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Delta radiomic patterns on
serial bi-parametric MRI are
associated with pathologic
upgrading in prostate cancer
patients on active surveillance:
preliminary findings
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1Department of Biomedical Engineering, Emory University, Atlanta, GA, United States, 2Picture Health,
Cleveland, OH, United States, 3Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, OH, United States, 4Fox Chase Cancer Center, Philadelphia, PA, United States,
5Department of Urology, Assiut University, Asyut, Egypt, 6Department of Radiology, University
Hospitals, Cleveland Medical Center, Cleveland, OH, United States, 7Department of Urology,
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Objective: The aim of this study was to quantify radiomic changes in prostate

cancer (PCa) progression on serial MRI among patients on active surveillance (AS)

and evaluate their association with pathologic progression on biopsy.

Methods: This retrospective study comprised N = 121 biopsy-proven PCa

patients on AS at a single institution, of whom N = 50 at baseline conformed

to the inclusion criteria. ISUP Gleason Grade Groups (GGG) were obtained from

12-core TRUS-guided systematic biopsies at baseline and follow-up. A biopsy

upgrade (AS+) was defined as an increase in GGG (or in number of positive cores)

and no upgrade (AS−) was defined when GGG remained the same during a

median period of 18 months. Of N = 50 patients at baseline, N = 30 had MRI

scans available at follow-up (median interval = 18 months) and were included for

delta radiomic analysis. A total of 252 radiomic features were extracted from the

PCa region of interest identified by board-certified radiologists on 3T bi-

parametric MRI [T2-weighted (T2W) and apparent diffusion coefficient (ADC)].

Delta radiomic features were computed as the difference of radiomic feature

between baseline and follow-up scans. The association of AS+ with age,

prostate-specific antigen (PSA), Prostate Imaging Reporting and Data System

(PIRADS v2.1) score, and tumor size was evaluated at baseline and follow-up.

Various prediction models were built using random forest (RF) classifier within a

threefold cross-validation framework leveraging baseline radiomics (Cbr),

baseline radiomics + baseline clinical (Cbrbcl), delta radiomics (CDr), delta

radiomics + baseline clinical (CDrbcl), and delta radiomics + delta clinical (CDrDcl).
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Results: An AUC of 0.64 ± 0.09 was obtained for Cbr, which increased to 0.70 ±

0.18 with the integration of clinical variables (Cbrbcl). CDr yielded an AUC of 0.74 ±

0.15. Integrating delta radiomics with baseline clinical variables yielded an AUC of

0.77 ± 0.23. CDrDclresulted in the best AUC of 0.84 ± 0.20 (p < 0.05) among all

combinations.

Conclusion: Our preliminary findings suggest that delta radiomics were more

strongly associated with upgrade events compared to PIRADS and other clinical

variables. Delta radiomics on serial MRI in combination with changes in clinical

variables (PSA and tumor volume) between baseline and follow-up showed the

strongest association with biopsy upgrade in PCa patients on AS. Further

independent multi-site validation of these preliminary findings is warranted.
KEYWORDS

active surveillance, prostate cancer, radiomics, magnetic resonance imagining,
pathologic upgrade
1 Introduction

Prostate cancer (PCa) is the second leading cause of cancer-

related mortality among men in the United States with nearly

34,500 expected deaths in 2022 (1). However, patients with low

or favorable risk PCa do not need radical therapies and can safely be

monitored via active surveillance (AS) as demonstrated in the

PRIAS study (2), which showed excellent 10-year outcomes in

men on AS (2). Patients on AS are usually followed up with

serum prostate-specific antigen (PSA) every 6 months, a digital

rectal exam (DRE) once a year, and repeat prostate biopsies (PBx)

with or without MRI every 12 months or as needed, as per the

National Comprehensive Cancer Network (NCCN) guidelines (3–

5). The recent guidelines (5) have reestablished AS to be the

preferred management strategy for low-risk PCa patients to curb

overdiagnosis and overtreatment in men with PCa.

Current standard of care for men on AS is heavily reliant on

monitoring via repeat fusion biopsies, which are invasive and

expensive; cause discomfort to patients; carry the risk of bleeding,

infection, and urinary retention; and are subject to sampling error

(6). While MRI-targeted biopsies (7) have been shown to improve

PCa localization, there is considerable debate as to whether patients

could safely be monitored non-invasively via MRI without the need

for invasive biopsies. Anxiety of untreated cancer arising out of this

uncertainty (8, 9) is one of the important factors responsible for

men discontinuing AS and opt for definitive treatment (2, 10).

Besides invasive biopsies, DRE is routinely performed as part of AS

(11), which is a source of discomfort and anxiety to patients and

associated with false-positive readings (12). Consequently, an

accurate, non-invasive imaging-based strategy for identifying

candidates for AS and their monitoring is highly desirable.

Studies (13, 14) have shown MRI to be promising in identifying

PCa patients suitable for AS; however, this is limited to initial risk

stratification. Monitoring of PCa patients on AS using serial MRI

showed a high negative predictive value but a moderate positive
02
predictive value and currently cannot replace biopsies. Radiologist

assigned Prostate Imaging Reporting and Data System (PIRADS

v2.1) scores have been studied (15) for patient triage to minimize

repeat biopsies and improve quality of life; however, no objective

guidelines exist for non-invasive monitoring. The Prostate Cancer

Radiological Estimation of Change in Sequential Evaluation

(PRECISE) (16) criteria have been proposed to monitor PCa

progression on MRI using standardized guidelines. While

upgrading in MRI-negative men was substantially lower

compared to MRI-positive men, PRECISE criteria alone were

insufficient to monitor and predict upgrading in MRI-positive

men (13). Confirmatory systematic and targeted biopsies are still

required to monitor patients on AS, despite the use of serial MRI.

Clinical factors including PSA density have been studied and

demonstrated to identify candidates for AS (17). PSA density in

conjunction with MRI has been explored as a dynamic risk

prediction strategy to monitor patients on AS (18). However,

conclusive and objective guidelines for risk estimation of disease

progression on AS are limited. Therefore, there is currently a critical

need to improve MRI-based interpretation of PCa progression in

conjunction with routine clinical factors including PSA to achieve

non-invasive monitoring for AS.

Radiomics from prostate MRI have shown significant promise

in characterization and risk stratification of PCa (19). Radiomics

involves high-throughput extraction of quantitative measurements

of subtle image texture and heterogeneity patterns using advanced

image processing techniques that are not apparent on routine visual

inspection. Bi-parametric MRI (bpMRI) that includes T2W and

DWI sequences was shown (20, 21) to be efficient and non-inferior

in diagnostic performance in comparison to multiparametric MRI

(which includes contrast enhanced MRI). We hypothesize that

“delta” changes in the progression of PCa on AS can be

quantified using radiomic features on serial bpMRI. In this

preliminary proof-of-concept study, we explore radiomic features

from PCa regions on serial bpMRI (baseline and follow-up) along
frontiersin.org
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with routine clinical parameters for their association with PCa

progression on AS. We employ a single institutional dataset

consisting of N = 50 PCa patients on AS who underwent baseline

followed by repeat 3T MRI on N = 30 patients along with

confirmatory systematic biopsies. We compare our integrated

approach combining radiomics with clinical variables against

radiologist assigned PIRADS v2.1 scores in predicting biopsy

upgrade for PCa AS.
2 Methods

2.1 Patient selection

This HIPAA-compliant, retrospective study was approved by

the local institutional review board (IRB) that waived the need for

informed consent. A chart review was performed to include patients

diagnosed with biopsy-proven PCa between 2012 and 2020

according to the following criteria: (a) patients with

histopathologically documented PCa who were enrolled on AS,

(b) availability of 3T MRI and systematic biopsy at baseline, (c)
Frontiers in Oncology 03
followed up with PSA measurements and biopsies at least every 12

months for ≥3 years, and (d) including at least one additional 3T

MRI between 18 and 36 months (see Figure 1). Patients with (a)

imaging artifacts, (b) non-visible lesions, (c) negative biopsy at

baseline, (d) non-availability of at least T2W and DWI sequences at

baseline and follow-up, (e) discordant imaging and pathology

findings, (f) different location of positive biopsy core at baseline

and follow-up, and (g) disappeared lesion/newly detected location

at follow-up were excluded from the study. All images were

acquired with 3T MRI scanners (Siemens Skyra and Philips

Ingenia) using pelvic phased array surface coil. The acronyms

used in this manuscript are provided in Table 1. Detailed imaging

parameters and characteristics are provided in Table 2. The

International Society of Urological Pathology (ISUP) Gleason

Grade Groups (GGG) were determined from 12-core transrectal

ultrasound (TRUS)-guided systematic biopsies at baseline and

follow-up. A biopsy upgrade (AS+) was defined as an increase in

GGG from baseline 1 to ≥2 (increase in number of positive cores for

baseline GGG = 2) at follow-up and no upgrade (AS−) when GGG

remained the same. Detailed information about the patient cohort is

provided in Table 3.
FIGURE 1

Summary of patient selection from an initial cohort of 121 patients.
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2.2 Prostate cancer delineations on MRI

Two board-certified genitourinary radiologists with greater

than 10 years of experience in prostate imaging reviewed all the

MRIs and delineated PCa regions of interest (ROI) on T2W and

ADC. The readers were provided with the baseline and follow-up

scans separately and were blinded to the relationship between the

two sets of scans. They were also blinded to pathology results as well

as positive core locations to avoid radiologists’ bias in identifying

PCa lesions. The readers were provided with high-resolution T2W,

high b-value DWI and ADC images in the axial plane along with

DCE sequences when available. ROI delineations were made by the

reader on the T2W slice using the MD.AI software (22). The readers
Frontiers in Oncology 04
could choose to delineate a lesion if visible or label the scan as

negative on MRI or of poor diagnostic quality. The readers assigned

PIRADS v2.1 scores to all lesions. A subset of patients was assigned

to both radiologists to evaluate inter-reader variations in PCa

delineation as well as PIRADS v2.1 scoring.

ROIs delineated by readers were later matched against positive

biopsy core location obtained from systematic biopsies. Patients

whose MRI scans were not assigned a PIRADS v2.1 score due to

poor image quality or those that did not match with positive biopsy

core locations were excluded from the study. In patients with

multiple lesions, the lesion corresponding to the highest PIRADS

v2.1 score and corresponding positive biopsy core location was

included. The above-described rigorous steps were followed to

ensure that no reader bias was introduced while identifying PCa

ROIs on MRI.
2.3 Preprocessing of MRI

Prostate cancer ROIs were delineated by the radiologists on

T2W as they provide the greatest anatomic resolution. ADC was co-

registered to T2W using a rigid transformation using the Elastix

toolbox (23, 24) (specific parameters are provided in the

Supplementary Material), which was used to map PCa ROIs onto

ADC. These ROIs were verified by radiologists and modified if they

were not correctly aligned with the corresponding suspicious region

on ADC. When there was significant deformation in ADC that

could not be accounted through rigid transformation, separate ROIs

were delineated for ADC.

Intra-patient intensity drift artifacts may cause image intensities

to lack in tissue-specific meaning. This was corrected using a

previously presented MRI intensity standardization method (25),

which normalizes the histogram of intensities from a given region

against a template image delivering tissue-specific intensity range. A

pre-identified template using a subset of scan was used as a

reference against which all scans in this study were mapped. This

ensures that T2W measurements were normalized and reflect a

tissue-specific meaning. Although we standardize the T2 scans, we

did not standardize ADC scans since they are from single site and

quantitative map.
2.4 Radiomic feature extraction

From the radiologist-delineated PCa ROIs on T2W and ADC, a

set of 252 radiomic features were extracted using in-house software.

These include first- and second-order statistics (mean, median,

standard deviation, and range); 13 Haralick features (26), which are

statistics derived from gray-level co-occurrence matrix (entropy,

energy, inertia, inverse difference moment, marginal distributions,

correlation, information measures of correlation, sum of average,

sum of variance, sum of entropy, difference of average, difference of

variance, difference of entropy, and contrast) computed at a window

size of 3 × 3, 5 × 5, and 7 × 7; 5 Gabor features; and 1 CoLIAGe (27)

feature. Radiomic features were extracted and processed in

agreement with the image biomarker standardization initiative
TABLE 1 List of acronyms used throughout the manuscript.

Name Abbreviation

Baseline Radiomic Features Fr

Baseline Clinical Features Fcl

Delta Radiomic Features FDr

Baseline Imaging Model Cbr

Baseline Clinical Model Cbcl_ x €[,PSA, Tumor Volume]

Baseline Integrated Model Cbrbcl

Delta Radiomic Model CDr

Integrated Delta Radiomic and Baseline Model CDrbcl

Delta Integrated Model CDrDcl

Prostate Imaging Reporting & Data System PIRADS

Prostate Biopsy PBx

Prostate Cancer PCa

Clinically Significant Prostate Cancer csPCa

Active Surveillance AS
TABLE 2 MRI parameters.

Parameters Scanner

Manufacturer (Siemens Healthcare, Erlangen, Germany), (Philips
Medical Systems, Best, Netherlands)

Model (3T Skyra), 3T Ingenia

T2-weighted MR imaging

Repetition time/echo
time (TR/TE)

3,894–8,740/90–150

Reconstruction spatial
resolution (mm3)

0.56–1.25 × 0.56–1.25 × 2–3.5

Diffusion-weighted imaging

Repetition time/echo
time (TR/TE)

3,656–11,300/64–83

Reconstruction spatial
resolution (mm3)

0.87–1.5 × 0.87–1.5 × 3–3.5

b-values (s/mm2) 0, 500, 1,000, 1,500, 2,000–0, 400, 900, 1,500
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(IBSI) criteria (28). Features were extracted on each 2D slice of T2W

and ADC volumes with a delineated PCa ROI. Distribution

statistics (mean, variance, skewness, and kurtosis) of each of these

features over the entire lesion were computed to obtain a single

feature vector per lesion.

Radiomic features were extracted from the baseline as well as

follow-up bpMRI. Delta radiomics (FDr) were computed as the

difference in feature vector between baseline (Fbr) and follow-up,

which quantify radiomic changes in lesion heterogeneity.

Additional details regarding these features are provided in the

supplementary section.
2.5 Radiomic feature selection
and classification

Radiomic features that were correlated with each other were

discarded using Pearson’s correlation coefficient at a threshold of

0.90. The best set of discriminating features between AS+ and AS−

patients were identified using the maximum relevance and

minimum redundancy (mRMR) feature selection method (29),

which has previously shown to be useful in identifying the

optimal set of radiomic features for PCa risk stratification. A

random forest (RF) machine learning classifier was used to train

radiomic features in conjunction with mRMR feature selection to

predict biopsy upgrade in AS patients. Clinical variables including

PSA, tumor volume, and age were collected from electronic health

records, and their association with biopsy upgrade was evaluated.

Wilcoxon rank-sum test was employed to determine statistically

significant (p < 0.05) features between AS+ and AS− cohorts.

Different machine learning classifiers were constructed using

radiomic features—(a) baseline radiomics (Cbr), (b) delta

radiomics (CDr), (c) integrated baseline radiomics and clinical

variables (Cbrbcl), (d) integrated delta radiomics and baseline

clinical (CDrbcl), and (e) integrated delta radiomics and delta

clinical (CDrDcl). We also compared the performance of our best

machine learning classifier with a radiologist-assigned PIRADS v2.1

score at baseline and follow-up. A schematic diagram illustrating

the methodology is shown in Figure 2.
Frontiers in Oncology 05
2.6 Statistical analysis

Each classification model (Cbr, Cbcl, CDr, CDrbcl, CDrbcl, and

CDrDcl) was trained using 100 runs of threefold cross-validation.

Because of the small sample size, we did not employ an independent

hold out set in our study. The classification performance was

evaluated in terms of area under the receiver operating

characteristics curve (AUC), sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV). The

performance of developed models was also compared with clinical

attributes (PSA, tumor volume, and age) and radiologists’

assessment (PIRADS v2.1) using univariate and multivariate

logistic regression. Computational analysis was performed in

MATLAB v2021b (Nattick, MA, USA) and R v4.1.3.
3 Results

Based on the inclusion criteria, N = 121 PCa patients were

identified with mpMRI scans available at baseline and follow-up. Of

these, N = 17 patients were excluded due to either poor-quality

MRI, non-availability of scans, or upgraded within 1 year after

baseline. Among the remaining ones, radiologists did not find any

visible lesion in N = 48 patient studies and were excluded. Another

N = 6 were discarded due to poor image quality following PIRADS

v2.1 guidelines. Of the N = 50 selected patients, N = 28 experienced

biopsy upgrade (AS+) while others retained biopsy GGG (AS−). Of

these, N = 30 patients had a follow-up MRI of adequate quality

available, of which N = 19 experienced pathologic upgrading (AS+).
3.1 Radiomics from baseline prostate MRI
for predicting AS+

In this experiment, we aimed to evaluate radiomics of PCa

lesions at baseline bpMRI in predicting pathologic upgrade in AS

patients (AS+). Radiomic features at baseline (Fbr) including

Haralick (sum of entropy, sum of variance, and difference

entropy) features from T2W and Haralick and CoLlAGe energy
TABLE 3 Patient demographics.

Clinical Predictor AS+ (n = 28) AS− (n = 22) p-value

Median value [range]

Age (years) 68 [52–80] 66 [52–77]

PSA at diagnosis (mg/ml) 5.91 [2.36–16.98] 4.61 [13.61–1.11] <0.0005

PIRADS at diagnosis [3–4] [3–5] <0.0005

PSA at follow-up 8.165 [2.35–18.93] 6.46 [4–11.2]

PIRADS at follow-up [3–5] [3–5]

Time interval between diagnosis and upgradation (months) 17.5 [8–45] 15.5 [4–57]
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features from ADC maps were significantly associated with AS+

(p < 0.05) (Table 4). We observed that gray-level and gradient-level

co-occurrence (quantified by Haralick and CoLlAGe features) from

baseline bpMRI (T2W and ADC) were associated with pathologic

progression on AS as illustrated in terms of radiomic feature maps

in Figure 3. These features essentially capture intensity and

gradient-based heterogeneity through statistics of corresponding

co-occurrence matrices. Radiomic classifier (Cbr) trained using

baseline radiomics (Fbr) from ADC and T2W resulted in AUC =

0.56 ± 0.05 and 0.58 ± 0.06, respectively. Combined radiomic

features from T2W and ADC resulted in improved classification

performance AUC = 0.64 ± 0.09. The improvement is statistically

significant (p < 0.05).
3.2 Delta radiomics from prostate MRI for
prediction of AS+

In this experiment, we evaluated the association between delta

radiomics FDr (computed as the difference in radiomics of PCa

lesion between baseline and follow-up MRI) and pathologic

upgrading on biopsy. Delta radiomics FDr including Haralick

features (difference of entropy and sum of variance) from T2W

and Haralick features (entropy, energy, and diagonal difference)
Frontiers in Oncology 06
from ADC were observed to be associated with AS+. Machine

learning classifier (CDr) trained using delta radiomic features from

T2W and ADC resulted in AUCs of 0.71 ± 0.08 and 0.72 ± 0.12,

respectively. Combining T2W and ADC delta radiomics resulted in

an AUC = 0.74 ± 0.15. The classification performance metrics are

provided in Table 5.
3.3 Integrated nomogram with clinical
variables, baseline, and delta radiomics

We integrated clinical parameters including PSA, tumor

volume, and age with the risk scores estimated from classifiers

(Cbr, CDr, and Cbcl) to develop integrated classifiers CDrbcl, CDrbcl, and

CDrDcl for predicting AS+. Clinical parameters including PSA, tumor

volume, age at diagnosis, and PIRADS v2.1 at baseline were

evaluated for their association with AS+. On univariate analysis,

PIRADS v2.1, PSA, and tumor volume were found to be

significantly associated (p < 0.05) with AS+, resulting in AUCs of

0.62 ± 0.1, 0.61 ± 0.08, and 0.67 ± 0.12, respectively. An integrated

model (Cbrbcl) combining baseline radiomics and significant

baseline clinical parameters (PSA and tumor volume) delivered

an AUC of 0.70 ± 0.18. In comparison, PIRADS v2.1 scores from

baseline resulted in an AUC = 0.62 ± 0.05, indicating that our
FIGURE 2

Pipeline used in this study illustrating radiomics from serial prostate biparametric MRI to predict pathologic progression in prostate cancer patients
on AS. Radiomic features are extracted from prostate cancer regions of interest delineated by experienced radiologists at baseline and follow-up,
which are then integrated with clinical variables in different combinations to build machine learning models (baseline radiomics, baseline radiomics +
clinical, delta radiomics, delta radiomics + delta clinical, and clinical).
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integrated model Cbrbcl significantly outperformed PIRADS

v2.1 scores.

We integrated significant clinical variables (PSA and tumor

volume) at baseline with FDr to build an integrated model (CDrbcl)

that resulted in an AUC of 0.77 ± 0.23. Finally, we developed
Frontiers in Oncology 07
another integrated model (CDrDcl) combining delta radiomics and

delta clinical variables (PSA and tumor volume) delivering the

highest AUC of 0.84 ± 0.20. CDrDcl also significantly outperformed

PIRADS v2.1 scores at baseline and follow-up in predicting AS+

(AUC = 0.62 and 0.67, respectively, for baseline and follow-up).
CoLIAGe  (T2W) Haralick (ADC)

AS
+

Baseline Baseline Follow-up Follow-up 

AS
–

FIGURE 3

Radiomic feature maps of prostate cancer at baseline MRI and follow- up MRI belonging to patients with pathologic progression (AS+) and those
without (AS−). CoLIAGe features from T2W MRI (columns 1 and 2) and Haralick’s feature from ADC maps (columns 3 and 4) illustrated differential
heterogeneity in PCa appearance for AS+ and AS− patients between baseline and follow-up. The inset shows radiomic heat maps of the prostate
cancer lesion in greater detail. Hotter colors (red) indicate higher heterogeneity associated with radiomic features and cooler colors (blue) indicate
lower heterogeneity. Patients experiencing AS+ show a significant increase in radiomic feature expression between follow-up and baseline
compared to patients with no upgrade (AS−).
TABLE 4 Top three frequently selected features with their p-value.

Experiment Imaging type Feature name p-value

Cbr T2W Kurtosis of Haralick’s sum of entropy 0.0067

Kurtosis of Haralick’s sum of variance 0.0158

Mean of Haralick’s difference entropy 0.0028

ADC Skewness of Haralick’s energy 0.1755

Mean of CoLiAGe 0.0325

Variance of Haralick’s energy 0.0325

CDr T2W Mean of Haralick’s difference entropy 0.0032

Kurtosis of Haralick’s sum of variance 0.0062

Skewness of Haralick’s difference entropy 0.0007

ADC Mean of Haralick’s entropy 0.0050

Kurtosis of Haralick’s energy 0.0617

Kurtosis of diagonal difference 0.0302
fron
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ROC curves resulting from Cbr, CDr, Cbrbcl CDrbcl, and CDrDcl are

illustrated in Figure 4. Detailed results corresponding to these

classifiers are provided in Table 5. The improvement obtained by

combining delta radiomics and delta clinical was statistically

significant over other combinations. Additionally, specificity,

PPV, and NPV metrics computed at 90% sensitivity are provided

in Table 6.
Frontiers in Oncology 08
4 Discussion

The current standard of care for identifying and monitoring

PCa patients on AS involves PSA tests, invasive biopsies, and DRE

(3–5). While serial MRI is being widely incorporated into the AS

setting, several long-term studies (10, 30) have indicated that serial

MRI alone cannot be reliably used to monitor progression. This is
FIGURE 4

Receiver operating characteristics curve for baseline radiomics (Cbr), baseline radiomics + baseline clinical (Cbrbcl), delta radiomics (CDr), delta
radiomics + baseline clinical (CDrbcl), delta radiomics + delta clinical (CDr Dcl), baseline PIRADS (CbPIRADS), and delta PIRADS (CDPIRADS).
TABLE 5 Performance evaluation of predictive power of imaging, clinical model from baseline, as well delta radiomics in terms of accuracy,
sensitivity, specificity, PPV (positive predictive value), NPV (negative predictive value) maximizing sensitivity, and specificity.

Experiments Accuracy Sensitivity Specificity PPV NPV

Baseline
(n = 50)

T2W 0.50 ± 0.09 0.65 ± 0.21 0.41 ± 0.13 0.43 ± 0.05 0.71 ± 0.06

ADC 0.56 ± 0.10 0.66 ± 0.22 0.50 ± 0.29 0.50 ± 0.15 0.77 ± 0.11

T2W + ADC (Cbr) 0.57 ± 0.10 0.61 ± 0.27 0.53 ± 0.28 0.50 ± 0.14 0.73 ± 0.11

PSA 0.50 ± .010 0.67 ± 0.31 0.40 ± 0.33 0.42 ± 0.06 0.75 ± 0.13

PIRADS 0.71 ± .004 0.37 ± 0.08 0.91 ± 0.09 0.75 ± 0.13 0.71 ± .002

Tumor volume 0.79 ± 0.03 0.69 ± 0.04 0.89 ± 0.05 0.84 ± 0.05 0.77 ± 0.02

Imaging + Cl (Cbrbcl) 0.59 ± 0.08 0.71 ± 0.21 0.51 ± 0.24 0.49 ± 0.11 0.80 ± 0.11

Delta Radiomics
(n = 30)

T2W 0.72 ± 0.07 0.81 ± 0.19 0.67 ± 0.16 0.62 ± 0.11 0.88 ± 0.09

ADC 0.73 ± .07 0.82 ± 0.15 0.68 ± 0.15 0.62 ± 0.09 0.89 ± 0.07

T2W + ADC (CDr) 0.75 ± 0.06 0.78 ± 0.17 0.73 ± 0.13 0.65 ± 0.11 0.87 ± 0.088

Change in PIRADS 0.50 ± 0.05 0.67 ± 0.04 0.45 ± 0.03 0.58 ± 0.02 0.58 ± 0.01

Imaging + Cl at baseline (CDrbcl) 0.67 ± 0.08 0.76 ± 0.15 0.60 ± 0.20 0.64 ± 0.10 0.78 ± 0.11

Imaging+ delta Cl (CDrDcl) 0.81 ± 0.05 0.83 ± 0.13 0.78 ± 0.16 0.77 ± 0.13 0.87 ± 0.08
fr
Cbr = Baseline radiomics model, Cbrbcl = Baseline radiomics + baseline clinical model, CDr = Delta radiomics model, CDrbcl = Delta radiomics + baseline clinical, CDrDcl = Delta radiomics + delta
clinical model. The bold face denotes the best performance for each performance evaluation index.
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due to its low positive predictive value and presence of invisible and

benign confounding tumor appearances (10, 30). In this

preliminary proof-of-concept study, we explored the role of

radiomics from baseline and follow-up serial bi-parametric

prostate MRI in conjunction with clinical parameters in order to

evaluate association with pathologic progression on biopsy. A

biopsy upgrade (AS+) was defined as an increase in GGG from

baseline 1 to ≥2 (increase in number of positive cores for baseline

GGG = 2) at follow-up and no upgrade (AS−) when GGG remained

the same. To the best of our knowledge, our study is one of the first

attempts at exploring the combination of change in routinely

acquired clinical parameters with handcrafted radiomics from

serial MRI to predict pathologic progression in AS patients. We

observed that radiologic progression of PCa captured by delta

radiomic features (specifically Haralick and CoLlAGe features)

between baseline and follow-up MRI was significantly associated

with pathologic progression on biopsy (AS+). These features

essentially capture intensity and gradient-based heterogeneity

through statistics of corresponding co-occurrence matrices. A

machine learning classifier trained using delta radiomic features

showed stronger association with biopsy upgrade compared to

baseline radiomics (AUC = 0.74 vs. 0.71) and radiologist-assigned

PIRADS v2.1 scores (AUC = 0.62). Integrating delta radiomics with

changes in clinical parameters (PSA and tumor volume) between

baseline and follow-up resulted in the best classification model in

predicting AS+ (AUC = 0.81).

Baseline bp-MRI has been shown to be promising in predicting

pathologic upgrading in patients on AS (14). Studies (31, 32) have

shown that PIRADS ≥3 have a positive predictive value of 35%–40%

for reclassification at 3 years. While this is insufficient to

recommend the use of MRI alone for AS (10, 33), it suggests that

features associated with aggressive PCa that would go on to

experience biopsy progression can be observed on MRI. In

addition, the presence of MRI invisible PCa lesions precludes the

possibility of obviating confirmatory biopsies (32) as indicated by

the MRIAS trial (32). Since patients on AS are characterized by low-
Frontiers in Oncology 09
risk disease, radiomic features capable of capturing subtle, subvisual

characteristics of future progression need to be identified. We

observed that quantitative radiomic features related to intensity

and gradient-based heterogeneity on MRI were associated with

pathologic upgrading in PCa patients on AS. Interestingly, in

addition to the baseline radiomics, we observed that PIRADS

v2.1, PSA, and tumor volume at baseline were strongly associated

with AS+ (AUC = 0.61, 0.62, and 0.67). However, sensitivity of

PIRADS v2.1 was found to be poor in our study, suggesting that

PIRADS v2.1 may miss detecting pathologic progression (AS+).

Although PIRADS v2.1 was not developed for predicting pathologic

upgrade for AS, PIRADS ≥3 at follow-up and increase in PIRADS

score of a lesion between baseline and follow-up are a non-invasive

estimation of clinically significant PCa at follow-up. This indicates

that radiological progression may be associated with increase in

biopsy GGG on AS.

A few recent studies have explored artificial intelligence (AI)-

based approaches using baseline MRI for predicting biopsy

upgrading in PCa patients on AS. Sushentsev et al. (31)

demonstrated that radiomics from baseline bpMRI were

significantly associated with pathologic progression in PCa

patients. However, they noticed incremental benefit with the

addition of clinical parameters. Another study by Xie et al.

investigated the role of radiomics from ADC maps to predict

upgrading in Gleason score from TRUS-guided biopsies to radical

prostatectomy (34). While Xie et al.’s study (34) did not directly

address progression on repeat biopsy, they demonstrated that

radiomic features from screening MRI can differentiate clinically

significant and insignificant PCa.

Serial MRI is being actively explored for monitoring tumor

progression in patients on AS as opposed to protocol-based biopsies

(35). However, lesion visibility and limited PIRADS v2.1 accuracy

continue to limit its potential for non-invasive monitoring. In our

study, we observed that radiological tumor progression quantified

using delta radiomics (intensity co-occurrence features from T2W

and ADC) showed significant association with pathologic
TABLE 6 Specificity, PPV, and NPV of different predictive models at 90% sensitivity.

Experiments Specificity PPV NPV

Baseline
(n = 50)

T2W 0.21 0.39 0.71

ADC 0.38 0.44 0.82

T2W + ADC (Cbr) 0.41 0.53 0.83

PSA 0.08 0.35 0.50

PIRADS 0.17 0.33 0.50

Tumor volume 0.08 0.35 0.50

Imaging + Cl (Cbrbcl) 0.17 0.39 0.80

Delta Radiomics
(n = 30)

T2W 0.17 0.44 0.67

ADC 0.08 0.42 0.50

T2W + ADC (CDr) 0.25 0.47 0.75

Imaging + Cl at baseline (CDrbcl) 0.42 0.53 0.83

Imaging + delta Cl (CDrDcl) 0.75 0.73 0.90
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progression (Figure 3). These features reflect intensity and gradient-

based subvisual heterogeneity attributes that are potentially

associated with pathologic progression. We demonstrated that the

delta-radiomics risk score is associated with clinical trajectory of the

cancer lesion towards pathologic progression on AS and is better

associated with biopsy upgrade compared to PIRADS or change in

PIRADS on follow-up.

A closely related study by Sushentsev et al. also demonstrated that

delta radiomics from PCa ROIs on serial bpMRI were associated with

pathologic progression in patients on AS (36). They also observed

that Haralick (co-occurrence) features from T2W and ADC were

associated with PCa progression. However, in our study, we leveraged

novel radiomic features including CoLlAGe, which aims to quantify

gradient-based tissue heterogeneity; these features have been

previously shown to be associated with aggressive PCa (37–39).

While the Sushentsev study (36) compared delta radiomics from

MRI against PRECISE score (16) for predicting pathologic

progression, we integrated delta radiomics with delta changes in

PSA and tumor volume; this combined model yielded the best

prediction results. We also evaluated radiomic features at baseline

and in combination with routine clinical parameters (PSA and tumor

volume) for their association with AS+, corroborating the idea of

dynamic monitoring usingMRI and PSA dynamics (40). We ensured

strict controls and blinded our readers to pathologic findings to

minimize reader bias; it is unclear whether such precautions to

mitigate potential bias were invoked in the study of Sushentsev

et al. (36). AUC reported in their study (36) was comparable to our

CDrDcl model; however, their approach (36) relies on a qualitative

PRECISE score that is susceptible to inter-observer variability. This is

different compared to quantitative radiomic texture measurements.

Moreover, our dataset is different from the dataset used in Sushentsev

et al. (36); thus, it may not be possible to perform a

precise comparison.

Another related study was the one by Roest et al. who developed

a deep learning model using serial MRI for monitoring PCa

progression (41). They built a U-Net-based deep learning model

to detect clinically significant prostate cancer (csPCa) at baseline

and follow-up MRI, and extract differential tumor volume and

csPCa likelihood scores, which were then used to train a supervised

machine learning model to detect csPCa. They trained the csPCa

detection model on patients with screening MRI who were not

enrolled on AS and evaluated it for identification of csPCa on AS

patients with serial MRI. However, their method relies on deep

learning for detection of csPCa. Despite recent works aimed at

improving interpretability (42–44), deep learning essentially is a

black box-based approach that may not allow for biological

interpretation of signatures associated with PCa progression.

Moreover, deep learning approaches were found to fail to

converge and generalize in the absence of a large dataset as

demonstrated in a recent study of machine learning for treatment

response prediction in ophthalmology images by Dong et al. (45).

Our approach, on the other hand, involved the use of

handcrafted radiomic features explicitly associated with PCa

progression from radiologist-identified PCa ROIs on MRI; these
Frontiers in Oncology 10
features were subsequently found to be associated with pathologic

progression. Similar to our study, the findings from Roest et al.

indicate that computationally derived features from serial prostate

MRI can enable non-invasive surveillance. Serial MRI in

conjunction with PSA kinetics is becoming increasingly popular

as an alternative to unnecessary repeat biopsies (18). Results from

our study also reflect the potential opportunity for dynamic

monitoring using repeat MRI and PSA density trends for men

with PCa on AS (35).

Our study, however, had several limitations. Firstly, the sample

size of the dataset used in the development of baseline and delta

radiomic models was small. A large number of patients were

excluded due to the presence of MRI non-visible PCa lesions.

Owing to the small sample size, we could only report cross-

validation results without testing on a hold-out validation set.

However, our sample size is comparable to other radiomic studies

in the context of AS including those of Sushentsev et al. (31, 36) and

Algohary et al. (46). Even the study by Roest et al. (41) employed a

comparably sized set of patients. Additionally, our findings suggest

the presence of a strong association between delta radiomics in

combination with a change in clinical variables and biopsy upgrade.

Our results were in agreement with those reported by other groups

(31, 34). Second, pathologic progression was estimated using

systematic biopsy, which may not be as accurate as MRI-targeted

biopsy (47). However, we ensured that the positive biopsy core

locations matched with the location of blinded ROI delineations by

the radiologists. We also ensured that the same lesion at baseline

was being followed up on serial MRI. Thirdly, two readers were

involved in this study and inter-observer differences in PIRADS

v2.1 and ROI delineations may have impacted radiomic feature

extraction. However, a small subset of cases (N = 15) were read by

the two readers and a reasonably good inter-reader agreement in

ROI (kappa = 0.80) was determined. In future work, we will also

seek to quantitatively assess the impact of inter-reader variation on

a larger number of cases. Fourth, the difference between baseline

and follow-up MRI was not consistent across all patients since this

was a retrospective cohort. Nevertheless, we limited the follow-up

MRI at 3 years with a range of ±12 months to ensure a relatively

homogeneous follow-up. Lastly, radiologists missed a significant

number of PCa lesions at baseline due to poor diagnostic quality or

the presence of non-visible lesions given that they were blinded to

biopsy results. This was made to ensure that no reader bias was

introduced in obtaining PCa ROIs on MRI.

In summary, preliminary findings from our single-center study

suggest that quantitative radiomic features derived from baseline

and serial MRI are associated with biopsy upgrade on AS. Delta

radiomics from serial MRI in conjunction with routine clinical

parameters (including PSA and tumor volume) may be used to non-

invasively predict pathologic progression in PCa patients on AS.

Our findings align with those from previous studies (36, 41, 48),

which suggest that machine learning and deep learning approaches

with prostate MRI can enable non-invasive monitoring of patients

on AS. Future directions will involve large-scale multisite validation

of delta radiomics approaches from serial MRI, automated and
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reliable pipelines for lesion detection, and prospectively validating

these approaches in a clinical setting.
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