+ T cells (partial.cor = 0.261, p < 0.0001) was high; common

immune-infiltrating lymphocytes generally existed at high levels in

the SKCM tumor microenvironment with high GSDMB

expression (Figure 5).
A B

DC

E

FIGURE 4

The relationship between GSDMB expression and two kinds of immunomodulators. (A) Spearman’s correlations between GSDMB and TILs across
human cancers. (B) Representative correlation dot plots for iDCs. The expression of GSDMB gene in KIRC has the most significant negative
correlation with iDCs. (C) Spearman’s correlations between GSDMB and immunostimulators across human cancers. Representative correlation dot
plots for TNFSF14 (D) and TNFRSF25 (E). The expression of GSDMB gene in KIRC has the most significant positive correlation with TNFSF14/
TNFRSF25. Spearman’s correlations: the value in the following heatmap represents the rho value. GSDMB, gasdermin B; TILs, tumor-infiltrating
lymphocytes; iDCs, immature dendritic cells; KIRC, kidney renal clear cell carcinoma.
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Enrichment analysis for
GSDMB-related genes

Next, to investigate the potential mechanisms that GSDMB

participated in the progression of cancers, we used the online tool

STRING to construct a protein–protein interaction (PPI) network

for GSDMB (Figure 6A). The DAVID tool was used to perform

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) enrichment analyses across many cancer types. The

results demonstrate that GSDMB interacted protein was

significantly involved in cytokine–cytokine receptor interaction,

sphingolipid metabolism, inflammatory bowel disease (IBD), and

several immune pathways such as IL18/33 production, IFN-g
production, and inflammatory response (Figures 6B, C). Based on

biological process (BP) analysis, GSDMB may participate in

immune response, programmed cell death, biosynthetic process,
Frontiers in Oncology 08
and other pathways to regulate tumor progression. The cellular

component (CC) analysis shows these genes mainly exist in the

serine C-complex, plasma membrane, and integral component of

the membrane. Based on molecular function (MF) analysis, these

genes have serine C-palmitoyltransferase activity, cytokine activity,

transferase activity, and catalytic activity (Figure 6C). It is worth

mentioning that abnormal sphingolipid metabolism is often

associated with cancer and neurodegenerative diseases. In

addition, serine palmitoyltransferase affects tumor growth by

regulating phospholipid metabolism (42). Moreover, we evaluated

the correlation between GSDMB and selected expression-related

genes, such as PPP1R1B, RP11-170M17.2, PSMD3, and TOP2A

(Figure 6D). Two types of crossover genes (ORMDL3 and PGAP3)

were predicted to have a significant association with GSDMB

(Figure 6E). These results indicate that GSDMB plays an essential

role in cancer metabolism and immunity.
FIGURE 5

The correlation between GSDMB expression and immune infiltration levels in diverse cancer types. Generated and displayed scatterplots showing
the purity-corrected partial Spearman’s rho value and statistical significance. Gene expression levels for tumor purity are consistently shown on the
leftmost panel. The scatter plots of related cancers generated by Spearman’s algorithm, including KIRC, BLCA, PRAD, and SKCM. In KIRC, the
expression level of GSDMB gene was significantly and positively correlated with CD4+ T cells. GSDMB, gasdermin B; KIRC, kidney renal clear cell
carcinoma; BLCA, bladder urothelial carcinoma; PRAD, prostate adenocarcinoma; SKCM, skin cutaneous melanoma.
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Genetic alteration analysis

To reveal whether the genetic alterations of GSDMB affect

tumor occurrence and the prognosis of patients, the cBioPortal

web (https://www.cbioportal.org/) was used to analyze the data

from the TCGA. Among the different types of genetic alterations,
Frontiers in Oncology 09
amplification was the most dominant type, especially in the

esophageal adenocarcinoma (EAC) (11.54% of whole cases) and

breast invasive carcinoma (BRCA) types (9.78% of whole cases)

(Figure 7A). In addition, GSDMB mutation frequencies are the

highest in SKCM and UCEC, whereas the missense mutation is the

most common type of GSDMB mutation, with a total of 50 cases of
A B

D E

C

FIGURE 6

Enrichment analysis for GSDMB-related genes. (A) Protein–protein interaction network between all available experimentally determined GSDMB-
binding proteins using the STRING tool. (B) The KEGG pathway and GO enrichment analyses (C) were performed on GSDMB-binding genes. (D)
The correlation between GSDMB and selected binding genes, such as PPP1R1B, RP11-170M17.2, PSMD3, and TOP2A. (E) The Venn diagram
shows two types of crossover genes, including ORMDL3 and PGAP3. GSDMB, gasdermin B; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GO, Gene Ontology.
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missense type, accounting for 67.5% (50/74) (Figures 7A, B). We

also investigated the potential relationship between GSDMB genetic

alterations and prognosis in patients with multiple cancer types.

However, as shown in Figure 7C, mutated GSDMB revealed no

association with disease-free survival (p = 0.314), disease-specific

survival (p = 0.971), overall survival (p = 0.406), and progression-

free survival (p = 0.176), as compared with species without GSDMB

alternation. Taken together, no potential association was found

between the genetic alteration of GSDMB and the clinical survival

prognosis of different cancers.
Discussion

Increasing evidence shows that GSDMB is highly expressed in

some tissues and can be upregulated by IFN-g, involved in the

development and prognosis of multiple cancers (5, 6). In addition,

GZMA from cytotoxic lymphocytes can cleave and activate GSDMB to

induce pyroptosis in tumor cells as well as protect host cells during viral

infection and prevent evasion from natural killer cell immunity (5).

Therefore, GSDMB may function in tumor suppression. T-cell

exhaustion, depletion of CD8+ cells in a large proportion, and

abnormal metabolic patterns coinciding in cancer cells and tumor-

infiltrating stromal cells are key factors leading to the

immunosuppressive property of clear cell renal cell carcinoma

(ccRCC) tissue, which is closely related to poor prognosis (43).

Previous studies reported that MMP25-AS1/hsa-miR-10a-5p/

SERPINE1 axis is a new prognostic biomarker related to the

infiltration of immune cells in KIRC (44), tumor antigen, and

immune subtype, guiding the development of mRNA vaccine for

clearing renal cell carcinoma (45). In addition, iron-related gene

CHAC1 effectively indicates a poor prognosis of renal clear cell

carcinoma (46). However, few genes related to the death pathway of

pyroptosis have been reported. Here, we conducted a comprehensive

screening of GSDMB expression, genetic alteration, immune

infiltration, and possible related pathways in previously published

pan-cancer databases. The potential oncogenic roles of GSDMB

across 33 tumors based on the TCGA and the Genotype-Tissue

Expression (GTEx) databases were explored, and the results revealed

that GSDMB is highly expressed in many tumors, including KIRC,

UCEC, LUAD, and PAAD (Figure 2). Based on the Gene Expression

Omnibus (GEO) database, the RNA expression level of GSDMB in

ccRCC and its paracancerous samples were compared (GSE40435, N =

101). The results showed that the RNA level of GSDMB in ccRCC was

significantly higher than that in the paracancerous samples (Figure

S4A). In particular, high GSDMB expression was significantly related

to the poor prognosis of KIRC patients, whereas low GSDMB

expression was associated with poor prognosis of BLCA and SKCM

patients (Figure 2A).

Although the prognostic relevance of GSDMB in ccRCC has been

mentioned (46), our further immune infiltration analysis revealed that

the level of CD4+ T-cell infiltration in tumors was influenced by

GSDMB expression and significantly correlated with iDCs in KIRC

(Figures 4A, B, 5). The abundance of iDCs in TILs was negatively

correlated with GSDMB expression, and the number of infiltrating DC

in most solid tumors was positively correlated with the patient’s
Frontiers in Oncology 10
prognosis. Therefore, the negative correlation between GSDMB

expression and iDC abundance may be one of the essential factors

for the poor prognosis of KIRC patients. These results suggested that

GSDMB may be a prognostic marker of RCC and a clinical diagnostic

marker of KIRC. As GSDMB has become a new therapeutic target for

cancer in combination with different immunotherapies, this study

suggests that it might be especially efficacious in KIRC patients.

Moreover, the immunomodulators TNFRSF25 and TNFSF14

were significantly positively correlated with GSDMB expression in

many tumors (Figures 4C–E and S5). TNFRSF25 directly interacts

with the adaptor TRADD to mediate NF-kB activation and induce

apoptosis (36–38). TNFSF14 acts as a TNFRSF14/HVEM receptor

and transmits costimulatory signals to T cells, leading to T-cell

proliferation and IFN-g production, which enriches the previous

report that IFN-g induces GSDMB protein production in cells (35).

Lastly, the KEGG and GO enrichment analyses on multiple cancer

types showed that GSDMB could bind to membrane lipids such as

phosphatidylinositol(4,5)bisphosphate, phosphatidylinositol 5-

phosphate, and bisphosphorylated phosphatidylinositols and

weakly bind phosphatidic acid (20) (Figure 6). Also, the GSDMB

interacted proteins were mainly present in the serine C-complex,

plasma membrane, and integral component of the membrane

(Figure 6C). GSDMB is significantly involved in many signal

pathways, including cytokine–cytokine receptor interaction,

sphingolipid metabolism, IBD, and other immune pathways

(F i gu r e 6B) , wh i ch a r e imp l i c a t ed in c anc e r and

neurodegenerative diseases (47). Moreover, asthma susceptibility

gene ORMDL3 promotes autophagy of human bronchial

epithelium (48). Therefore, GSDMB, PGAP3, and ORMDL3 are

the leading candidate asthma genes (49). Given the importance of

epithelial integrity in asthma, we assume that ORMDL3 and PGAP3

directly affect the function of renal epithelial cells.

Pan-cancer analysis has been successfully used to identify

different diagnostic and prognostic markers in many cancers (48–

52). However, despite extensive efforts, there are still some

limitations due to the lack of relevant data from cell and animal

experiments. Our results indicated that GSDMB expression is

associated with tumor immunity and clinical survival prognosis.

Unfortunately, we cannot assert if GSDMB could affect clinical

survival via a defined signaling pathway. However, we demonstrate

a promising therapeutic strategy targeting GSDMB, which may

improve KIRC patient prognosis, provide an understanding of the

possible underlying mechanisms of action, and provide new

insights into GSDMB as a prognostic marker and potential

therapeutic target for cancers.
Materials and methods

Raw data acquisition and processing

We input GSDMB into the “Diff Exp” module of the TIMER

website (https://cistrome.shinyapps.io/timer/) (53, 54). Next, we

studied the differential expression of GSDMB between the tumor

and adjacent normal tissues in all TCGA tumors. The distribution

of gene expression levels is shown in box plots, and the Wilcoxon
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test evaluates the statistical significance of differential expression.

For each cancer type, we identify GSDMB upregulated or

downregulated in the tumors compared with normal tissues for

each cancer type, which are displayed in the gray column when

standard data are available. Next, we entered GSDMB into the

“Gene_DE” module of the TIMER2 websi te (ht tp : / /

timer.cistrome.org/). Then, we scanned the GSDMB expression
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difference between malignant cancers and corresponding normal

tissues for diverse cancers and specific subtypes. To solve the

imbalance between the tumor and standard data, which can cause

inefficiency in various differential analyses, TCGA and GTEx gene

expression data were available from the Gene Expression Profiling

Interactive Analysis (GEPIA) web server (http://gepia.cancer-

pku.cn/#analysis), which are re-computed from raw RNA-Seq
A

B

C

FIGURE 7

Mutation features of GSDMB in different cancers in TCGA. The alteration frequencies with mutation type (A) and mutation site (B) are shown. Each
color denotes a mutation type. Mutation (green): point mutation. (C) The potential correlation between the mutation status of GSDMB and overall
survival, disease-free survival, progression-free survival, and disease-specific survival of different tumors using the cBioPortal tool. GSDMB,
gasdermin B; TCGA, The Cancer Genome Atlas.
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data by the UCSC Xena project based on a uniform pipeline, thus

allowing for the formation of the most comprehensive expression

information. Herein, for specific cancers with limited normal and

without normal tissues, we applied the “Expression analysis-

BoxPlot” module and clicked the “Match TCGA normal and

GTEx data” module of GEPIA to analyze the GSDMB level

between the malignant cancers and adjacent normal tissues.
Survival analysis

OS and disease-free survival (DFS) information of GSDMB within

all TCGA cancers were obtained from the “Survival Map” module of

GEPIA2. Cutoff-high (50%) and cutoff-low (50%) values were utilized

as thresholds to stratify high- and low-expression cases. In addition, a

log-rank test was used for the hypothesis test, and survival curves were

graphed with the “Survival Analysis” module.
GSDMB-related tumor–immune system
interaction analysis

The tumor and immune system data of GSDMB were queried

from TISIDB algorithms (http://cis.hku.hk/TISIDB/index.php). The

information on GSDMB expression, copy number alteration (CNA),

methylation (met), and mutation (mut) was visualized with the

“Lymphocyte, Immunomodulator, Chemokine” module. In addition,

the associations between GSDMB expression and overall survival,

stage, and grade across human cancers were visualized with the

“Clinical” module.
The promoter methylation level
of GSDMB analysis

The promoter methylation level of GSDMB was analyzed with the

University of Alabama at Birmingham cancer data analysis portal

(UALCAN) website (http://ualcan.path.uab.edu/index.html) (53, 54).

UALCAN is a comprehensive, user-friendly, and interactive web

resource for analyzing cancer omics data (TCGA, MET500, CPTAC,

and CBTTC) (55). We inputted “GSDMB” in the “TCGA” module of

UALCAN web; it provides “expression”, “survival”, “methylation”,

“correlation”, and “pan-cancer view” analysis information with

different cancers. GSDMB promoter methylation profiles were

analyzed based on “sample types”, “individual cancer stages”, “tumor

grade”, and “TP53 mutation status”, on the selected cancers KIRC,

UCEC, LUAD, and PAAD. The different cutoff value for beta value has

been considered to indicate hyper-methylation [beta value: 0.7–0.5] or

hypo-methylation [beta value: 0.3–0.25] (56).
Genetic alteration analysis of GSDMB

The genetic alteration features of GSDMB were queried from

the “TCGA Pan Cancer Atlas Studies” module of the cBioPortal

web (https://www.cbioportal.org/) (54). The alteration frequency,
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mutation type, and CNA information were visualized with the

“Cancer Types Summary” module. “Mutations” modules obtained

mutation types and frequencies of GSDMB at different positions.

The potential correlation between the mutation alteration of

GSDMB and disease-free survival, overall survival, progression-

free survival, and disease-specific survival of different tumors were

analyzed using the “Comparison/Survival” modules.
GSDMB-related comprehensive analysis of
tumor-infiltrating immune cells

The GSDMB-related immune infiltration-relevant results were

analyzed with the TIMER pipeline (https://cistrome.shinyapps.io/

timer/), a comprehensive resource for the systematic analysis of

immune infiltrates across diverse cancer types. The abundances of

six immune infiltrates (B cells, CD4+ T cells, CD8+ T cells,

neutrophils, macrophages, and dendritic cells) were estimated by

TIMER algorithm, which allows for user-generated function-

specific parameters and dynamically displays the result map to

easily access the tumor immunological, clinical, and genomic

features. In addition, GSDMB expression data from different

cancer types and immune infiltrates were uploaded into the

“Gene” module of the TIMER website to generate scatterplots

showing the purity-corrected partial Spearman’s rho value and

statistical significance.
GSDMB-related gene enrichment analysis

GSDMB-binding proteins were downloaded from STRING

(https://string-db.org/). The top 100 GSDMB-binding genes were

selected from analysis in TCGA of all cancers and adjacent normal

tissues via the “Similar Gene Detection” module. Then, the

“correlation analysis” module was used for pairwise gene

Pearson’s correlation analysis with GSDMB. The “Gene_Corr”

module was used to visualize the heatmap information of these

selected genes. Finally, this gene list was uploaded to the Database

for Annotation, Visualization and Integrated Discovery (DAVID)

website to perform the Gene Ontology enrichment and KEGG

pathway analyses. The results with p < 0.05 were considered

statistically significant.
Statistical data

All the data of gene expression were normalized by log2

transformation. Differences between normal and cancer tissues

were assessed by the Wilcoxon rank-sum test. Correlation

analysis between two variables was determined with Spearman’s

or Pearson’s test. Survival analysis, hazard ratios (HRs), and p-

values were calculated by the univariate Cox regression analysis or

log-rank test. The Kaplan–Meier curves were used to compare the

survival of patients stratified according to different levels of each

chemokine expression. p < 0.05 was set as the significance threshold

for all statistical analyses.
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