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PI3K/AKT/mTOR
pathway-derived risk score
exhibits correlation with immune
infiltration in uveal
melanoma patients

Yuxin Geng1†, Yulei Geng2†, Xiaoli Liu1, Qiannan Chai1,
Xuejing Li1, Taoran Ren1 and Qingli Shang1*

1Department of Ophthalmology, The Second Hospital of Hebei Medical University,
Shijiazhuang, China, 2Department of Ophthalmology, Shijiazhuang People’s Hospital,
Shijiazhaung, China
Uveal melanoma (UVM) is a rare but highly aggressive intraocular tumor with a

poor prognosis and limited therapeutic options. Recent studies have implicated

the PI3K/AKT/mTOR pathway in the pathogenesis and progression of UVM. Here,

we aimed to explore the potential mechanism of PI3K/AKT/mTOR pathway-

related genes (PRGs) in UVM and develop a novel prognostic-related risk model.

Using unsupervised clustering on 14 PRGs profiles, we identified three distinct

subtypes with varying immune characteristics. Subtype A demonstrated the

worst overall survival and showed higher expression of human leukocyte

antigen, immune checkpoints, and immune cell infiltration. Further enrichment

analysis revealed that subtype A mainly functioned in inflammatory response,

apoptosis, angiogenesis, and the PI3K/AKT/mTOR signaling pathway. Differential

analysis between different subtypes identified 56 differentially expressed genes

(DEGs), with the major enrichment pathway of these DEGs associated with PI3K/

AKT/mTOR. Based on these DEGs, we developed a consensus machine learning-

derived signature (RSF model) that exhibited the best power for predicting

prognosis among 76 algorithm combinations. The novel signature

demonstrated excellent robustness and predictive ability for the overall survival

of patients. Moreover, we observed that patients classified by risk scores had

distinguishable immune status andmutation. In conclusion, our study identified a

consensus machine learning-derived signature as a potential biomarker for

prognostic prediction in UVM patients. Our findings suggest that this signature

is correlated with tumor immune infiltration and may serve as a valuable tool for

personalized therapy in the clinical setting.

KEYWORDS
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Introduction

Uveal melanoma (UVM) is a rare yet malignant tumor that

primarily affects the eyes of adults and poses a significant risk to

their visual function and survival (1). This tumor arises from uveal

melanocytes and is mainly observed in the choroid, typically in a

unilateral manner (2). The incidence of UVM varies geographically

and racially, with white populations exhibiting the highest

incidence, followed by yellow populations, and black populations

exhibiting the lowest incidence (3). Notably, around half of all UVM

patients develop hematogenous metastasis, with 90% of these

metastases occurring in the liver (4). Despite recent advances in

treatment strategies, the overall survival rate of UVM patients has

remained poor, with a median survival of 6-12 months after

metastasis (5). Thus, there is an urgent need to identify novel

prognostic biomarkers and predictive models for UVM patients.

The PI3K/AKT/mTOR signaling pathway plays a crucial role in

regulating various cellular processes, including proliferation,

transcription, translation, apoptosis, and angiogenesis, and is

associated with mammalian tumor immunity (6–8). Dysregulated

activation of this pathway is commonly observed in tumorigenesis

and promotes drug resistance and tumor cell survival (9, 10).

However, the potential significance of PI3K/AKT/mTOR

pathway-related genes (PRGs) in the context of UVM remains to

be fully elucidated. The PI3K/AKT/mTOR signaling pathway has

emerged as a critical player in the regulation of tumor immune

microenvironment (TME). This pathway plays a pivotal role in the

modulation of a variety of immune cells, including T cells, B cells,

and natural killer cells, as well as in the production of cytokines and

chemokines (11–14). Moreover, dysregulation of this pathway has

been implicated in the development of immune escape mechanisms

in tumors, which in turn, can facilitate tumor growth and

progression. Understanding the complex interplay between the

PI3K/AKT/mTOR pathway and the tumor immune

microenvironment will undoubtedly provide critical insights for

the development of novel immunotherapeutic strategies for

UVM treatment.

In this study, we conducted unsupervised clustering on 14 PRGs

profiles to classify UVM samples into three clusters with distinct

immune characteristics. Finally, we identified a consensus PRGs

signature using 76 algorithm combinations through systematic

machine learning analysis. Importantly, specific subtypes is

correlated with tumor immune infiltration and activation of

PI3K/AKT/mTOR signaling pathway. In the future, our results

may serve as a valuable tool for personalized therapy in the

clinical setting.
Materials and methods

Data acquisition

Uveal melanoma (UVM) mRNA gene expression profiles were

acquired from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases. The inclusion criteria
Frontiers in Oncology 02
consisted of complete follow-up information, non-zero survival

days, and non-repeated sequencing. The meta-cohort analysis

included 80 tumor samples from the TCGA-UVM cohort and 63

tumor samples from the GSE22138 cohort. Somatic mutation data

from the TCGA-UVM cohort was incorporated. The batch effect

between RNA-seq and microarray data was removed using the

“sva” package to create a meta-cohort. A total of 105 pathway-

related genes (PRGs) were obtained from the HALLMARK PI3K

AKT MTOR SIGNALING entry in the Gene Set Enrichment

Analysis (GSEA) database and previous literature (15).
Clustering analysis

In order to evaluate the predictive capability of PRGs, a

univariate Cox regression analysis was conducted within the

meta-cohort. The expression levels of these PRGs were then

utilized to establish the optimal number of clusters via

unsupervised consensus clustering analysis, utilizing the

“consensusClusterPlus” package. The efficacy of this clustering

method was subsequently evaluated using principal component

analysis (PCA). To determine statistical significance, the Kaplan-

Meier curve was employed to assess overall survival (OS) in Uveal

Melanoma (UVM) patients within the dataset, with the log-rank

test being applied.
Functional analysis

To discern Differentially Expressed Genes (DEGs) between

UVM subtypes, the “limma” package was employed, with genes

exhibiting an absolute log-fold change greater than 1 and a p-value

less than 0.05 being deemed significant. Further annotation of these

DEGs was achieved via the utilization of the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis with the

“clusterProfiler” package, with a threshold of p-value and false

discovery rate (FDR) q-value less than 0.05 to identify pathways

exhibiting significant enrichment. To evaluate biological pathway

disparities between subtypes, gene set variation analysis (GSVA)

was performed using the h.all.v7.4.symbols gene set, with a FDR

threshold of less than 0.05.
Potential therapeutic agent prediction

The calculation of IC50 was conducted using the “prophetic”

package within the R software environment. Relevant drugs,

including small molecule drugs for PI3K/KT/mTOR (A.443654,

AKT.inhibitor.VIII, JW.7.52.1, MK.2206), were acquired from the

Genome of Drug Sensitivity in Cancer (GDSC) database. The

“pRRophetic” package leverages cell line expression profiles from

large-scale projects, along with corresponding IC50 data, as primary

inputs. Employing ridge regression, a predictive model is

constructed and subsequently applied for the prediction of

Chemotherapeutic Response in clinical samples.
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Immune microenvironment analysis

In order to gauge immune cell abundance in the samples, multiple

algorithms were employed. The ESTIMATE algorithm was utilized to

determine the immune score and stromal score, which were employed

as indicative metrics of the overall immune microenvironmental

status. Moreover, Pearson correlation analysis was performed to

evaluate the relationship between key PRGs and immune score.
Signature generated from machine
learning integrative approaches

The current study builds on a previous workflow (16), whereby a

combination of 76 machine learning algorithms were developed using

the Lasso, RSF, GBM, Survival-SVM, SuperPC, ridge, plsRcox,

StepCox, and Enet models. A pre-model that performed variable

filtering was selected, and the prognostic PRGs expression profile file

from the TCGA-UVM cohort was utilized to create a signature. The

risk score was subsequently calculated in both the GSE22138 and full

cohorts, and the best prognostic model was chosen based on the

average C-index of the cohort. Finally, the predictive accuracy of the

risk score was assessed via the plotting of a ROC curve.
Cell culture

The RGC-5 and D407 cell lines were procured from ATCC and

LY294002 (Cat no. L9908) was sourced from Sigma Inc. Both cell

lines were cultured in DMEM (Gibco) containing 10% fetal bovine

serum (Gibco), at 37°C and 5% CO2. These cell lines are extensively

utilized in ocular disease research, such as glaucoma and age-related

macular degeneration, due to their shared molecular and

phenotypic characteristics with UVM cells (17–19). In line with

previous studies, we selected LY294002 concentrations of 0mM,

5mM and 10mM for the experiments (20). Cell proliferation was

assessed by treating the cells with LY294002 for 24 hours and then

conducting a Cell Counting Kit-8 (CCK-8) assay (Dojindo,

Kumamoto, Japan) to measure cell viability.
Statistical analysis

The statistical analyses were executed using R software (version

4.0.1), as described earlier in this study. The significance level was

set at a p-value below 0.05, indicating statistical significance.
Results

Expression of PRGs in UVM and univariate
cox analysis

Figure 1A illustrates the flow chart of this study. In order to

clarify the effect of PI3K/AKT/mTOR pathway on UVM cells, we

used CCK-8 kit to detect cell viability in RGC-5 and D407 cells.
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Figures 1B, C showed that the cell viability of LY294002 treatment

group was lower than that of control group, and the cell viability

decreased with the increase of LY294002 concentration. To further

explore the critical role of PRGs in UVM patients, we used the

combat algorithm to remove batch effects from different cohort

expression profiles (Figure 1D). In the meta cohort, 14 genes were

associated with prognosis (Figure 1E).
Molecular subtype identification

In the meta-cohort study, patients were categorized according

to the consistent clustering of 14 prognostic PRGs. Notably, a

cluster selection of 3 yielded a relatively stable clustering result, as

demonstrated in Figures 2A, B. Finally, we obtained three molecular

subtypes. A heat map of clinical information and gene expression

was constructed, and we found that 14 prognostic PRGs were

significantly up-regulated in subtype A (Figure 2C). There were

significant prognostic differences among the three molecular

subtypes, with subtype A having the worst prognosis and subtype

C having the best prognosis (Figure 2D). Finally, PCA showed

genomic heterogeneity in different cohorts (Figure 2E).
Relationship between PI3K/AKT/mTOR
clusters and tumor microenvironment and
drug sensitivity

The PI3K/AKT/mTOR signaling pathway has emerged as a critical

player in the regulation of tumor immune microenvironment.

The ESTIMATE algorithm evaluated the overall TME landscape for

different subtypes, with subtype C having the lowest immune and

stromal scores and subtype A having the highest immune and stromal

scores (Figure 3A). Furthermore, we conducted a comparative analysis

of HLAmolecule and ICI mRNA expression across different molecular

subtypes and noted that subtype A exhibited elevated levels of both

HLA and ICI mRNA, as depicted in Figures 3B, C. Additionally, TME

status was assessed in the various molecular subtypes through ssGSEA

analysis. Despite subtype A displaying the highest immune score

according to the ESTIMATE algorithm, a significantly greater

abundance of Treg cells was observed in subtype A compared to the

other subtypes. This finding means that subtype Amay appear to be in

a “hot tumor” state, but it is in an immunosuppressed state, which may

also be the main reason for poor prognosis (Figure 3D). Finally, we

calculated the IC50 of small molecule drugs targeting PI3K/AKT/

mTOR: A.443654, AKT.inhibitor.VIII, JW.7.52.1, MK.2206 from the

GDSC database. The results showed that subtype C was the most

sensitive to the mentioned drugs (Figure 3E).
Biological features of molecular subtypes

The association between the PI3K/AKT pathway and apoptosis

and angiogenesis is widely recognized. In order to investigate this

relationship, we conducted GSVA enrichment analysis using the
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Hallmark gene set. This analysis revealed that subtype B was

significantly enriched in inflammatory response, apoptosis,

angiogenesis, and the PI3K/AKT/mTOR signaling pathway

compared to subtype C, as illustrated in Figure 4B. Subtype A

demonstrated significant enrichment in inflammatory response,

apoptosis, angiogenesis, and the PI3K/AKT/mTOR signaling

pathway compared to subtype C, as displayed in Figure 4C.
Frontiers in Oncology 04
Similarly, subtype A was also significantly enriched in these

processes when compared to subtype B, as depicted in Figure 4A.

Furthermore, differential analysis was conducted between the

different subtypes, resulting in the identification of 56 DEGs

(Figure 4D). Intriguingly, KEGG analysis further revealed that the

major enrichment pathway of these 56 DEGs was associated with

the PI3K/AKT/mTOR signaling pathway (Figure 4E).
A

B D

E

C

FIGURE 1

Expression of PRGs in UVM and univariate Cox analysis. (A) Flow chart of this study. (B, C) CCK-8 assay. (D) PCA analysis in TCGA cohort and
GSE22138 cohort. (E) The univariate Cox analysis of PRGs in UVM. **P < 0.01, ****P < 0.0001.
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Integrative construction of a
consensus signature

The average C-index for each algorithm in all cohorts was

calculated, and the final model was selected as the RSF algorithm

with the highest average C-index (0.807), as depicted in Figure 5A. The

risk score of each sample in the cohort was further calculated based on
Frontiers in Oncology 05
the expression files of the five PRGs (PFN1, ITPR2, TNFRSF1A,

CDK2, and RAF1) contained in the RSF model. Subsequently,

patients in the TCGA-UVM and GSE22138 cohorts were grouped

using the optimal critical value of 8.73 determined based on the risk

score of the training set. The GSE22138 cohort consisted of 27 high-

risk and 36 low-risk patients, while the TCGA-UVMcohort comprised

26 high-risk and 54 low-risk patients. It is noteworthy that the training
A

B

D E

C

FIGURE 2

Molecular subtype identification. (A) Consensus clustering matrix when k = 3. (B) Consensus clustering CDF with k valued 2 to 9. (C) The heat map
shows the correlation between the two clusters and the clinicopathological features. (D) Kaplan-Meier curves of OS for three subtypes in UVM.
(E) PCA analysis showed that UVM could be well differentiated into three subtypes based on the expression of 14 prognostic PRGs.
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cohort demonstrated an excellent performance with an area under the

ROC curve (AUC) of 0.966, 0.943, and 0.961 for 1-year, 2-year, and 3-

year OS, respectively (Figure 5B). In the validation cohort, the AUC for

1-year, 2-year, and 3-year OS was 0.665, 0.733, and 0.719, respectively

(Figure 5C). Kaplan-Meier curves indicated that patients in the low-

risk group had significantly prolonged survival in both the training and

test cohorts (Figures 5D, E).
Frontiers in Oncology 06
Evaluation of TME in high- and
low-risk groups

Upon analyzing the whole exome sequencing data, we found

that there was a significant difference in the top mutation genes

between the high-risk and low-risk groups. In the high-risk group,

GNA11 was identified as the top 1 mutation gene (Figure 6A), while
A B

D

E

C

FIGURE 3

Three subtypes display different immune landscape and chemotherapy drug sensitivity. (A) The expression level of the immune score, stromal score,
and ESTIMATE score, between different subtypes. (B) Comparison of immune checkpoint blockade-related genes expression levels in three
subtypes. (C) Comparison of 19 HLA-related genes expression levels in three subtypes. (D) immune function by ssGSEA. (E) The boxplot of sensitivity
of small molecule drugs targeting PI3K/AKT/mTOR between three subtypes. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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in the low-risk group, GNAQ was identified as the top 1 mutation

gene (Figure 6B). Moreover, to estimate the infiltration fraction of

immune cells in different samples, we performed immune cell

analysis using various algorithms such as TIMER, CIBERSORT,

QUANTISEQ, MCP-counter, XCELL, and EPIC. The results

showed that the high-risk group had a more active tumor

microenvironment (TME) (Figure 6C), with all algorithms
Frontiers in Oncology 07
indicating higher levels of immune killer cell CD8+ T in the high-

risk group. Finally, to further explore the significance of the five

PRGs involved in the RSF model and immunization, we conducted

Pearson correlation analysis. Our findings demonstrated that RAF1

and CDK2 were significantly negatively correlated with immune

score, whereas PFN1, ITPR2, and TNFRSF1A were significantly

positively correlated with immune score (Figure 6D).
A B

D

E

C

FIGURE 4

Biological characterization of molecular subtypes. (A-C) The GSVA pathway enrichment analysis between different subtypes. (D) Venn diagram of
molecular subtype-associated DEGs. (E) KEGG analysis.
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Discussion

With the advent of high-throughput sequencing technology, a

multitude of tumor genomics investigations have corroborated the

aberrant activation of the PI3K/AKT/mTOR signaling pathway in

malignant tumors (21–23). The activation state of various effector

molecules is regulated by this pathway, which not only influences
Frontiers in Oncology 08
cell proliferation and apoptosis but also contributes to tumor

growth and chemotherapy response (24, 25). Research has

demonstrated that the PI3K/AKT/mTOR signaling pathway is

linked to drug resistance in certain tumors, such as leukemia,

prostate cancer, colon cancer, and lymphoma. Meanwhile, the use

of inhibitors and traditional chemotherapy drugs targeting this

pathway has exhibited enhanced chemotherapy efficacy and
A B

D

E

C

FIGURE 5

Integrative construction of a consensus signature. (A) C-indices of 76 kinds of prediction models in three cohorts. ROC analysis at 1, 2, and 3 years
in TCGA-UVM (B) and GSE22138 (C). Kaplan-Meier curves of OS in TCGA-UVM (D) and GSE22138 (E).
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decreased drug resistance in the chemotherapy of arsenic tumors,

such as leukemia (26, 27). However, the specific mechanism of

PRGs in the onset, progression, and prognosis of UVM necessitates

further exploration.

We have delineated three distinct subtypes on the basis of

prognosis-related PRGs. These subtypes exhibit significant
Frontiers in Oncology 09
variations in terms of prognostic features, TME, and functional

enrichment. The patients belonging to subtype A manifest the

poorest prognosis and harbor more advanced clinicopathological

features. To assess the overall TME landscape of the various

molecular subtypes, we employed the ESTIMATE algorithm in

our study. We noted remarkable variations in TME characteristics,
A B

D
C

FIGURE 6

Evaluation of TME in high- and low-risk groups. Top 10 gene mutations in high- (A) and low-risk (B) groups. (C) Analysis based on different
algorithms showed immune cell infiltration in low-risk and high-risk groups. (D) Pearson correlation analysis between five PRGs and immune score.
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such as stromal score, immune score, and ESTIMATE score, with

subtype A demonstrating the highest immune and stromal scores.

Additionally, we scrutinized the expression levels of HLA molecules

and ICI mRNA across the diverse subtypes and detected higher

levels of HLA and ICI mRNA expression in subtype A. Moreover,

subtype A displayed the highest abundance of infiltrating immune

cells among the different subtypes.

Notably, the PI3K/AKT/mTOR signaling pathway exhibited

significant enrichment in subtype A, which is recognized for its

involvement in the regulation of the tumor immune

microenvironment. In particular, it has been demonstrated to

modulate the secretion of immunosuppressive cytokines,

expression of PD-L1, and infiltration of regulatory T cells and

CD8+ T cells (13, 28). Furthermore, KEGG pathway analysis of 56

differentially expressed genes (DEGs) revealed that the principal

pathways of enrichment were associated with the PI3K/AKT/

mTOR signaling pathway. These findings suggest that targeting

this pathway presents a promising approach to manipulate the

tumor immune microenvironment and ameliorate clinical

outcomes in patients with UVM.

We computed the mean C-index for each algorithm across all

cohorts and selected the RSF algorithm as the final model due to its

highest mean C-index (0.807). We subsequently determined the risk

score of each sample in the cohort, based on the expression data of the

five PRGs included in the RSF model: PFN1, ITPR2, TNFRSF1A,

CDK2, and RAF1. Using the training set, we established the optimal

cutoff value of 8.73 based on the risk scores, and implemented this

cutoff to group patients in the TCGA-UVM and GSE22138 cohorts.

Notably, the GSE22138 and TCGA-UVM cohorts comprised 27 high-

risk and 36 low-risk patients, and 26 high-risk and 54 low-risk patients,

respectively. In the training cohort, it is noteworthy that theAUC for 1-

year, 2-year, and 3-year OSwas 0.966, 0.943, and 0.961, respectively. In

the validation cohort, the AUC for 1-year, 2-year, and 3-year OS were

0.665, 0.733, and 0.719, respectively. The Kaplan-Meier analysis

indicated that the low-risk group had significantly longer survival

compared to the high-risk group in both the training and validation

cohorts. The current investigation delved deeper into the biological

mechanisms that underlie the RSF model. The patients classified as

high-risk exhibited a heightened activation of the TME, which may

account for their increased rates of recurrence and mortality. In

contrast, low-risk patients were distinguished by immune activation,

which corresponded to more favorable prognostic outcomes.

Moreover, the increased immune infiltrations observed in low-risk

patients suggest that they may be well-suited candidates

for immunotherapy.

Despite the promising findings of this study, there are several

limitations that must be acknowledged. Firstly, RGC-5 and D407 are

commonly used cell lines in research related to retinal diseases. RGC-5

is a rat retinal ganglion cell line, while D407 is a human retinal pigment

epithelial cell line. These cell lines have been shown to share some

molecular and phenotypic characteristics with UVM cells and have
Frontiers in Oncology 10
been used in several previous studies. However, we understand the

limitations of using cell lines that do not perfectly reflect the biology of

UVM and the need for more physiologically relevant models for

preclinical research. In the future, we will aim to incorporate

additional models, such as primary UVM cells and patient-derived

xenografts, to further validate our findings and improve the relevance

of our research to UVM. Secondly, the sample size of this study is

relatively small, and larger studies are needed to validate the findings

and improve the accuracy of the machine learning model.
Conclusions

In summary, this study identified differentially expressed PRGs

in UVM and classified UVMpatients into three clusters based on the

expression of prognostic PRGs. These clusters showed significant

differences in prognosis and TME. A consensus PRG signature,

termed RSF model, was systematically identified that could

independently predict the prognosis and TME of UVM patients.

The RSF model may serve as a robust predictor of prognosis and

response to immunotherapy, providing a foundation for further

personalized therapeutic strategies in UVM patients.
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