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MACC1-induced migration
in tumors: Current state
and perspective

Tim Hohmann*, Urszula Hohmann and Faramarz Dehghani

Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle
(Saale), Germany
Malignant tumors are still a global, heavy health burden. Many tumor types

cannot be treated curatively, underlining the need for new treatment targets. In

recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a

promising biomarker and drug target, as it is promoting tumor migration,

initiation, proliferation, and others in a multitude of solid cancers. Here, we will

summarize the current knowledge about MACC1-induced tumor cell migration

with a special focus on the cytoskeletal and adhesive systems. In addition, a brief

overview of several in vitromodels used for the analysis of cell migration is given.

In this context, we will point to issues with the currently most prevalent models

used to study MACC1-dependent migration. Lastly, open questions about

MACC1-dependent effects on tumor cell migration will be addressed.
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Introduction

Malignant tumors are one of the most common and often deadly health problems

throughout the world. Analysis for 2020 estimated 19.3 million new cases of cancer and 10

million deaths from cancer (1). Thus, it is without a doubt still a necessity to better

understand the mechanisms of tumor development and expansion and to improve the

treatment of cancer. In 2009, the gene metastasis associated in colon cancer 1 (MACC1)

was discovered in colorectal cancer (2) and connected to increased metastasis, cell survival,

proliferation, and migration. Afterward, MACC1 was quickly found to be involved in

tumor formation and migration in a multitude of different solid tumors, including

glioblastoma, ovarian carcinoma, gastric cancer, hepatocellular carcinoma, and others

(3). Notably, in many instances, MACC1 expression was additionally linked to increased

metastasis formation, being the main reason for cancer mortality (3). Interestingly,

circulating MACC1 transcripts or protein levels can also serve as predictive markers for

tumor progression, as demonstrated in patients with colorectal, pancreatic, gastric, lung,

and breast cancer (4–9).

Due to its clinical relevance, MACC1-associated signaling was intensively studied.

Thus, many upstream and downstream targets of MACC1 were identified and associated
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with typical tumor features such as NANOG and OCT4 with

dedifferentiation, VEGF, and TWIST1/2 with angiogenesis (3, 10,

11). Notably, in almost all studies, MACC1 expression was

associated with a more migratory phenotype (2, 3, 12, 13).

Attainment of a migratory phenotype is a key feature in the

metastatic cascade and a highly complex phenomenon (14). Cell

migration in complex environments necessitates cells to generate

propulsive forces, change shapes, form (transient) adhesions with

the extracellular matrix (ECM) and neighboring cells, and remodel

the extracellular space (15, 16). Consequently, the migratory

process is not only highly important during tumor spreading but

also involves a multitude of complex processes.

Thus, this review aims to summarize the different downstream

effects of MACC1 on tumor migration and how these can be

integrated into the cytoskeletal and adhesive systems. Furthermore,

we want to point out open questions and additional approaches to

elucidate MACC1-dependent effects on cellular migration further.
The cytoskeleton, adhesion, and
cell migration

The migration of cells is an essential part of cancer metastasis,

depending on the reorganization of the cytoskeleton, cell–cell, and

cell–matrix adhesions. Here, only a brief review of the cytoskeleton,

adhesion, and its relation to migratory processes is given. For

further information, the interested reader is referred to the

following reviews (17–31).
The cytoskeleton

The cytoskeleton is a network consisting of actin filaments,

microtubules, and intermediate filaments. The (sub-) structures

formed by each of those elements are not independent, but coupled,

increasing the complexity of the system (17). For this review, we will

focus on microtubules and actin due to their crucial role in cell

migration and on vimentin as it was often found to be regulated by

MACC1 (32–35).

Actin
Actin filaments can form different types of cytoplasmatic

structures, such as the actin cortex, the dendritic actin network

forming the lamellipodium, and stress fibers.

The lamellipodium is a flat, dendritic actin structure associated

with cellular movement in 2D and 3D environments, yet its

occurrence in 3D depends on the physical properties of the

surrounding cells (36). Actin in the lamellipodium is nucleated by

the Arp2/3 complex, quickly creating large protrusions that extend

the cells’ exterior by pushing forces created during actin

polymerization (37). Arp2/3 is activated via the Scar/WAVE

complex which in turn is regulated by the small RhoGTPase Rac1

(38). In a 3D environment, N-WASP was shown to induce ARP2/3

activation, mostly independent of Rac1 (39, 40). In addition to these

proteins, others such as anti-capping proteins like Ena/vasodilator-
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stimulated phosphoprotein (VASP), capping proteins, cross-

linkers, and polymerization-limiting factors like arpin are

necessary to regulate the formation of the lamellipodium (17).

During the expansion of the lamellipodium, new cell–substrate

adhesions are formed, increasing the lifetime of the lamellipodium,

responsible for a movement in the direction of high cell–ECM

adhesiveness (41, 42).

In contrast to the lamellipodium, stress fibers are formed by

bundles of parallel or anti-parallel-oriented actin filaments (43).

Stress fibers are bundled by cross-linkers such as a-actinin, fascin,
and filamin and connected to focal adhesions (17). Anti-parallel

stress fibers can additionally contain myosin and, thus, generate

contractile forces (44). Given that contractility is regulated by

myosin, stress fiber contractility is often regulated similarly, via,

e.g., phosphorylation of the regulatory light chain and activation of

the myosin light chain kinase either via the small GTPase RhoA or

Ca2+, respectively (45). The formation of stress fibers depends on

the activation of the formin mDia1 and RhoA (46, 47). Stress fibers

do not form protrusions but are thought to generate contractile

forces to retract the rear, modify the ECM via generated tension, or

transmit traction forces to the substrate for effective cell body

translocation (48–50).

The last structure described here is the actin cortex, forming a

contractile structure located beneath the plasma membrane. It

consists of actin filament bundles, cross-linkers (a-actinin, fascin,
etc.), myosin, actin polymerization factors (ARP2/3, mDia1), ERM

family members (ezrin, radixin, moesin), and others (51, 52). In

terms of migration, the so-called blebbing needs to be mentioned.

Blebs are protrusions formed in regions where the actin cortex

locally ruptures or is detached from the membrane, so that

hydrostatic pressure inside the cell causes small cell protrusions

(blebs) (17). Of note, this mode of migration is suitable for

migration in low adhesive environments (53–56). Another

property of the cortex is its tension, determining cell shape and

thus migration regulated by activation of myosin and actin

polymerization (57–59).

Microtubules
Microtubules are hollow filaments consisting of a- and b-

tubulin. Due to their larger size and organization, microtubules

can withstand larger compressive forces than actin and

intermediate filaments (60). Thus, microtubules serve as tracks

for intracellular transport. Except for some cases, microtubules

are mostly regarded as indirect promoters of migration,

independent of their mechanical contribution (61–63). As

microtubules are polarized, molecular motors can transport cargo

directionally along formed tracks. The cargo can contain lipids to

increase the surface area for protrusions, secretory proteins,

integrins, small GTPases (Rac, CDC42), proteases, etc. (17, 27),

all associated with cell migration. Furthermore, mRNA for leading

edge components, such as the ARP2/3 complex, profilin, or b-actin,
is transported along microtubule tracks (64–66).

Notably, the actin cytoskeleton and microtubules are inherently

coupled, due to a multitude of microtubule regulators, such as APC

or mDia1, that bind and regulate actin and due to actin–
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microtubule cross-linking factors such as MACF1 (17, 27).

Furthermore, (de-)polymerization of microtubules could be linked

to Rac1 or RhoA signaling, respectively, via microtubule-regulated

guanine exchange factors (GEFs) (27). Consequently, changes in the

regulation of one cytoskeletal network can affect the other directly

or indirectly.

Vimentin
Vimentin belongs to the class of type III intermediate filaments,

forming homopolymers of vimentin monomers, and it is expressed in

most cancer and precursor cells. Vimentin plays an important role in

migration. Its upregulation correlates with the epithelial–mesenchymal

transition (EMT), associated with metastasis (67). Consequently,

motile and invasive cells show higher vimentin expression, and the

knockdown of vimentin impairs migration (68). One mechanism of

vimentin action is its function as a guiding structure for microtubule

growth, necessary for maintaining cell polarity (69). Despite

microtubule-associated effects, vimentin co-regulates the organization

of the actin cytoskeleton. Thus, vimentin can either directly bind to

actin (70) or indirectly via, e.g., plectin (71). In addition, vimentin

depletion caused the induction of RhoA and myosin activity and,

consequently, stress fiber assembly (72, 73). In astrocytes, vimentin was

found to be necessary to maintain cell polarization of leader cells in

wound-healing assays via control of forces, attributed to a lower degree

of focal adhesion concentration at the cell front (74).

Furthermore, vimentin is involved in nuclear positioning, a key

element in cell migration, as the nucleus is the largest and stiffest

organelle of the cell (75, 76). Likewise, vimentin supports the cell

against compressive stress as experienced during tumor growth,

promoting cell migration and invasion (77, 78). In line with this

idea, vimentin regulates migration in dense but not in sparse

cultures, by induction of a stiffer, less deformable phenotype (79).
Cell adhesions

Cells need anchorage points for migration allowing them to

transmit forces. The most common forms are specific cell–cell

adhesions and cell–matrix adhesions. Because of the highly complex

nature of both adhesive systems, we will focus on integrin-based cell–

matrix adhesions and cadherin-mediated cell–cell adhesions.

Cell–matrix adhesions
Cell–matrix adhesions—as referred to here—are considered

connections of transmembranous integrins and extracellular

matrix components such as collagen, fibronectin, and laminin.

These bindings result in the formation of adhesion complexes,

connecting the ECM to the actin cytoskeleton. The best-

characterized cell–matrix adhesion type is the focal adhesion,

containing among others integrins, paxilin, focal adhesion kinase

(FAK), talin, vinculin, actin, and actin-regulating proteins (80–83).

Notably, these molecules are also associated with cell signaling

(especially FAK) and mechanotransduction (talin, vinculin),

respectively. The full consensus integrin adhesome contains more

than 60 components (84). Integrin-mediated cell–matrix adhesions
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sense and transmit biochemical signals about the ECM composition

and mechanics into the cell interior. Thus, they are responsible for

directed cell migration in the direction of more rigid substrates

(durotaxis), along chemical gradients (chemotaxis), and in the

direction of higher ECM concentration (haptotaxis) (85). Signals

are transmitted to the cell interior via activation of, e.g., YAP/TAZ

or SRF (86). Further signaling molecules associated with cell–matrix

adhesions are FAK, Src, paxillin, and others, all associated with cell

migration (24). FAK signaling can promote cell migration via Rac1-

induced actin polymerization, using different routes through either

PI3K or p130cas/Crk/DOCK180 signaling (87). Furthermore, FAK

can suppress stress fiber formation via RhoA inhibition and

regulate several GTPase-activating proteins (GAP) and activate

N-WASP to facilitate Arp2/3 activation at the leading edge (87).

As cell–matrix adhesions are directly connected to the actin

cytoskeleton, it is not surprising that a multitude of interactions

between focal adhesions and microtubules and vimentin exist. For

example, it was demonstrated that microtubules can target focal

adhesions, especially at the rear of the cell, fastening their

dissociation (27). On the other hand, microtubules support the

formation of focal adhesions at the front via the transport of

integrins (88, 89). Similarly, vimentin localizes at focal adhesions

(90), directly interacting with integrin subunits (91, 92), and

incorporates into forming (nascent) and mature adhesions (93).

In addition, vimentin was found to be involved in integrin

trafficking to the leading edge (94).
Cell–cell adhesions
Cell–cell adhesions couple neighboring cells, not only

functioning as a signaling hub but also introducing mechanical

coupling involved in collective cell migration. The most studied

class of cell–cell adhesion molecules is cadherins. They are calcium-

dependent transmembrane proteins, consisting of multiple

members, including N-cadherin, E-cadherin, and P-cadherin, and

form homotypic and heterotypic adhesive bonds. Despite

cadherins, adhesion complexes contain b-catenin, a-catenin, p120
catenin, vinculin, GEFs, VASP, and others and are connected to the

actin cytoskeleton (22, 95). Of note, GEFs, VASP, and others are

related to actin remodeling (95). Thus, classical cadherins

mechanically connect the actin cytoskeleton of neighboring cells,

and therefore, the tension on the actin cytoskeleton can be

transferred across multiple cells. The transferred tension can in

turn stabilize the adhesion (96–98), resulting in cortical stiffening

(98). Cadherin binding also regulates Rac1 and Arp2/3, inhibiting

protrusion formation in follower cells during collective migration

(99), probably partly dependent on its impact on cortex

organization. Cadherin adhesions further alter actin cytoskeleton

organization and promote tension by activation of RhoA and Cdc42

(100, 101). Additionally, the application of tension on E-cadherin

activates PI3K in EGFR dependence, resulting in integrin-

dependent cell–matrix adhesions and ROCK-induced contractility

(102). Similarly, P-cadherin was found to promote focal contact

formation (103). It is also noteworthy that cadherin types have

different functions and associations with (collective) cell migration.

E-cadherin and N-cadherin, for example, are involved in EMT and
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associated with a more (N-cadherin) or less (E-cadherin) migratory

phenotype (104). Yet, the exact role of E-cadherin and cell–cell

adhesion in cell migration, in general, is still a matter of debate, as

E-cadherin was found in migrating tumor cells and collective

migration was the dominant form of migration in tumors (21,

105, 106). Similarly, for E-cadherin and P-cadherin, different roles

in force transmission were found. While E-cadherin strengthens

cell–cell adhesions, P-cadherins regulate the tension a focal

adhesion can transmit, but P-cadherin can partially substitute E-

cadherin in case of E-cadherin loss (107).

Given the close connection between adherence junctions and the

actin cytoskeleton, numerous interactions between cell–matrix

interactions, intermediate filaments, and microtubules were found.

For example, a formed keratin–cadherin complex was demonstrated

to be involved in directional migration (108), while microtubules are

involved in the transport of N-cadherin and p120 catenin to adherens

junctions (109, 110). Cell–ECM adhesions to fibronectin were found to

inhibit the formation of E-cadherin-dependent cell–cell junctions

(111). Similarly, b1 integrin binding triggered the scattering and

disassembly of cell–cell contacts (112). One explanation may be the

binding-induced outside-in signaling of integrins, via FAK and Src that

can destabilize cell–cell adhesions (23).
Models to study cell migration

Given the complexity and entanglement of the cytoskeletal and

adhesive systems, the choice of the model system and evaluation

parameters is highly important to differentiate between different

types of effects involved in migration, e.g., effects on cell
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polarization, cooperativity, and chemotaxis. Thus, we briefly

summarize the most popular in vitro migration models and

address their advantages and disadvantages. Therefore, we will

group the models according to the dimensionality of the system

as either 1D, 2D, or 3D and as endpoint or dynamic measurements.

A brief summary of the presented models is given in Table 1, and

some models are illustrated in Figure 1.

1D migration can be realized either via thin strips of adhesive

substrate surrounded by non-adhesive substrate or via narrow

channels that cells can migrate through (113–118). Such models

are considered to represent migration along fibers in confinement

(119) and are appropriate to either analyze single-cell migration or

collective migration of groups of cells in a continuous manner (114,

116). Furthermore, some systems, especially microfluidic ones, can

be used to induce long-term stable chemotactic gradients (120).

Consequently, 1D systems are suitable to assess chemotaxis, but also

migration under confinement. On the other hand, such setups

might be complex to implement and analyze. Such approaches

might be useful to elucidate the effects of MACC1 on chemotaxis

and to decouple the effects on random migration from chemotaxis.

Currently, the most prominently used Boyden chamber assays

cannot distinguish well between both. Please see below for

more details.

Looking at 2D systems, three common models will be discussed:

sparsely seeded cells on a 2D substrate, the scratch wound, and the

transwell or Boyden chamber assay. While technically not entirely

2D, the dimensionality of transwell assays is closest to a 2D system,

rather than 1D or 3D.

The simplest form to analyze migration in 2D is to sparsely seed

cells and monitor the movement of individual cells via time-lapse
TABLE 1 Summary of the migration models.

Model Static Dynamic Advantages Disadvantages

1D migration x x - Stable gradients
- Tunable surfaces (ECM, mechanics)
- Single- and collective cell migration

- Complex setups
- Potentially complex data analysis

2D single cells x - Simple setup
- Tunable surfaces (ECM, mechanics)
- Low cell numbers needed
- Well plate compatible

- No cell–cell interactions
- Potentially complex analysis
- Unphysiological surroundings
- No chemotaxis

Scratch assay x x - Well plate compatible
- Directional cell movement
- Tunable surfaces (ECM)

- Variability of manual scratches
- Can damage coatings
- Released factors of damaged cells
- No chemotaxis
- No differentiation between migration, viability, and proliferation as
an endpoint assay

Transwell x - Easy implementation
- Low cost
- High throughput
- Easy analysis
- Chemotactic gradients

- Only single-cell properties
- High amount of preliminary experiments needed
- Unclear interpretation
- Many experimental uncertainties
- Unphysiological surfaces
- Unstable, non-linear gradients

Spheroid migration
assay

x x - Most physiological conditions
- Tunable surroundings (ECM, mechanics,
stroma cells)
- 2D and 3D migration possible
- Single- and collective cell migration

- Complex setup
- Complex analysis
- Not suitable for all cell types
x denotes if the migration model is usually performed as static or dynamic experiment.
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microscopy. Typically, cell speed and the sense of directionality of

cells are measured (13, 121, 122). The conduction of such

experiments is comparably simple, and surfaces can be modified

both in terms of functionalization, via, e.g., ECM components and

stiffness (117). Yet, analysis can be more complex. If done manually,

the throughput is limited and results may vary between different

raters. Automatic approaches allow for a high throughput (121, 123,

124) but are normally optimized to a certain cell appearance and

morphology. Thus, they either need significant parameter tuning or

might even be unusable for certain cell types, albeit machine

learning systems help to overcome this issue (123, 124). As only

single cells are analyzed, cell–cell interactions are neglected, but the
Frontiers in Oncology 05
effects of substrates, interventions and environmental stiffness on

cytoskeletal dynamics can be analyzed. Notably, for MACC1, such

analysis is mostly missing.

When using the scratch wound assay, cells are seeded to form a

dense monolayer, and afterward, an artificial wound is created (125,

126). Notably, the surfaces can be functionalized using ECM

components. Afterward, the wound closure is monitored for

several days, either as endpoint measurement or in a continuous

manner. Typically, the rate of wound closure is used as a proxy for

migration (127, 128), albeit a more complex analysis can be

performed to obtain additional information (129–132). In the

simplest form, conducted as an endpoint assay without complex
A B

C

FIGURE 1

Illustration of migration models. (A) A sketch of the transwell model from the top (top) or side view (bottom). Please note the uneven distribution of
pores and unclear cell path (red arrows) before contacting a pore in the top view. The side view shows the necessary, potentially rate-limiting
deformation of the nucleus to pass a pore. (B) The working principle of a scratch wound assay, starting from an unscratched monolayer, via wounding,
to subsequent wound closure by proliferation and migration. Arrows denote the average direction of migration. (C) Two types of 3D migration models.
The top image shows a typical spheroid confrontation assay, bringing the spheroids of two cell populations (gray and pink) into contact, with the
subsequent fusion of spheroids and intraspheroidal migration. The bottom image illustrates a typical spheroid invasion assay, showing an embedded
spheroid, showing collective and single-cell invasion into the ECM. Arrows illustrate the transition from the start to the end of the experiment.
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surface functionalization, the scratch assay is comparably simple to

perform and analyze. Yet, the scratch assay has several

disadvantages, such as the scratch procedure itself suffers—if done

manually—from a large variability (133, 134) and is inducing

significant damage to the remaining cells, via factors released

from damaged cells (134). Furthermore, the scratch procedure

may damage surface modifications (133, 135). To circumvent the

abovementioned issues, the cell exclusion assay can be used. In

principle, it is identical to the scratch assay except that cells are

seeded into a culture vessel containing a block of defined size so that

cells cannot enter this area. For the experiment, the block is

removed and migration is monitored as mentioned before,

assuring that no cell death occurs. Yet, precaution must be taken

that none of the cells crawls under the used block (136).

Independent of the usage of the scratch or exclusion assay, cell

proliferation has to be taken into consideration, as most of these

assays are performed for at least 1 day, so the final readout will be a

mixture of proliferation and migration (137). While attempts are

being made to detect cell divisions in parallel in phase contrast

images (138–141), the decoupling of proliferation and migration in

these assays remains an issue. Furthermore, if interventions affect

cell viability, they cannot be distinguished from migration using the

scratch or cell exclusion assay with wound width as a readout (127).

While scratch wound assays were used frequently, when analyzing

MACC1-dependent migration, they were most often performed as

endpoint assays, unable to differentiate between proliferation and

migration. The use of more advanced analysis schemes combined

with live-cell imaging (129–132) may help to reveal more details

regarding MACC1 effects on (collective) cell dynamics, cell

polarization, leader cell determination, etc. Furthermore, by

simultaneous detection of proliferation events or via inhibition of

proliferation (138–142), MACC1-induced effects on proliferation

could potentially be decoupled from migration.

The last 2D system discussed here is the transwell or Boyden

chamber assay. For the transwell assay, cells are seeded on top of a

coated or uncoated porous membrane with a defined pore size,

while the culture medium is placed on top and below the cells. Due

to this setup, a chemotactic gradient can be generated via the

addition of a chemoattractant or repellent to the lower or upper

compartment, respectively. As readout for migration, the number of

cells migrating from the top to the bottom side of the membrane,

the number of cells on the bottom of the lower well, or the sum of

both is counted. Normally, cell counting is done manually and only

at one defined time point. Therefore, the setup and data analysis can

be considered rather simple and quick. Of note, there are modified

versions of the Boyden chamber assay that do not need manual

counting and allow for a continuous data assessment, e.g., the

IncuCyte or xCELLigence systems (12, 143, 144). Yet, for MACC1,

the standard Boyden chamber assay was the most used one (see

Table 2). On the other hand, the transwell assay has some severe

drawbacks: The size of the pores of the membrane has to be chosen

carefully, to fit the overall size of the cell and nucleus, as the nucleus

and its deformability are often rate-limiting for cell migration (146,

147). Too large pores would in contrast lead to the unspecific

dropping of cells through the membrane (136). The gradient

generated is neither constant over time nor linear (148, 149). The
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generated gradients can nearly vanish after as short as 6 h and

degrade to 50% of their initial value after ≈1 min (148). Notably,

gradient steepness affects chemotactic response (150–152). When

seeding cells, care must be taken to obtain a single-cell suspension,

as cell aggregates are slower or even unable to migrate through the

membrane pores. For obtaining statistically robust results, it is

necessary to have a large number of migrating cells, and as most cell

types have different migratory capacities, the experimental endpoint

needs to be determined for every single-cell type individually (135).

Another issue with the transwell assay is the distribution and size of

pores on the membrane, which is not even (136, 153), and thus, the

amount of random 2D motion of cells on top of the membrane

before reaching a pore is undefined and creates additional

measurement uncertainty. A last point to be taken into account is

the time between seeding and stopping of the experiment. For times

above 24 h, proliferation affects the readout, via an increase of cells

on the lower membrane and the bottom part of the assay. Thus, for

sufficiently long experimental times, the effects of interventions on

proliferation cannot be distinguished from migration. Please note

that for most migration experiments associated with MACC1,

incubation times of 24-48 h were used. Taken together, using the

transwell assay, it can be—dependent on the exact setup—highly

difficult to elucidate the actual reason for the change of

migratory capacity.

For 3D migration models, we limit the description to the

spheroid migration/invasion assay. Spheroids are multicellular,

spherical objects of one or more cell types, cultured in a low to

non-adhesive environment or generated via confinement (154),

favoring the formation of cell–cell adhesions instead of cell–matrix

adhesions. When reaching a critical diameter of 200-500 µm,

spheroids develop oxygen, nutrient, and catabolite gradients and,

when growing larger, show necrotic cores, recapitulating several key

factors of in vivo tumors (155). For migration/invasion assays,

spheroids can be placed on top of a coated surface or embedded

in a hydrogel, mimicking the ECM (155). Independent of the exact

experimental settings, spheroids can be imaged continuously or at

the beginning and end of the experiment only. A typical readout of

such migration experiments is the increase in cell-covered area or

tracking of individual migrating cells, to measure speed,

morphology, or even migration of cells inside the spheroid (156–

160). While such a model represents a more physiological approach,

it is typically more time-consuming. Notably, the size of the

spheroid needs to be controlled tightly, as this affects its

composition and thus the gradients inside the spheroid (155). If

spheroids are embedded into hydrogels, the stiffness, pore size, and

composition of the hydrogel need to be precisely chosen and

reproduced, as all affect cell migration (146, 147, 161, 162).

Furthermore, not all cell types and lines form spheroids in all

assays. Additionally, if live-cell imaging is performed, together with

the analysis of the motion of single cells, the analysis might become

highly complex (156, 160).

As a special case, a spheroid confrontation assay can be done.

There, cells of one spheroid can migrate into another spheroid of

the same or different cell type (155, 159, 160). In principle, similar

parameters can be assessed as described before: the infiltration of

one spheroid into the other, either as a bulk measurement or on a
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single-cell basis, and the time of complete fusion (159, 160). All

parameters can be considered proxies of cell migration and/or

invasion. Usage of the mentioned 3D assays could help to analyze

the role of homo- or heterotypical cell–cell interactions during

migration in more physiological environments, in terms of

dimensionality, stiffness, and chemical composition. Notably, the

effect of confinement—drastically altering the motile machinery

(163)—can be studied as well. Currently, studies on MACC1

focused on 2D models. Yet, in 2D, cells tend to show drastically

different behavior and organization compared with 3D, including

morphology, proliferation, cell interactions, and gene expression

patterns (161). Thus, the usage of more complex 3D models is

expected to yield a rich set of information on MACC1-

dependent migration.
MACC1 in tumor migration

Starting with the initial discovery of MACC1, effects on

migration were reported (2). Notably, in vivo MACC1 was also

enriched in tumor buds and cells at the invasive front of colon

carcinoma (164, 165), making it tempting to speculate about the

role of MACC1 in leader cell determination during collective

invasion. Initially, MACC1-induced effects involved the activation

of HGF/cMet signaling (2). The following studies supported these

findings (12, 33, 166–170). cMet signaling can induce activation of

the Src family members, FAK, small Rho GTPases such as Cdc42 or

Rac1, and others, all implied in cell migration (171, 172). A pan-

cancer database analysis of MACC1 in 33 cancer types generated a

consensus list of 1,896 genes correlating with MACC1 in at least

half of the tumor entities. The authors found an enrichment of the

consensus list in genes associated with cell junction organization,

cell–cell junctions, and regulation of cell adhesion and cell

junctions, pointing toward a far larger set of MACC1-associated

pathways than HGF/cMet (173). A sketch of the current migration-

associated network is shown in Figure 2A, and the potential

intervention strategies are shown in Figure 2B. Of note, cMet

signaling can induce AKT and ERK signaling (171, 172, 174),

both also induced by MACC1 (see below).

Furthermore, MACC1 expression correlated with intracellular

and secreted IGFBP2 (175) that was independently found to be

collected by integrins causing inhibition of the tumor suppressor

PTEN (176, 177). Increased PTEN expression was found after

MACC1 silencing in esophageal carcinoma (178), and in

hepatocellular carcinoma, MACC1 induced PI3K activation (179).

In line with this, several studies reported associations of MACC1

with AKT activation (33, 143, 166, 178–183), suggesting the

following MACC1 signaling: MACC1/IGFBP2/PTEN/PI3K/AKT

(175, 178, 179, 184). Yet, MACC1 may affect PI3K/AKT signaling

also via direct interactions with YWHAE (14-3-3 epsilon), as

confirmed by affinity capture-MS (185). YWHAE was previously

found to induce PI3K and AKT activation (186). Additionally,

PTEN was reported to suppress cell–matrix adhesion-associated

tumor cell migration by inhibition of FAK (187) and further induce

N-cadherin and suppress E-cadherin (188), while PI3K/Akt

signaling had the opposite effects (189). Interestingly, MACC1
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was shown to interact with MARK2 (Microtubule Affinity

Regulating Kinase 2) (185), a protein that induced FAK

activation, contractility, and stress fiber formation and was

involved in cell polarization (190, 191). Another hint suggesting

that MACC1 interacts with cell–cell and cell–matrix adhesions was

implied by the interaction of MACC1 with SPON2 in colorectal

cancer (192). SPON2 is a known ligand for integrins a4 and b2
(193), linked to integrin a5 and b1 signaling (194), and

demonstrated to regulate the expression of Rac1 and Rac2 in

dendritic cells (195), resulting in the promotion of lamellipodium

formation (196). In contrast, no MACC1-dependent change in the

distribution of integrins a5 and b1 was found in glioblastoma cells

(13). Furthermore, SPON2 was shown to inhibit E-cadherin and N-

cadherin in gastric cancer (197). In addition, MACC1 negatively

correlated with the expression of a-actinin (34), a cross-linker

necessary for the formation and stability of stress fibers (198).

Furthermore, a study in ovarian cancer demonstrated lower cell–

matrix adhesion to matrigel after MACC1 silencing in a 2-h time

frame covering the onset of cell attachment (199). In line with this,

in non-small cell lung and gastric cancer, MACC1 correlated with a

lower expression of collagen I and fibronectin (34, 167). Yet, two

studies in gastric cancer associated MACC1 with higher fibronectin

expression (35, 200). Similarly, adhesion to fibronectin and laminin

of glioblastoma cells was not altered after MACC1 overexpression

for short interaction times of 1 min (13). In summary, there are

clear hints on the effects of MACC1 acting on cell–matrix

adhesions, but the effects may depend on the tumor type,

analyzed integrins, or the ECM component, and consequently,

this aspect needs additional research for a clear picture.

Another signaling route affected by MACC1 is the ERK pathway,

as demonstrated in multiple tumor entities (168, 169, 180, 182, 183,

201–203). Potentially, ERK activation is induced by MACC1 via
A

B

FIGURE 2

The MACC1 signaling network associated with cell migration (A) and
potential intervention points, with the associated drugs (B).
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sustained EGFR signaling, independent of EGFR expression (201).

Moreover, it was demonstrated that the MACC1 target SPON2 can

also induce ERK activation in gastric cancer cells (197). Interestingly,

ERK1/2 can regulate and is regulated by S100P, which is also induced

by MACC1 (204, 205). Previously, S100P was shown to affect myosin

II, reduce the number of focal adhesions (206), interact with Cdc42 and

Rac1 regulators, and affect cell migration via ezrin binding (207). In

addition, ERK co-regulates E-cadherin (208) and was shown to be

involved in protrusion formation via induction of actin polymerization

at the leading edge (209). ERK was also suspected to be involved in

FAK inactivation, regulation of RhoA and myosin II, downregulation

of E-cadherin, and upregulation of N-cadherin and vimentin (197,

209, 210).

Looking further downstream, MACC1 was frequently found to

induce a mesenchymal phenotype in multiple tumor types, through the

measurement of EMT markers, such as increased expression of

vimentin and N-cadherin and reduced expression of E-cadherin (32–

34, 166, 169, 170, 182, 203, 211–213). Yet, the intracellular organization

of the vimentin cytoskeleton does not appear to be altered in

glioblastoma cells upon MACC1 overexpression (13). Direct

interactions between E-cadherin and MACC1 were described earlier,

being another potential way of E-cadherin regulation via MACC1

(214). As discussed before, these molecules are involved in single-cell

and collective migration, due to associations with cytoskeletal

reorganization and cell–cell coupling. Likewise, MACC1 induced b-
catenin expression and phosphorylation, an important signaling and

adaptor protein in cell–cell junctions (169, 180, 203, 215–217),

negatively regulating E-cadherin (208). As mentioned earlier,

MACC1 interacts with YWHAE which was shown to induce lower

E-cadherin but higher N-cadherin and vimentin expression (186),

being another explanation for the observed effects. Arguments for

MACC1 acting on cell–cell adhesions and cytoskeletal organization are

supported by a study in HeLa cells showing lowered actin staining

uponMACC1 silencing (218) and by experiments on glioblastoma cells

showing lower equilibrium cell–cell adhesion after MACC1

overexpression (13). Additionally, a-smooth muscle actin (aSMA)

expression, normally expressed in smooth muscles and myofibroblasts,

was also positively correlated with MACC1 expression (212). In

glioblastoma, MACC1 promoted random motion in 2D, caused by a

lower cortical stiffness and accumulation of protrusive actin near the

protruding edge (13). Yet, the stiffer and faster random migratory

phenotype appears to be tumor type-dependent, as it was not found in

colorectal cancer cells (142).

Interestingly, MACC1 also was involved in cytoskeletal

organization under metabolic stress in gastric cancer (219). Upon

glucose deprivation, gastric cancer cells showed increased formation

of stress fibers, caused by DLC3 downregulation and subsequent

MACC1 upregulation. Upon silencing MACC1, the induction of

stress fibers under metabolic stress was abrogated (219). The same

study suggested a MACC1-promoted chemotactic migration along

glucose gradients (219). In line with this, MACC1 expression

resulted in increased glucose uptake, ATP levels, and lactate

production in gastric cancer cells (211). Interestingly, the MACC1

stabilizing long non-coding RNA MACC1-AS is upregulated upon

glucose deprivation, further promoting MACC1-induced glycolysis

and antioxidant production under metabolic stress (220). Given the
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fact that the metabolic state and nutrient availability of cells have a

large impact on cytoskeletal organization and migration (26, 221),

MACC1-induced metabolic adaptation might be another part of the

MACC1-regulated migration in vivo.

MACC1 expression not only had intracellular effects but also

changed the secretion profile of cells. In colorectal cancer, MACC1

expression was connected to increased S100A4 secretion, induced

by the b-catenin/TCF4 axis (216). S1004A was previously shown to

regulate non-muscle myosin heavy chain and RhoA, leading to

chemotaxis and stress fiber formation (222). Additionally, direct

interactions with the actin cytoskeleton were found (223). Of note,

extracellular S1004A was demonstrated to induce matrix

metalloproteinase (MMP) expression of MMP1, MMP3, MMP9,

and MMP13, facilitating the degradation and remodeling of the

extracellular matrix and thus its migration (223). In agreement,

MACC1 was associated with increased expression of several MMPs,

namely MMP2, MMP3, and MMP9 (34, 199, 224–226).

Another study performed in colorectal cancer found MACC1 to

affect collective but not single-cell migration (142). Interestingly,

MACC1-induced effects were fully abrogated when proliferation

was inhibited (142). This study points toward another—potentially

very important—aspect of MACC1-induced migration that was

previously identified independently on MACC1. Proliferation

events can cause both a local and even global fluidization of cell

layers and thus permit the reorganization and migration of cells

(227–232). In light of these observations, the following questions

arise: what part of MACC1 promigratory effects is caused by the

classical way via the cytoskeletal and adhesive dynamics, and what

proportion is caused by MACC1-induced increased proliferation?

These questions become even more relevant, given the large

number of assays used to analyze MACC1-dependent migration

that cannot distinguish between proliferation and migration, e.g.,

scratch assays performed as endpoint assays and long-lasting

transwell assays (see Table 2).

Inhibiting cancer cell migration and thus ultimately metastasis

formation is one approach to fight against cancer. Yet, many clinical

trials targeting migration-associated molecules had only limited

success, if at all (233, 234). The MACC1-dependent signaling

network could be an additional piece to the puzzle helping to

bridge the gap between preclinical research and the successful

clinical application of anti-migratory drugs. For many MACC1

targets, drugs that are or were in clinical use exist (235–238), albeit

for some, available drugs are sparse (see Figure 2B). Additionally,

some of them, e.g., 5-methyl cromolyn, were not yet clinically tested

to the authors’ knowledge and are generally only poorly investigated

in human systems (239). Furthermore, lovastatin and rottlerin were

shown to transcriptionally inhibit MACC1, but both have diverse

off-targets and are only a little specific (128). Consequently, further

research into MACC1-specific drugs may be an additional route to

inhibit cancer cell migration.
Conclusion and outlook

In the few years since its discovery, MACC1 has been

demonstrated to be a very promising predictive biomarker in a
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multitude of tumor entities because it induces migration and

proliferation among others. On a mechanistic level, effects were

mediated very frequently via ubiquitous, major pathways, such as

cMet, AKT, or ERK. While several studies elucidated further the

downstream effects, the current data and understanding of how

MACC1-induced effects are transduced to cytoskeletal or adhesive

remodeling in detail remain largely elusive. Further research may

help to complete this picture and identify potential targets for

treatment. As MACC1 is involved not only in cell migration but

also in proliferation, functional assays need to take the pro-

proliferative effect of MACC1 into account. Currently, most of

the assays employed cannot clearly distinguish between

proliferation and migration and partly neglect the MACC1-

induced effects on proliferation.

Despite the high effort put into elucidating MACC1-induced

effects, several questions regarding its promigratory effects remain

open. Downstream targets mediating the currently discovered

effects need to be analyzed more precisely, as by now mostly the

major signaling routes are identified. As MACC1 was shown to

affect cortical tension and some of its downstream targets affect key

components of the actin cortex, the question arises if and how

MACC1 affects blebbing and thus migration in low adhesive

environments. Another question is how 3D migration is altered

in MACC1 dependence, under different amounts of confinement, in

matrices of varying stiffness and composition. Furthermore, it also

appears necessary to elucidate the MACC1-dependent effects on

changes in the adhesive system, currently summarized under the

broad term EMT, as they largely determine collective migration, a

key factor in tumor invasion. This includes substrate dependence of

cell–matrix adhesion formation, the strength of cell–cell and cell–

matrix adhesions, and consequences on biomechanical properties

and collective migration. Further experiments should clarify

whether MACC1 additionally affects heterotypic cell–cell

interactions with stromal cells and what the consequences are.

Currently, several drugs are under clinical trials which have at

least a partial inhibitory effect on cell migration, potentially affecting

metastasis formation (234). Given the clear association between
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MACC1 and poor survival and increased metastasis in so many

tumor entities and its tight relation to cell migration and the

cytoskeletal or adhesive system, it is likely that targeting MACC1

and analyzing its signal cascades will help to better understand the

metastatic processes and develop precise tools to interact with

tumor progression.
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TABLE 2 The number and type of in vitro assays used to analyze MACC1-dependent migratory effects.

Assay Endpoint Dynamic Sum

1D assays 0 0 0

2D single cells 0 2 2

Scratch 30 3 33

Transwell 69 3a 72

3D assays 0 0 0

Others 2b 2c 4

Sum 101 9 111

Number of studiesd 75
frontie
aBasti et al. and Treese et al. (143, 144) used a modified transwell with the IncuCyte system. Hagemann et al. (12) used a modified transwell with the xCELLigence system.
bLi et al. (145) used a 2D microfluidic migration device. Hagemann et al. (12) used an ex vivo OHSC invasion model.
cHohmann et al. (142) analyzed collective migration in dense monolayers and small cell colonies.
dThe overall sum of studies does not match the assay number as some studies employed multiple assays.
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