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Immunotherapy is widely regarded as a promising treatment for cancer. However,

the immune effector phase suppression of tumor microenvironment (TME) and the

generation of immune-related adverse events limit its application. Research

indicates that sonodynamic therapy (SDT) can effectively activate antitumor

immunity while killing tumor cells. SDT produces cytotoxic substances of tumors,

and then cell apoptosis and immunogenic death occur by selectively activating the

sonosensitizer under ultrasound. In recent years, various SDT alone as well as SDT in

combination with other therapies have been developed to induce immunogenic cell

death (ICD) and enhance immunotherapy. This paper overviews the research

progress of SDT and nanotechnology in recent years, including the strategies

involving SDT alone, SDT-based synergistic induction of antitumor immunity, and

immunotherapy based on SDT for multimodal immunotherapy. Finally, the

prospects and challenges of these SDT-based therapies in cancer immunotherapy

are discussed.
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1 Introduction

In recent years, immunotherapy, as a new generation of

anticancer therapy, has developed rapidly in clinical application,

especially checkpoint blockade immunotherapy and chimeric

antigen receptor T-cell immunotherapy, which has led to the

significant development of clinical research direction (1, 2).

Unlike traditional treatment methods, immunotherapy adjusts

and strengthens the antitumor effect and produces a therapeutic

effect to mobilize the body’s immune function. Under physiological

conditions, the immune system can recognize tumor antigens and

attack tumor cells with the help of immune adjuvants. However,

with the tumor progressed and an immunosuppressive tumor

microenvironment (TME) established, immunotherapy failed to

drive an efficient immune response (3). As a result, only a few

patients have proven to respond to immunotherapy, and adverse

immune-related adverse events are often triggered during

treatment. Therefore, enhancing the immune reactivity of tumor

sites is of great significance for enhancing antitumor immunity.

Induction of local immunogenic cell death (ICD) in tumor areas

can transform low immunogenicity into high immunogenicity,

which is an effective strategy to potentiate antitumor immunity.

After some physical or chemical stimulation, tumor cells can

transform low immunogenicity into high immunogenicity, which

is an effective strategy to potentiate antitumor immunity (4–6). The

host immune response can be reactivated by stimulating the

antitumor immune effect, resulting in a better therapeutic effect

and prognosis, which is of great significance to improving the

prognosis and prolonging the survival of patients.

At present, more and more research has proven that antitumor

immunity can be triggered under multiple treatments, such as

chemotherapy, radiotherapy, photodynamic therapy (PDT), and

sonodynamic therapy (SDT) (7–10). However, chemotherapy and
Frontiers in Oncology 02
radiotherapy inevitably cause damage to normal tissues, and the

phototoxicity and low penetrability of PDT limit its further

application. SDT is an emerging cancer treatment based on PDT

(11). Similar to PDT, SDT can also be used as an effective cancer

vaccine for antitumor therapy (12–14). SDT is a safe and noninvasive

local treatment that can selectively kill tumor cells under ultrasound

irradiation and cause minor damage to adjacent normal tissues (15–

17). The penetration depth in soft tissues can reach tens of centimeters

(18, 19), and has excellent potential for inducing immunogenicity and

activating antitumor immunity in deep tumor therapy (20, 21).

SDT effectively induces and releases the tumor-associated antigens

(TAAs) and damage-associated molecular patterns (DAMPs), thereby

activating inflammatory responses in TME and draining lymph nodes

(dLNs), inducing systemic antitumor immunity and immune memory,

and inhibiting tumor growth and recurrence (Figure 1) (22, 23).

However, cancer immunotherapy based on SDT is insufficient to

achieve satisfactory therapeutic effects. Therefore, designing

an effective combined treatment strategy for SDT-driven

immunotherapy is necessary.

SDT is considered a promising strategy for immune cancer

treatment. Combining SDT or SDT-based multimodal therapy

with immunotherapy plays an essential role in antitumor

immunotherapy (24). In this review, we will discuss the mechanisms

of SDT-driven immunotherapy, and then provide an overview of the

strategies involving SDT and SDT in combination with other therapies

for immune therapy (Figure 2). Finally, we conclude with a brief

overview of the limitations and future of SDT.

2 Main mechanism of SDT
induction ICD

SDT has a direct killing effect on tumor cells. To date, the

potential mechanisms of SDT have not been fully elucidated.
FIGURE 1

Process of Immunogenic Sonodynamic Therapy in tumor immunotherapy (Created with BioRender.com).
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Conventional mechanisms have been accredited that reactive

oxygen species produced by sonosensitizers and the cavitation

effect induced by ultrasound irradiation act mainly during SDT

(25). Activate the enriched sonosensitizer in the local disease site

under ultrasound, thereby generating reactive oxygen species

(ROS). Extreme oxidative properties stimulate biochemical

reactions, including reduced intracellular mitochondrial

membrane potential, DNA fracture, cytoskeletal contraction, and

chromatin condensation, which causes irreversible damage to

tumor cells (26). At the same time, the ultrasound-mediated

cavitation effect causes the bubbles in the fluid to contract and

expand periodically with ultrasound, which can enhance the

permeability of the adjacent cell membrane. The generation of

sharp shock when the bubbles undergo rupture can cause

mechanical damage to the cells (27).

SDT induces tumor cell death, such as apoptosis and necrosis, and

promotes the exposure and release of TAAs, enhancing tumor cells’

antigenicity. At the same time, SDT also generates a series of adjuvant-

like signaling molecules, namely DAMPs, including calreticulin (CRT)

exposed on the cell surface, high mobility group protein 1 (HMGB1)

secreted out tumor cells, adenosine triphosphate (ATP) and heat shock

proteins (HSP70, HSP90) released by cells. Coordination of TAAs with

DAMPs is necessary to recruit and mature antigen-presenting cells

such as dendritic cells (DCs). Exposure or release of DAMPs can be

recognized by pattern recognition receptors (PRRs) on the DC cell

surface, facilitating DCs recruitment and enhancing the uptake of

tumor antigens, initiating a series of cytological responses and

ultimately activating antitumor immune responses.

During traditional antitumor treatment, tumor cell apoptosis causes

intracellular components to become hypoimmunogenic by activating

apoptotic executioner caspase-3 to prevent autoimmunity. Meanwhile,

DAMPs exposed to the microenvironment are subject to oxidative
Frontiers in Oncology 03
degradation and thus lose immunogenicity. Interestingly, partial cell

death became more immunogenic during this treatment process by

affecting necrosis or necrosis-like cell death (28). Necrosis is considered

an inherently immunogenic form of cell death. The disintegration of the

plasma membrane induced inflammatory response and antitumor

immunoreaction. SDT has the potential to activate cell immunogenic

death events. Due to DAMPs released without exposure to harsh

conditions that lead to oxidation and proteolysis, the immunogenicity

of DAMPs will not be significantly affected.

Hydrophobic sonosensitizers generally preferentially

congregate in the hydrophobic inner layers of the plasma

membrane, nucleus, endoplasmic reticulum, or mitochondrial

membrane. During the ultrasound, the activated sonosensitizer

degrades the plasma membrane by lipid peroxidation, thereby

leaking intact or less denatured DAMPs to reverse

hypoimmunogenicity. Notably, ROS produced can kill tumor

cells, trigger endoplasmic reticulum pressure, and damage

mitochondria. Endoplasmic reticulum oxidative stress can

promote the high expression of CRT and HSPs. The destruction

of mitochondria can promote the secretion of ATP and HMGB1.

ICD outcomes have generally been accepted to correlate positively

with ROS levels. Besides, the cavitation effect of ultrasound can also

cause cell membrane cleavage and release of immunogenic DAMPs.

Interestingly, it has been proved that ultrasonic cavitation can

enhance the rate of ROS production and ICD induction (29, 30).

In recent years, several studies related to SDT have demonstrated

that SDT induces immunogenic death of tumor cells as an “in situ

vaccine” that activates the body’s immune response against tumors

and has been verified in vitro and in vivo (31–33).
3 Strategies

3.1 SDT for ICD induction

Several studies have confirmed that SDT can transform the

non-immunogenic “cold” TME into a “hot” TME under the effect of

ultrasound, which helps to enhance the effect of antitumor immune

response (Table 1) (53, 54).

3.1.1 Ultrasonic cavitation enhanced ICD
However, the efficiency of SDT-induced ICD generation

remains a limitation. During apoptosis, the immunogenicity of

TAAs and DAMPs is inhibited by protein kinase 3 (RIPK3). To

improve the immunogenicity of SDT-triggered cell death, Parkp

et al. (33) prepared a phase-change nano-sonosensitizer PFP@PEG-

CMD-Ce6 (NBs) complex, which was able to cause tumor cell

necrosis through bubble mediated cell membrane rupture, but not

trigger RIPK3-dependent necrotizing apoptotic through the process

of SDT. The expression of HMGB1 in cells was analyzed by

Western blot and flow cytometry in vitro. The results showed that

cancer cells treated with NBs released biologically active DAMPs

compared to NPs. The results suggest that cell death induced by

ultrasonic cavitation is more immunogenic. Similarly, Yuan et al.

(34) constructed LIP-PFH phase-change nanoparticle-mediated
FIGURE 2

Schematic representation of SDT for inducing immunogenic cell
death and potentiating cancer immunotherapy (Created with
BioRender.com).
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SDT to enhance the antitumor immune response by inducing ICD

in breast cancer. These results suggest that ultrasonic cavitation-

induced cell death is more immunogenic. Further, to amplify the

cavitation-enhanced ICD effect, Zhang et al. (29) constructed a

nano-sonosensitizer (MON-PpIX-LA-CO2) with a continuous

cavitation function. L-arginine (LA) has a good function of

adsorption/desorption of CO2. These complexes can continuously

release CO2 and induce ultrasound-triggered inertial cavitation

(UIC) under ultrasound irradiation. That is conducive to

producing abundant ROS, thus successfully inducing robust ICD,

more antigen exposure, and presentation enhanced DCs maturation

and more activated effector CD8+ T cell infiltration in vitro. The

results suggest that this strategy of ultrasonic cavitation-enhanced

SDT-induced ICD successfully converts the “cold” TME into a

“hot” one with significantly enhanced suppressive effects in primary

and metastatic tumors.
Frontiers in Oncology 04
3.1.2 Remodeling the undesirable TME
The TME, such as pH, glutathione (GSH), growth factors, oxygen

levels, and immune cells, are closely related to the effect of SDT-

induced antitumor therapy. Overcoming the hypoxic

microenvironment is necessary to enhance the SDT immune

response (35, 55). The breakdown of endogenous H2O2 to O2 using

H2O2 catalysts has been recognized as an effective strategy to alleviate

tumor hypoxia and improve the efficacy of cancer therapy. Zhang et al.

(56) constructed an in situ microenvironmental nano-regulator that

can act as an in situ oxygen generator and macrophage transducer.

LMWHA-MPB has excellent peroxidase activity and generates O2 to

alleviate tumor hypoxia through the catalytic breakdown of

endogenous hydrogen peroxide (H2O2). In addition, LMWHA-MPB

can remodel the phenotype of tumor-associated macrophages (TAMs)

after being taken up byM2macrophages (pro-tumorM2! antitumor

M1). Improving the TME inhibited 4T1 tumor proliferation and
TABLE 1 Main strategy and characterizations of the sonodynamic therapy.

Therapy Nanoparticles Characterizations Model Refs.

SDT HiPorfin (HPD) Immunogenic sonodynamic therapy Hep3b/H22/S180 (14)

FA-MnPs Stronger penetration ability of ultrasound 4T1 (21)

PFP@PEG-CMD-Ce6 (NBs) Ultrasound-triggered inertial cavitation (UIC) CT26 (33)

LIP-PFH Ultrasound-triggered inertial cavitation (UIC) 4T1 (34)

MON-PpIX-LA-CO2 Ultrasound-triggered inertial cavitation (UIC) 4T1 (35)

LMWHA-MPB Catalyzing H2O2 to produce oxygen 4T1 (30)

HABT-C@HA Catalyzing H2O2 to produce oxygen 4T1 (36)

PALF Reducing oxygen consumption 4T1 (37)

Mn-MOF Relieve tumor hypoxia and decrease GSH 4T1 (38)

SDT+Chemotherapy DTX/X-NPs Delivery oxygen enhance immunity B16F10 (39)

CS–Rh–PFC Delivering O2 to tumor sites B16F10 (40)

Lipo-Ce6/TPZ@MH Tumor microenvironment response B16F10 (20)

SDT+CDT PEGylated CoFe2O4 nanoplatforms (CFP) Catalyzing H2O2 to produce oxygen 4T1 (41)

SDT+Gas therapy PIH-NO Delivering O2 to tumor sites 4T1 (42)

N@CAu-BMSNs Enhanced tumor-targeting ability 4T1 (43)

SDT+PTT ZrO2-x@PEG/cRGD (ZPR) Photothermal-augmented SDT 4T1 (44)

SDT+PDT PARN Difunctional sono-/photo-sensitizers B16/Hela (45)

SDT+PDT+PTT g-C3N4/Ce6 Difunctional sono-/photo-sensitizers 4T1 (46)

SDT+PDT+chemotherapy OIX_NPs Delivering O2 to tumor sites ID8 (47)

SDT+Immunotherapy TiO2-Ce6-CpG+aPD-L1 Combination with adjuvants Hepa1-6 (48)

HMME/R837@Lip+aPD-L1 Combination with adjuvants and checkpoint blockade 4T1/CT26 (49)

PEG-CDMaPD-L1/Ce6 Combination with checkpoint blockade B16F10 (50)

PFCE@THPPpf-COPs+antiCD47 Combination with checkpoint blockade CT26 (51)

SCN@B16F10M/PEG-aPD-L1 Combination with checkpoint blockade B16F10 (52)
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metastasis, effectively. Liu et al. (36) constructed a cascade enzyme-

based platform (HABT-C@HA) to regulate hypoxia and

immunosuppressive factors in TME. The excellent enzyme cascade

reaction of HABT-C@HA was utilized to achieve continuous O2

production and abundant ROS generation, effectively overcoming

hypoxic TME at tumor sites and enhancing the therapeutic effect.

The RNA-seq results revealed that HABT-C@HA+US activated

immune response and down-regulated MPP2, BHLHE40, and other

negative related factors, which improved immune infiltration and

reversed breast tumor immunosuppression.

In contrast, reducing oxygen consumption in tumor cells is also

a strategy to alleviate tumor hypoxia. Dai et al. (37) constructed a

metallic-phenol network-based nano-complex embedded with

lactate oxidase (LOX) and atovaquone (ATO), a mitochondrial

respiration inhibitor. The nano-complex reversed the tumor’s

immunosuppressive state by inhibiting mitochondrial respiration

and assisting the lactate depletion process for alleviating tumor

hypoxia and acidic TME. It exhibited effective immunostimulatory

properties under US irradiation, such as releasing inflammatory

factors (i.e., TNF-a, IL-6, IL-12), decreasing polarization of M2

macrophages, and increasing infiltration of activated T cells into

tumor tissue, achieving a characteristic enhancement of SDT and

inhibiting tumor proliferation and metastasis.

In addition to hypoxia, SDT is also severely limited by high

glutathione (GSH) in TME. To improve the efficacy of SDT-

induced antitumor immune response, Gan et al. (38) constructed

a manganese porphyrin-based metal-organic framework. Mn-MOF

exhibited peroxidase-like and GSH-lowering activities in vitro.

Upon effective internalization into cancer cells, Mn-MOF

catalyzed the generation of O2 from tumor-overexpressed H2O2

to alleviate tumor hypoxia. Meanwhile, Mn-MOF reduced

intracellular GSH content and GPX4 activity. In addition, Mn-

MOF reduced the number of bone marrow-derived suppressor cells

in tumor tissues by increasing the number of activated CD8+ T cells

and mature dendritic cells. Thus, research suggests that it has strong

anticancer and antimetastatic activities in the in vivo treatment of

H22 and 4T1 tumor-bearing mouse models.
3.2 SDT-based synergistic induction ICD

Although SDT is widely used for anticancer immunity, it still

has some limitations, which are insufficient to elicit a robust

immune response. Recently, multiple combination therapy

strategies have been used to improve the efficiency of SDT. SDT-

based synergistic induction of anticancer immunity is a

potential strategy.

3.2.1 SDT combined with chemotherapy for
ICD induction

Studies proved that chemotherapeutic drugs, including

doxorubicin, oxaliplatin, cyclophosphamide, and paclitaxel, can also

promote ICD in tumor cells and elicit host immune responses (53, 54).

Chemo-SDT synergistic has produced a more excellent antitumor
Frontiers in Oncology 05
immune response than SDT alone. For instance, Zhai et al. (39)

created a multi-responsive drug release nanoplatform (DTX/X-NPs)

that enabled the release of the docetaxel DTX loaded with the cross-

linked sonosensitizer chlorin e6 (Ce6) via redox/enzyme/ultrasound

responsive for combined chemo-sonodynamic to initiate antitumor

immune responses. Cytotoxic lymphocyte (CTL) infiltration increased

in the TME following Chemo-SDT compared to the CTL percentage

in the SDT group, and the CTL percentage increased by 1.3%. In

addition, both SDT-NPs and Chemo-SDT treatment increased INF-

expression, with a more pronounced treatment trend for Chemo-SDT.

The aforementioned experimental findings show that chemo-SDT

improves immune activation and the effectiveness of fighting in-situ

cancers vs. metastasis.

The relationship between hypoxic tumor tissue and sustained

oxygen depletion severely hampers the antitumor effect of oxygen-

dependent Chemo-SDT. To enhance the Chemo-SDT antitumor

immune response, Zhai et al. (40) designed a novel redox/

ultrasound-responsive oxygen-carrying nanoplatform (CS–Rh–PFC).

The CS–Rh–PFC encapsulated sonosensitizer Rhein (Rh),

chemotherapeutic medication docetaxel (DTX) and perfluorocarbon.

PFC transports oxygen and raises the oxygen concentration of B16F10

melanoma cells, finally enhancing the effectiveness of Chemo-SDT-

induced ICD. Notably, DTX-loaded CS-Rh-PFC NPs elicited more

“eat-me” signals and had higher CRT exposure on B16F10 cells.

Increased secretion of IFN-g, TNF-a, IL-2, and IL-6 cytokines and

increased levels of CD4+ and CD8+ T cells infiltrating the tumor after

treatment suggested that immunogenic chemotherapy-ultrasound

kinetic treatment based on oxygen-carrying nanoparticles could

significantly activate the immune system.

Utilizing the particular hypoxic tumor environment for SDT

combined with hypoxia-induced chemotherapy is also an effective

strategy. Wang et al. (20) constructed a biomimetic decoy, loaded

the sonosensitizer Ce6 and hypoxia-activated tirapazamine (TPZ)

in pH-sensitive liposomes, and fused them with PLT and RBC

membranes to produce lipid Ce6/TPZ@MH. Ce6 generates toxic

ROS upon US irradiation, and the resulting hypoxia

microenvironment activates TPZ for high-effective synergistic

therapy. SDT combined with hypoxia-induced chemotherapy

induces ICD synergistically, releasing the DAMPs (including

CRT, HMGB1, etc.) and successfully promoting antitumor

immunotherapy. Meanwhile, Lipo-Ce6/TPZ@MH decoys

maintain binding interactions with high levels of HMGB1 to

prevent platelet-mediated tumor metastasis. Combined treatment

with SDT and hypoxia-activated TPZ shows excellent potential in

eliminating tumors in situ and inhibiting lung metastasis

from melanoma.

3.2.2 SDT combined with other therapy
for ICD induction

In addition, several other combination therapy modalities have

been explored for synergistic induction of ICD, such as gas therapy,

photothermal therapy (PTT), PDT, chemodynamic therapy (CDT),

etc. Gas therapy delivers gases, e.g., carbon monoxide (CO) and

nitric oxide (NO), to tumor sites to relieve and treat disease. Liu
frontiersin.org
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et al. (43) developed an ultrasound-driven biomimetic nanosystem

(N@CAu-BMSNs) to verify whether SDT/CO gas therapy could

trigger burst ICD. In this study, the expression of CRT, as a

biomarker during ICD, in 4T1 cells after N@CAu-BMSN

treatment was detected. Compared to the control group, N@cau-

BMSN+US-treated 4T1 tumor cells could more effectively increase

CRT expression in vitro and in vivo. In addition, effective immune

response and long-term immune memory were achieved by

combining with indoleamine 2,3-dioxygenase (IDO) signaling

blockade. Based on SDT/Gas therapy and IDO signaling

inhibition may be promising strategies to prevent tumor

recurrence and lung metastasis in future clinical translation. Ji

et al. (42) designed a US-responsive oxygen and NO-loaded

sonosensitive nanoparticle (PIH-NO) for combined SDT/NO gas

therapy. The effectiveness of sensitization was validated on the

breast cancer model in vitro and in vivo. PIH-NO preferentially

accumulates in mitochondria, and the burst release of O2 and NO

under US treatment simultaneously generates large amounts of

ROS and RNS, enhances SDT to inhibit tumor growth, and

amplifies ICD. Furthermore, PIH-NO promoted the maturation

of DCs and caused the clustering of M2 macrophages to M1

pheno t yp e , r e du c ed MDSC r e c r u i tmen t , r e v e r s e d

immunosuppression of TME in vivo, and enhanced immune

response. Studies have demonstrated that O2-enhanced SDT

combined with NO treatment induces and amplifies ICD,

triggering an antitumor immune response.

Most photosensitizers, such as Rose Bengal (RB), Ce6, and

indocyanine green (ICG), are also sensitive to ultrasound. Liu et al.

(45) designed a nano-sonosensitizer (PARN) consisting of difunctional

sono-/photo-sensitizers (RB) for SDT combined with PDT, which has

a good immune activating antitumor effect and a favorable prognosis.

Chen et al. (46) developed a metal-free g-C3N4/Ce6 nanohybrid.Metal-

free g-C3N4 nanosheets loaded with Ce6 as a dual-function photo/

sonosensitizer. Under ultrasound andNIR irradiation, the g-C3N4/Ce6

nanoplatform significantly combines PDT and SDT with pronounced

antitumor effects. More importantly, the photothermal greatly

promotes immunoreaction, significantly enhancing long-term

immune responses and inhibiting tumor recurrence in 4T1 tumor-

bearing mice. Chang et al. (47) prepared phase-changeable core-shell

nanoparticles (OIX_NPs) with an oxygen-carrying core and the

photosensitizer indocyanine green (ICG)/oxaliplatin (OXP) in the

shell for PSDT (SDT/PDT) combined with chemodynamic therapy

for ovarian cancer. This combined strategy can induce ICD through the

passive release of HMGB1 and promote surface exposure of CRT. In a

bilateral syngeneic mouse model, OIX_NPs mediated PSDT promoted

infiltration of cytotoxic T lymphocytes within the tumor, inhibiting the

primary tumor and the growth of distant tumors. The study suggests

that PSDT combined with chemodynamic therapy is an effective

therapeutic strategy to induce systemic antitumor immunity.

Similar to PDT, noninvasive PTT converts light into heat. PTT

is based on near-infrared light (NIR-II) absorption-mediated

photothermal conversion therapy. It has been shown that mild

PTT could alleviate the hypoxic conditions in the tumor region and

facilitate SDT-mediated ROS generation (59). Xue et al. (44)
Frontiers in Oncology 06
developed an oxygen-deficient zirconia-based nanoplatform with

surface PEGylation and cyclic-Arg-Gly-Asp (cRGD) peptide

functionalization (ZrO2-x@PEG/cRGD, ZPR). It successfully

induces ICD and promotes the photothermal enhancement of

SDT antitumor effects in the NIR-II biological window. Upon

confocal microscopy, SDT/PTT enhanced the CRT expression of

ZPR+L/US. Compared with the control group, the intracellular

CRT level in the ZPR+L/US group increased about 1.86-fold

compared with the ZPR+US group, while the HMGB1 release

decreased by about 55.7% and the intracellular ATP level

decreased by about 60.5%, which was consistent with the

extracellular decrease level. Overall, ZPR NPs promoted the ICD

more significantly under NIR-II/US irradiation due to the crud-

based ligand anchoring effect.

CDT utilizes Fenton or Fenton-like reagents (typically Fe2+/3+) to

catalyze excess H2O2 producing high ROS that kill tumor cells and

have been shown to trigger ICD (58, 60). Xue et al. (41) synthesized a

bioreactor PEGylated CoFe2O4 (CFP) for augmented SDT/CDT and

elicit robust immune response by a typical solvothermal method. CFP

is a novel and efficient SDT sonosensitizer with peroxidase-like

activity, which can react with endogenous hydrogen peroxide to

generate molecular oxygen. High O2 levels may promote 1O2

production during SDT. Besides, the fenton-like reaction can be

produced by the Co2+/3+ and Fe2+/3+ redox pair by CoFe2O4 to

produce ROS for CDT. The therapeutic effect of CFP-mediated SDT/

CDT combined with anti-PD-L1 checkpoint blockade was also

further evaluated in an aggressive lung metastasis model in BALB/c

mice carrying bilateral 4T1 tumors. A few metastatic nodules were

found in “CFP+US+aPD-L1” mice. CFP-enhanced SDT/CDT

combined therapy effectively triggered ICD and promoted

antitumor immunity while suppressing primary and distant tumors.
3.3 Multimodal immunotherapeutics on
basis of SDT-induce ICD

Various strategies have been explored to enhance SDT and induce

ICD in tumor cells to activate the host immune response to cancer.

Based on the successful induction of the ICD, cancer immunotherapy

can be triggered more effectively by fully activated antigen-presenting

cells. However, the immunosuppression-related phenotype of tumor

cells can interfere with the recognition of tumors by effector T cells,

thus reducing the efficacy of tumor immunotherapy. Therefore,

unimodal cancer immunotherapy based on SDT is insufficient for

satisfactory treatment. Consequently, it is necessary to use

immunotherapy on basis of SDT for multimodal cancer

immunotherapy (57, 61, 62).

3.3.1 Combination with checkpoint blockade
Immune checkpoints are a class of immunosuppressive

molecules that regulate immune responses, thereby avoiding

damage and destruction of normal tissues, which become one of

the main causes of immune tolerance during tumorigenesis and

development. Immune checkpoint blocking (ICB) is a therapeutic
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approach to regulate T-cell activity to kill tumor cells through

pathways such as co-inhibition or co-stimulatory signaling (63). For

example, Chen et al. (51) constructed perfluorocarbon-loaded

fluorinated covalent organic polymers (PFCE@THPPpf-COPs).

When injected intratumorally, PFCE@THPPpf-COPs alleviated

tumor hypoxia and inhibited tumor growth by inducing ICD in

cancer cells under ultrasound irradiation. Combined anti-CD47

immunotherapy can synergistically inhibit tumor growth and

recurrence by increasing the efficiency of tumor infiltration by

M1 macrophages and cytotoxic CD3+ and CD8+ T cells while

decreasing the efficiency of immunosuppressive regulatory T cells.

To improve the delivery efficiency of immune checkpoint

inhibitors and to reduce adverse immune reactions, Li et al. (52)

prepared nano-sonosensitizers loaded with programmed cell death

ligand 1 antibody (aPD-L1), and modified malignant melanoma cell

membranes (B16F10M) for target ing melanoma. The

bionanoparticle SCN@B16F10M/PEG-aPD-L1 was used for

homologous and immune checkpoint dual targeting and

enhanced sonodynamic tumor immunotherapy . The

functionalized nano-sonosensitizers showed visible long-term

retention in the tumor, which facilitated synergistic dual targeting

of homologous and immune checkpoints and enhanced in vivo

SDT-immunotherapy. A novel TME-responsive nano-

sonosensitizers design strategy has high spatiotemporal specificity

in the drug-controlled release. Shuai et al. (50) constructed pH and

MMP-2 dual-responsive acoustic sensitizer PEG-CDMaPD-L1/Ce6

with low pH and high MMP-2 expression in the TME to trigger in

situ release of aPD-L1. This strategy of in situ induction of ICD and

release of aPD-L1 has better targeted therapeutic effects and

can induce strong anticancer immunity and long-term

immune memory.

3.3.2 Combination with adjuvants
In addition to SDT combined with immune checkpoint

inhibition therapy, immune adjuvants are also used to enhance

the antitumor immune response. Cytosinphospguanine (CpG), a

toll-like receptor 9 (TLR9) agonist, is a significant antitumor

immune adjuvant in clinical research (64). For example, Wang

et al. (48) constructed TiO2-Ce6-CpG using titanium dioxide

(TiO2) as a carrier loaded with the sonosensitizer Chlorin e6

(Ce6) and the immune adjuvant CpG oligonucleotide (CpG

ODN). The emerging nano-sonosensitizer (TiO2-Ce6-CpG)

effectively kills tumor cells and triggers ICD under ultrasound

irradiation. The immune adjuvant CpG stimulates the immune

system to activate adaptive immune responses. Combined aPD-L1

treatment showed superb inhibition against primary and metastatic

tumors in mice’s bilateral subcutaneous model of hepatocellular

carcinoma. Besides, Chen et al. (49) designed a nanosonosensitizer,

co-encapsulated HMME and immune adjuvant R837 in liposomes

(HMME/R837@Lip). It has demonstrated that the nano-

sonosensitizer can enhance the effect of SDT through applicating

in multiple tumor models. SDT + PD-L1 blockade enhances the

suppression of primary and distant tumors in the 4T1 breast cancer

and CT26 colorectal cancer models. In addition, this combination
Frontiers in Oncology 07
therapy strategy provides a long-term immune memory function

that can prevent tumor recurrence.
4 Discussion

More and more studies have confirmed the application value of

SDT in antitumor immunotherapy. However, there are still various

challenges in inducing immunotherapy during SDT. SDT-induced

immune responses are of limited efficiency. In terms of treatment

strategies, targeted delivery of sonosensitizers to specific organelles,

such as the endoplasmic reticulum, and mitochondria, is expected

to enhance the immunogenicity of tumor cells further. Endoplasmic

reticulum (ER) is a crucial location for ROS production and ICD

induction during SDT. The sonosensitizers accumulated in the ER

significantly impact the activation of ICD (5). However, in most

current studies, sonosensitizers are unable to the subcellular

localization of ER, and can only produce ER stress response

through indirect ROS activity. Therefore, a sononanoplatform

that can directly target ER and effectively trigger ER stress is

required. Peptides targeting ER, such as pardaxin peptides, and

decorated nanomaterials are expected to solve the problem (65).

Targeting peptides-modified nanoparticles could carry

sonosensitizers accumulated specifically in the ER. The ER-

localized SDT strategy improves primary ROS production and

provides a promising modality for ICD-assisted immunotherapy

(19). In terms of treatment mode, the effect of a single SDT

treatment is often limited. Therefore, combining multiple modes

is the treatment method to improve the efficiency of antitumor

immunity. Many studies have confirmed that different strategies,

such as SDT combined with chemotherapy, PDT, PTT, and SDT

combined with immunoblockers are expected to improve the effect

of tumor immunotherapy.

Although SDT-synergized immunotherapy has rapid

development, several limitations associated with SDT and

immunotherapy remain to be addressed. Combining immune

checkpoint blockade therapy is often administered by systemic

injection, leading to insufficient drug targeting, low drug

utilization, and even susceptibility to immune-related adverse

events. Targeting tumor delivery by loading immunotherapeutic

drugs onto nanocarriers can solve these problems. The integration

of sonosensitizers with various nanoplatform overcomes the

challenges of SDT, such as hypoxia and poor targeting, and

enhances SDT-based ICD induction and immunotherapy through

synergistic delivery strategies. However, in clinical translations, the

stability and biocompatibility of nano-sonosensitizers need to

be evaluated.

In addition, even though tumor-derived HMGB1 is critical for

SDT-related immunogenicity, researchers found that HMGB1 is also

involved in tumor progression. Wang et al. proved that extracellular

HMGB1 is an essential factor for TLR4 interaction with platelets and

promotes melanoma tumor cells’ interaction with aggregation,

extravasation, and metastasis. Preventing HMGB1-mediated tumor

growth and metastasis should be further studied (20).
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In summary, the antitumor immune response is a highly complex

process, and disruption of any of these steps can reduce the

effectiveness of antitumor immunotherapy. In the future, it is

necessary to design more effective multifunctional sonosensitizer

nanoparticles rationally to obtain satisfied antitumor immunotherapy.
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