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A radiomics model based
on preoperative gadoxetic
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predicting post-hepatectomy
liver failure in patients with
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Background: Post-hepatectomy liver failure (PHLF) is a fatal complication after

liver resection in patients with hepatocellular carcinoma (HCC). It is of clinical

importance to estimate the risk of PHLF preoperatively.

Aims: This study aimed to develop and validate a prediction model based on

preoperative gadoxetic acid–enhanced magnetic resonance imaging to

estimate the risk of PHLF in patients with HCC.

Methods: A total of 276 patients were retrospectively included and randomly

divided into training and test cohorts (194:82). Clinicopathological variables were

assessed to identify significant indicators for PHLF prediction. Radiomics features

were extracted from the normal liver parenchyma at the hepatobiliary phase and

the reproducible, robust and non-redundant ones were filtered for modeling.

Prediction models were developed using clinicopathological variables (Clin-

model), radiomics features (Rad-model), and their combination.

Results: The PHLF incidence rate was 24% in the whole cohort. The combined

model, consisting of albumin–bilirubin (ALBI) score, indocyanine green retention

test at 15 min (ICG-R15), and Rad-score (derived from 16 radiomics features)

outperformed the Clin-model and the Rad-model. It yielded an area under the

receiver operating characteristic curve (AUC) of 0.84 (95% confidence interval

(CI): 0.77–0.90) in the training cohort and 0.82 (95% CI: 0.72–0.91) in the test

cohort. The model demonstrated a good consistency by the Hosmer–
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Lemeshow test and the calibration curve. The combined model was visualized as

a nomogram for estimating individual risk of PHLF.

Conclusion: A model combining clinicopathological risk factors and radiomics

signature can be applied to identify patients with high risk of PHLF and serve as a

decision aid when planning surgery treatment in patients with HCC.
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Introduction

Liver resection remains the mainstay modality in the treatment

of hepatocellular carcinoma (HCC) with a curative intent. With the

advances of surgical techniques and perioperative management in

recent years, cases of extended or complex liver resection are

increasing (1), which makes it increasingly important to make

individual evaluations to avoid insufficient remnant liver volumes

and impaired liver function after the surgery, the so-called post-

hepatectomy liver failure (PHLF). At present, PHLF poses a fatal

threat after liver resection and is the prominent cause of

perioperative mortality (2), with a reported incidence as high as

40% (3).

Precise evaluation of liver function makes it possible to predict

PHLF preoperatively. Previous studies have explored blood

biochemistry tests, indocyanine green (ICG) test (4), and clinical

scoring systems such as Child–Pugh score (5) and the Model for End-

Stage Liver Disease (MELD) score (6) and computed tomography

(CT)-based remnant liver volume (7) in the prediction of PHLF.

However, the overall performance of these factors has been

suboptimal. A more accurate, non-invasive approach for

comprehensive liver function evaluation is urgently needed.

Gadoxetic acid (Primovist®) is a T1 magnetic resonance

imaging (MRI) contrast medium widely used in clinical practice

for liver lesion detection and characterization. Compared with the

extracellular contrast media, it is actively taken up by hepatocyte at

10–40 min after administration (the so-called hepatobiliary phase)

(8). Recent studies have shown that gadoxetic acid–enhanced MRI

is promising in quantitative evaluation of liver function (9, 10).

Classically, the methods used are based on the measurement of

signal intensity (for instance relative liver enhancement or liver-to-

muscle ratio or liver-to-spleen ratio), T1 relaxometry (e.g., T1

reduction rate), or dynamic contrast–enhanced MRI parameters

(including hepatic extraction fraction) (11). These gadoxetic acid–

enhanced MRI-derived parameters have shown a good correlation

with ICG test and clinical scoring systems (Child–Pugh grades and

MELD score), indicating a potential value in prediction of PHLF

(10, 12, 13). However, when measuring signal intensity or T1

relaxation time, regions of interest (ROIs) with a limited diameter

are most often placed in a single selected slice, which may not fully

represent the whole liver function. Furthermore, the placement of

the ROI is subjective, potentially reducing the reproducibility. In
02
addition, the measurement of T1 relaxation time or dynamic

contrast–enhanced MRI often requires additional scanning

sequences (14).

Radiomics is a burgeoning technique, which can extract a great

number of features from clinical routine medical imaging and transform

them into mineable data for quantitative analysis (15). The basic

assumption of radiomics is that the delicate pathophysiological

alterations at cellular or molecular levels can be reflected by signal

changes on images. The quantification of these imaging features and

analyzing them through advanced algorithms or deep learning

techniques can aid the clinician to solve clinical issues, such as disease

diagnosis, prognosis, or prediction of treatment response. In the field of

hepatobiliary imaging, previous studies have demonstrated that

radiomics can significantly improve diagnostic and prognostic

accuracy in HCC, such as the prediction of microvascular invasion

(15), tumor differentiation (16), and early recurrence after

hepatectomy (17).

In this study, it was tested whether radiomics analysis of

gadoxetic-enhanced MR images can be used to predict PHLF in

patients undergoing surgery due to HCC. The hypothesis was that

radiomics analysis can detect delicate imaging features reflecting

varying levels of liver function.
Materials and methods

Study design and patient selection

The research protocol of this single-center, retrospective study

was reviewed and approved by the Institutional Review Board of

Southwest Hospital, Army Medical University (No. (B)

KY2021068). Written informed consent was waived due to the

retrospective property of this study.

Consecutive patients undergoing hepatectomy during the period

between January 2017 and March 2019 were retrieved according to

the following inclusion and exclusion criteria. The inclusion criteria

were 1) histopathologically confirmed HCC by resected specimen

and 2) preoperative gadoxetic acid–enhanced MRI within 4 weeks

before hepatectomy. The exclusion criteria were 1) anti-cancer

treatment before hepatectomy, including radiofrequency ablation,

hepatectomy, transarterial chemoembolization, portal vein

embolization, targeted therapy, and immunotherapy, and 2)
frontiersin.org
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insufficient imaging quality (such as motion artifacts). In final, 276

patients were included in this study, and they were randomly divided

into training and test cohorts at a ratio of 7:3, in which the training

cohort was exclusively used for model development, while test cohort

was used for to validate the performance of the model. Figure 1 gives

more details about this process.

The reporting of this study followed the Checklist for Artificial

Intelligence in Medical Imaging (CLAIM) guidance (18). The

CLAIM checklist is provided at Supplementary Table S1. The

process of model development is illustrated in Figure 2.
Clinicopathological characteristics

Clinicopathological variables comprised of age, gender, body

mass index, hepatitis B infection status, cirrhosis, tumor size, Child–

Pugh grade, the albumin–bilirubin (ALBI) score (Grade 1 or Grade

2/3) (19), alanine aminotransferase (ALT), aspartate transaminase

(AST), platelet, ICG-R15 test, liver resection extent (minor, if

resected segments < 3 or major ≥ 3 segments) (20), laparoscopic-

assisted operation, intraoperative blood loss, and liver resection

duration. The scattered missing values were replaced by imputation

of the median value.
Definition of PHLF

PHLF was defined according to the International Study Group

of Liver Surgery (ISGLS) standard: an increased international

normalized ratio (INR) and hyperbilirubinemia (above the

normal range of the local laboratory) on postoperative day 5 or
Frontiers in Oncology 03
afterwards (21). According to this definition, the patients were

grouped into PHLF group and non-PHLF group.
MR imaging acquisition

All patients underwent preoperative gadoxetic acid–enhanced

MRI on a scanner (3.0 T, Magnetom Trio, Siemens Healthcare)

with a six-channel body coil. Dynamic contrast–enhanced images

were acquired using T1-weighted 3D volume interpolated breath

hold sequence before, at the time of aorta enhancement, and 60 s,

180 s, 5 min, and 15 min after administration of contrast media.

Gadoxetic acid (Primovist, Bayer Pharma, Berlin, Germany, 0.1 ml/

kg body weight) was injected through an antecubital vein at a rate of

1.0 ml/s followed by a flush of saline at the same rate. Hepatobiliary

phase was obtained at 15 min after injection. Detailed scanning

parameters are provided in Supplementary Table S2.
Delineation of normal liver tissue and
inter-observer agreement evaluation

Delineation of normal liver tissue (exclusion of blood vessels,

bile ducts, and cyst areas) was performed on images obtained in the

hepatobiliary phase using the open-source software ITK-SNAP

(http://www.itksnap.org/). Initially, 30 MR images were randomly

selected for volume of interest (VOI) delineation by two researchers

(with 2 years and 20 years of liver MRI experience, respectively)

independently to evaluate reproducibility and stability of the

extracted radiomics features. The inter-observer agreement was

measured by interclass coefficient (ICC) on the VOI-based feature
FIGURE 1

Flowchart of patient selection.
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extraction. Features with ICC >0.75 were regarded as agreeable

reproducibility and included for further analysis (22, 23). The liver

delineation was then performed on the remaining patients by one

researcher. The results were saved as a VOI file for further analysis.

When contouring the liver, the researchers were blinded to the

patients’ clinical information.
Imaging preprocessing and radiomics
feature extraction

Before feature extraction, all images were interpolated to a voxel

size of 1 × 1 × 1 mm3, and the intensity histogram was discretized

into a bin width of 25. A Python package, pyradiomics (https://

github.com/AIM-Harvard/pyradiomics), was exploited to extract

radiomics features from the manually delineated VOI. The

terminology of the radiomics features extracted by pyradiomics is

in accordance with the Image Biomarker Standardisation Initiative

(24). The following categories of features were extracted: (1) shape,

including 2D and 3D (n = 14); (2) first-order statistics (n = 18); (3)

gray level co-occurrence matrix-derived feature (n = 24); (4) gray

level run length matrix-derived feature (n = 16); (5) gray level size

zone-derived feature (n = 16); (6) gray level dependence matrix-

derived feature (n = 14); and (7) neighboring gray tone difference

matrix feature (n = 5), (8) above features extracted from the wavelet

transformed images (n = 744). In total, 851 features were exacted.
Radiomics feature selection and radiomics
model construction

In the training cohort, radiomics feature selection for the model

construction involved two steps. First, after normalization of the
Frontiers in Oncology 04
radiomics features by z-score method, Spearman correlation

analysis was performed among the features and only one of the

pairs with a correlation coefficient >0.99 was kept in order to reduce

redundancy. Second, the filtered features were fed into the least

absolute shrinkage and selection operator (LASSO) regression

analysis to detect the most informative features to avoid potential

overfitting. The superparameter lambda (l) in LASSO was

determined by the fivefold cross-validation. Features with non-

zero coefficient were selected for model development (termed as

“Rad-model”).
Clinical model construction

To detect independent risk factors for PHLF incidence,

univariable regression analysis on clinicopathological variables

were performed in the training cohort. The variables where the

correlation to PHLF had a p-value <0.05 were used in a

multivariable logistic regression analysis. A clinical model (coined

as “Clin-model”) was then constructed using clinicopathological

variables with p < 0.05 after the multivariable regression analysis.
Combined model construction

Radiomics risk score (Rad-score) was then calculated for each

patient through linear combination of included features in the Rad-

model weighted by the corresponding coefficient. Clinicopathological

variables in the Clin-model and the Rad-score were then collected to

construct a combined model through logistic regression analysis. The

ideal one was determined by the backward stepwise selection strategy

using likelihood ratio test with Akaike information criteria (AIC) at

the minimum value.
FIGURE 2

Workflow of the development of a radiomics-based model.
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Statistical analysis

Continuous variables with normal distribution were expressed

as mean ± standard deviation and compared using Mann–Whitney

U test between non-PHLF and PHLF groups. Categorical variables

were presented as number (percentage) and were compared by Chi-

square test or Fisher’s exact test. The performance of the models was

evaluated based on their abilities of discrimination, calibration, and

clinical usefulness in both training and test cohorts. The

discrimination capability was assessed by the area under the

receiver operating characteristic curve (AUC). Calibration

capacity of the model was intuitively assessed by calibration

curve. The goodness of fit of the model was measured by

Hosmer–Lemeshow test, with p-value > 0.05 indicating a good

result. Clinical usefulness of the model was evaluated by decision

curve analysis (DCA). All statistical analyses were performed on R

software (R Foundation for Statistical Computing, Vienna, Austria).

A two-sided p < 0.05 was regarded as statistically significant.
Frontiers in Oncology 05
Results

Patient basic characteristics

There were 238 men and 38 women among the 276 included

patients, with a majority of patients <55 years (71.4%). According to the

ISGLS criteria, 65 patients were diagnosed with PHLF, and the incidence

rate of PHLFwas 24% in the entire cohort. The training cohort contained

194 patients, and the test cohort contained 82 patients. The baseline

characteristics between the two cohorts was balanced, with p > 0.05 for all

variables, including the PHLF incidence. Table 1 provides detailed

information about the entire, training, and test cohorts.
Clinical model construction

Based on univariable and multivariable logistic regression

analyses, three significant clinicopathological variables were
TABLE 1 Patient clinicopathological characteristics.

Variables Total
(n=276)

Training cohort, No. (%) Test cohort, No. (%) p-valuea

PHLF (−)
(n=144)

PHLF (+) (n=50) p-value PHLF (−)
(n=67)

PHLF (+)
(n=15)

p-value

Gender 0.489 0.202 1.000

Female 38 (13.8) 22 (15.3) 5 (10.0) 11 (16.4) 0 (0.0)

Male 238 (86.2) 122 (84.7) 45 (90.0) 56 (83.6) 15 (100.0)

Age (years) 0.578 0.194 0.566

≤ 55 197 (71.4) 103 (71.5) 33 (66.0) 52 (77.6) 9 (60.0)

> 55 79 (28.6) 41 (28.5) 17 (34.0) 15 (22.4) 6 (40.0)

BMI (kg/m2) 0.274 0.334 1.000

≤ 18.5 6 (2.17) 2 (1.39) 2 (4.0) 1 (1.5) 1 (6.67)

> 18.8 270 (97.8) 142 (98.6) 48 (96.0) 66 (98.5) 14 (93.3)

Etiology of hepatitis 0.891 0.503 0.872

HBV 212 (76.8) 109 (75.7) 39 (78.0) 51 (76.1) 13 (86.7)

None/others 64 (23.2) 35 (24.3) 11 (22.0) 16 (23.9) 2 (13.3)

Cirrhosis status 1.000 0.641 0.817

Present 146 (52.9) 77 (53.5) 27 (54.0) 33 (49.3) 9 (60.0)

Absent 130 (47.1) 67 (46.5) 23 (46.0) 34 (50.7) 6 (40.0)

ALT (IU/L) 0.220 0.087 0.147

≤ 42 158 (57.2) 91 (63.2) 26 (52.0) 37 (55.2) 4 (26.7)

> 42 118 (42.8) 53 (36.8) 24 (48.0) 30 (44.8) 11 (73.3)

AST (IU/L) 0.018 0.955 1.000

≤ 42 158 (57.2) 90 (62.5) 21 (42.0) 39 (58.2) 8 (53.3)

> 42 118 (42.8) 54 (37.5) 29 (58.0) 28 (41.8) 7 (46.7)

Platelet (×109/L) 0.013 0.475 1.000

(Continued)
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detected, including platelet, ALBI score, and ICG-R15 (p < 0.05)

(Table 2). The Clin-model was based on these three variables. The

AUC of the Clin-model in the training and the test cohort was 0.74

(95% confidence interval, CI: 0.65–0.83) and 0.71 (95% CI: 0.57–

0.84) respectively (Table 3). The formula of the Clin-model is

provided in Supplementary Material S1.
Frontiers in Oncology 06
Radiomics feature selection and
model construction

Among the 851 extracted radiomics features, 494 features (58%)

showed an ICC ≥ 0.75, and these features were subjected to the two-

step feature selection strategy. In the first step, 315 features
TABLE 1 Continued

Variables Total
(n=276)

Training cohort, No. (%) Test cohort, No. (%) p-valuea

PHLF (−)
(n=144)

PHLF (+) (n=50) p-value PHLF (−)
(n=67)

PHLF (+)
(n=15)

p-value

≤ 125 96 (34.8) 42 (29.2) 25 (50.0) 22 (32.8) 7 (46.7)

> 125 180 (65.2) 102 (70.8) 25 (50.0) 45 (67.2) 8 (53.3)

Child–Pugh grade 1.000 0.183 1.000

A 272 (98.6) 142 (98.6) 49 (98.0) 67 (100.0) 14 (93.3)

B 4 (1.45) 2 (1.39) 1 (2.0) 0 (0.0) 1 (6.7)

ALBI score 0.001 0.003 0.282

Grade 1 126 (45.7) 73 (50.7) 11 (22.0) 40 (59.7) 2 (13.3)

Grade 2/3 150 (54.3) 71 (49.3) 39 (78.0) 27 (40.3) 13 (86.7)

ICG-R15 test <0.001 1.000 0.986

≤ 10% 254 (92.0) 139 (96.5) 39 (78.0) 62 (92.5) 14 (93.3)

> 10% 22 (7.97) 5 (3.47) 11 (22.0) 5 (7.46) 1 (6.67)

Tumor size (cm) 0.739 0.602 0.410

≤ 5 130 (47.1) 69 (47.9) 26 (52.0) 30 (44.8) 5 (33.3)

> 5 146 (52.9) 75 (52.1) 24 (48.0) 37 (55.2) 10 (66.7)

Resection extent 0.629 1.000 0.832

Minor 196 (71.0) 105 (72.9) 34 (68.0) 46 (68.7) 11 (73.3)

Major 80 (29.0) 39 (27.1) 16 (32.0) 21 (31.3) 4 (26.7)

Laparoscopic operation 1.000 0.218 1.000

Yes 42 (15.2) 22 (15.3) 8 (16.0) 8 (11.9) 4 (26.7)

No 234 (84.8) 122 (84.7) 42 (84.0) 59 (88.1) 11 (73.3)

Intraoperative blood loss (ml) 0.553 0.459 0.857

≤ 400 222 (80.4) 117 (81.2) 38 (76.0) 56 (83.6) 11 (73.3)

> 400 54 (19.6) 27 (18.8) 12 (24.0) 11 (16.4) 4 (26.7)

Liver resection time (min) 0.549 1.000 0.071

≤ 60 227 (82.3) 125 (86.8) 41 (82.0) 50 (75.8) 12 (75.0)

> 60 49 (17.7) 19 (13.2) 9 (18.0) 16 (24.2) 4 (25.0)

MELD score 0.744 0.151 0.763

≤ 9 259 (93.8) 135 (93.8) 46 (92.0) 65 (97.0) 13 (86.7)

> 9 17 (6.16) 9 (6.25) 4 (8.0) 2 (3.0) 2 (13.3)
fro
ALBI score, albumin–bilirubin score; ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; HBV, hepatitis B virus; ICG-R15, indocyanine green retention rate at
15 min; MELD score, Model for End-Stage Liver Disease score; PHLF, post-hepatectomy liver failure.
aBetween training and test cohorts. Data are expressed as n (%).
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TABLE 2 Clinicopathological risk factors for post-hepatectomy liver failure in patients with hepatocellular carcinoma.

Variables Univariable analysis Multivariable analysis

OR (95% CI) p-value OR (95% CI) p-value

Gender

Male vs. female 1.62 (0.58–4.54) 0.357

Age (years)

> 55 vs. ≤ 55 1.29 (0.65–2.58) 0.463

BMI (kg/m2)

≤ 18.5 vs. > 18.5 2.96 (0.35–25.21) 0.285

Etiology of hepatitis

HBV vs. none/others 1.14 (0.53–2.46) 0.741

Cirrhosis status

Present vs. absent 1.02 (0.54–1.95) 0.949

ALT (IU/L)

> 42 vs. ≤ 42 1.59 (0.83–3.04) 0.165

AST (IU/L)

> 42 vs. ≤ 42 2.30 (1.20–4.43) 0.013 1.69 (0.82–3.48) 0.153

Platelet (×109/L)

≤ 125 vs. > 125 2.43 (1.26–4.73) 0.008 2.50 (1.22–5.17) 0.013

Child–Pugh grade

B vs. A 1.45 (0.13–16.33) 0.764

ALBI score

Grade 2/3 vs. Grade 1 3.65 (1.73–7.68) 0.001 3.20 (1.46–7.00) 0.004

ICG-R15 test

> 10% vs. ≤ 10% 7.84 (2.57–23.92) <0.001 4.87 (1.5–16.02) 0.009

Tumor size (cm)

≤ 5 vs. > 5 1.18 (0.62–2.25) 0.619

Resection extent

Major vs. minor 1.27 (0.63–2.55) 0.507

Laparoscopic operation

Yes vs. no 1.06 (0.42–2.47) 0.903

Intraoperative blood loss (ml)

> 400 vs. ≤ 400 1.37 (0.63–2.96) 0.421

Liver resection time (min)

> 60 vs. ≤ 60 1.44 (0.61–3.44) 0.407

MELD score

> 9 vs. ≤ 9 1.30 (0.38–4.44) 0.671
F
rontiers in Oncology
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ALBI score, albumin–bilirubin score; ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; CI, confidence interval; HBV, hepatitis B virus; ICG-R15, indocyanine
green retention rate at 15 min; MELD score, Model for End-Stage Liver Disease score; OR, odds ratio.
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remained after excluding one of paired features with a correlation

coefficient > 0.99. In the second step, 16 non-zero coefficient

features were selected by LASSO-logistic regression analysis

(Figure 3) and were subsequently used for constructing the Rad-

model. The Rad-model had an AUC of 0.79 (95% CI: 0.72–0.86) in

the training cohort and 0.79 (95% CI: 0.69–0.89) in the test cohort

(Table 3). The difference in the Clin-model and the Rad-model in

performance was not significant (Delong test, p = 0.24).
Combined model construction

The individual Rad-score was calculated through a linear

combination of the included variables in the Rad-model weighted

by the corresponding coefficients (Supplementary Figure S1 and

Supplementary Material S2). A third model, the combined model,

was then constructed according to the AIC minimum value, which

includes ALBI score, ICG-R15, and rad-score.
Performance evaluation of the
combined model

The combined model yielded an AUC of 0.84 (95% CI: 0.77–0.90)

in the training cohort, with sensitivity of 0.78 and specificity of 0.81

(Figure 4A). It exhibited an AUC of 0.82 (95% CI: 0.72–0.91) and

sensitivity of 0.93 and 0.67 in the test cohort (Table 3). The AUC

difference was significant between the combined model and the Clin-

model (p < 0.05), but not between the combined model and the Rad-

model (p = 0.08, Table 3). The combinedmodel has been visualized as a

nomogram (Figure 5) for clinical utility. An online tool to facilitate its

calculation is available at https://onlinetools.shinyapps.io/onlineTool/.

The optimal cutoff value of the model was set at 0.28. The

calibration curve showed a good agreement between the combined
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model predicted values and observed PHLF rate (Hosmer–Lemeshow

test p > 0.05) (Figures 4B, C). The DCA plot illustrated that compared

with the “treat-all” and “treat-none” strategies, the net benefit was

higher for the combined model than the Clin-model and the Rad-

model, implying that the combined model was beneficial for clinical

utility (Figure 4D).
Discussion

To predict PHLF in patients with HCC, we developed and validated

a nomogram model combining two clinicopathological variables (ALBI

score and ICG-R15) and one radiomics variable (Rad-score) derived

from radiomics analysis of preoperative T1-weighted gadoxetic acid–

enhancedMRI. This predictionmodel yielded an AUC of 0.82 in the test

cohort, indicating a promising tool for clinical utility.

Until now, only few studies have explored radiomics for prediction

of PHLF. Zhu et al. proposed a nomogram model including ICG-R15

and radiomics signature based on hepatobiliary phase of gadoxetic

acid–enhanced MRI from 101 patients (25). The model yielded an

AUC of 0.89 in prediction PHLF in patients undergoing major liver

resection. However, the study did not further validate the model in an

independent test cohort. Chen et al. developed a combined model

incorporating platelet, tumor size, and radiomics score deriving from

preoperative gadoxetic acid–enhanced MRI for predicting PHLF (26).

They validated the model at another medical center, obtaining an AUC

of 0.84. However, in that study, they did not present their model with a

formula or nomogram, which made it hard to reproduce or translate

their model into clinical utility. In addition, their radiomics analysis was

based on a single MRI slice per patient, which may not fully reflect the

liver function. There are also two radiomics models based on CT

modality for PHLF prediction (27, 28). Those studies had a rather

limited sample size (112 and 186 cases), whichmay explain the unusual
TABLE 3 Performance of the models for post-hepatectomy liver failure prediction in training and test cohorts.

Clin-model Rad-model Combined model

Training cohort

Cut-off value 0.27 0.29 0.28

AUC (95% CI) 0.74 (0.65–0.83) 0.79 (0.72–0.86) 0.84 (0.77–0.90)

Sensitivity 0.70 0.70 0.78

Specificity 0.74 0.76 0.81

PPV 0.49 0.51 0.59

NPV 0.88 0.88 0.91

Accuracy 0.73 0.75 0.80

Test cohort

AUC (95% CI) 0.71 (0.57–0.84) 0.79 (0.69–0.89) 0.82 (0.72–0.91)

Sensitivity 0.87 0.87 0.93

Specificity 0.55 0.70 0.67

PPV 0.30 0.39 0.39

NPV 0.95 0.96 0.98

Accuracy 0.61 0.73 0.72
AUC, area under the receiver operating characteristics curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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outcome with AUCs in their respective test cohorts higher than that in

their training cohorts (27, 28).

The Rad-model alone showed an effective prediction efficacy,

almost comparable to our combined model. A majority of the

radiomics features in the Rad-model (13/16) belonged to wavelet-

derived features. Those described low and high frequency signals,

representing homogeneity and heterogeneity of the liver tissue (29).

Unfortunately, the two previously published studies on radiomics of

hepatobiliary phase of gadoxetic acid–enhanced MRI, by Zhu and

Chen as mentioned above, did not adopt wavelet filter, so it is not

possible to make comparisons regarding the specific radiomics

features. However, wavelet-derived features do frequently appear

in other gadoxetic acid–enhanced MRI radiomics models, for

instance, in the prediction of microvascular invasion (30) or

tumor grading for HCC (31), indicating that they capture

important structural features of hepatic tumor or parenchyma (14).

Another variable in our prediction model is ICG-R15. This was

consistent with Zhu’s PHLF prediction model, in which ICG-R15

was the only clinical predictor (25). Currently, ICG-R15 still serves

as a reference standard in the quantitative evaluation of liver

function before liver resection and plays an essential role in

treatment management of HCC patients (32, 33). Nevertheless,

the role of ICG test as an independent risk factor for PHLF
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prediction remains controversial, as it can be influenced by many

factors, such as blood flow or hyperbilirubinemia (32, 34). This

might explain why only approximately half of currently available

studies (5/11) could successfully use ICG to predict PHLF as shown

in a systematnic review (3).

Our model also consists of a predictor of ALBI grade, which is a

simple and objective scoring system adopting just two common

biochemistry tests (serum albumin and bilirubin) for quantitative

evaluation of liver function in HCC patients (19). It was proposed to

overcome the limitation of the conventional Child–Pugh scoring

system and has proven to be a reliable, effective tool for liver function

evaluation, applicable in several different geographic regions (19).

Xiang et al. have shown that ALBI could predict PHLF with an AUC

of 0.64 in the test cohort (28). In the multivariable regression analysis

for Clin-model, ALBI grade demonstrated an independent risk factor

for PHLF incidence (odds ratio: 3.2, Grade 2/3 vs. Grade 1). However,

neither Child–Pugh nor MELD score was a significant risk factor for

PHLF prediction in our cohort.

This research has some limitations to be acknowledged. First, the

retrospective nature of this study bore incoherent selection biases that

could have had an impact on the results. However, this issue was

partially compensated via inclusion of consecutive patients. Second,

our model was not validated in an external cohort. Additional
B

A

FIGURE 3

(A) Feature selection through the least absolute shrinkage and selection operator (LASSO) algorithm. (B) Heatmap of the correlation coefficient
matrix of the selected 16 features through LASSO.
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validation in larger prospective multicenter cohorts is warranted to

generalize our prediction model. Third, the radiomics analysis was

performed based on the whole normal liver parenchyma, rather than

the future liver remnant (FLR) only. A study based on FLR only might

show better AUC than presented here. The large AUC observed in our

studymight be explained by a strong relationship in radiomics between

FLR and resected part. Lastly, the resection extent was not included in

our prediction model, as it was not significant during univariable

logistic regression analysis. Traditionally, the hepatic resection extent is

regarded as an important indicator for PHLF. However, its role may be

impaired with the development of surgical concepts and skills,

equipment, perioperative management, and anesthesia techniques.

Currently, the occurrence of PHLF is assumed as a consequence of
Frontiers in Oncology 10
multiple clinicopathological factors during the perioperative period,

including baseline liver/patient characteristics and intraoperative and

postoperative factors (35). Interestingly, among the four existing

studies that developed the radiomics models for PHLF prediction

using preoperative imaging (25–28), only one study detected the

resection extent significant and included it in their model (28).

Furthermore, we compared the difference in the prediction

performance between our proposed models with and without the

variable of the resection extent, and the test showed an

insignificant result (Supplementary Table S3). Due to the simplicity

principle, this variable was not included in our final models. Future

studies can further investigate the effect of this variable on the incidence

of PHLF.
B

C D

A

FIGURE 4

Performance of the combined model for predicting post-hepatectomy liver failure. An area under the receiver operating characteristic curve in the
training and test cohorts (A). Calibration curves in the training (B) and test cohorts (C) illustrated a good consistency between the model-predicted
probability and the actual probability of PHLF. The red line stands for the combined model, while the green line describes the combined model
calibrated by 1,000 bootstrap resampling strategy. The dash line indicates an ideal situation that the model-predicted probability perfectly matches
the actual probability of PHLF. The decision curve analysis (D) showed that the combined model (green line) yielded a highest net benefit at different
risk threshold of PHLF, compared with the clinical model (red line) and the radiomics model (blue line). Note: AUC, area under the receiver operating
characteristic curve; PHLF, post-hepatectomy liver failure.
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In conclusion, a prediction nomogram combining clinical risk

factors and radiomics signature based on preoperative gadoxetic

acid–enhanced MRI was constructed, and it can potentially be an

effective tool for predicting liver failure after liver resection in

patients with hepatocellular carcinoma.
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FIGURE 5

Nomogram for predicting post-hepatectomy liver failure in patients with hepatocellular carcinoma. ALBI, the albumin–bilirubin score; ICG-R15,
indocyanine green retention rate at 15 min; PHLF, post-hepatectomy liver failure.
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