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Chronic lymphocytic leukemia (CLL) is themost prevalent type of leukemia in the

western world. Despite the positive clinical effects of new targeted therapies, CLL

still remains an incurable and refractory disease and resistance to treatments are

commonly encountered. The Nuclear Factor-Kappa B (NF-kB) transcription

factor has been implicated in the pathology of CLL, with high levels of NF-kB
associated with disease progression and drug resistance. This aberrant NF-kB
activation can be caused by genetic mutations in the tumor cells and

microenvironmental factors, which promote NF-kB signaling. Activation can

be induced via two distinct pathways, the canonical and non-canonical

pathway, which result in tumor cell proliferation, survival and drug resistance.

Therefore, understanding how the CLL microenvironment drives NF-kB
activation is important for deciphering how CLL cells evade treatment and may

aid the development of novel targeting therapeutics. The CLL microenvironment

is comprised of various cells, including nurse like cells, mesenchymal stromal

cells, follicular dendritic cells and CD4+ T cells. By activating different receptors,

including the B cell receptor and CD40, these cells cause overactivity of the

canonical and non-canonical NF-kB pathways. Within this review, wewill explore

the different components of the CLL microenvironment that drive the NF-kB
pathway, investigating how this knowledge is being translated in the

development of new therapeutics.
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Introduction

Chronic Lymphocytic Leukemia (CLL), is the most common leukemia in the western

world. In CLL, monoclonal B-lymphocytes accumulate in the blood, bone marrow and

lymph nodes (1). Current treatment strategies vary depending on disease burden, from

active monitoring in asymptomatic patients, to targeted therapies in more advanced disease

(2). Inhibitors targeting Bruton’s tyrosine kinase (BTK), Phosphoinositide 3-kinases

(PI3K) and B cell Lymphoma 2 (BCL2) have revolutionized treatment of CLL, but many

patients are refractory or develop resistance, and CLL remains an incurable disease.
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Approximately 1000 people in the United Kingdom die from CLL

each year, so understanding the molecular mechanisms that prevent

better treatment of CLL remains an active area of research (3).

One such avenue of research surrounds the role the NF-kB
signaling pathway plays in CLL. NF-kB is a transcription regulator,

and aberrant activity of its pathways are associated with both

inflammatory conditions and malignancies (4–6). Because of this,

NF-kB has been identified as a potential therapeutic target for a

variety of cancers, including CLL (7). Genetic mutations altering

these pathways in CLL are well described (8–10), but over the last

decade our understanding of the role of the microenvironment in

activating NF-kB has evolved (11). The CLL microenvironment has

been implicated in disease progression and chemoresistance;

modern therapeutics are often very effective at clearing tumor

cells from the peripheral blood but the lymphoid tissues provide a

haven for residual disease. Both genetic mutations and the tumor

microenvironment are essential in activating NF-kB in CLL, with

the latter representing a less well characterized aspect of CLL

development that requires further investigation. Herein, we

explore the components of the microenvironment which activate

NF-kB in CLL, identifying potential therapeutic targets for this

prevalent and incurable malignancy.
The NF-kappaB pathway

The ubiquitous transcription factor NF-kB is actually made up

of five different subunits, which act as homodimers or heterodimers

to regulate a variety of genes relating to the immune system,

inflammation, cell growth and survival (12). The five NF-kB
proteins found in human cells are p65 (RelA), RelB, c-Rel, p105/

p50, and p100/p52, which work by binding to kB enhancer regions

in the genome to control target gene transcription (13). Before

activation of the NF-kB pathway, inhibitors called IkBs are coupled
with these dimers, rendering them inactive in the cell cytoplasm.

NF-kB is activated by two pathways: the canonical and non-

canonical signaling pathways (Figure 1). The canonical pathway is

triggered by the binding of ligands to several surface receptors such

as the B cell receptor (BCR) and toll-like receptors (TLRs). Such

binding activates the IKK trimeric complex, formed of IKKa, IKKb
and IKKg subunits (14). The IKK complex phosphorylates and

degrades IkBa, allowing the translocation of NF-kB subunits,

primarily the p50/RelA complex, to the nucleus (15). In contrast,

the non-canonical pathway is triggered by activation of different

receptors including the B cell activating factor receptor (BAFF-R)

and CD40 receptor (16). Ligand induced activation triggers NF-kB
inducing kinase (NIK) to phosphorylate the IKKa complex, causing

phosphorylation of p100, processing of p100 into p52, and

subsequent nuclear translocation of the NF-kB RelB/p52 complex

(16). The release and translocation of NF-kB dimers causes

transcription of cancer associated target genes such as the anti-

apoptotic BCL2 (B cell lymphoma 2), BCL2L1 (B cell lymphoma

XL) and MCL1 (Myeloid leukemia cell differentiation protein) and

the pro-angiogenic VEGF (vascular endothelial growth factor) gene

(17). There is potential for crosstalk between the two NF-kB
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signaling pathways in B cells (18). Genes that encode non-

canonical pathway components p100 and RelB are induced by

canonical pathway activity (18), unprocessed p100 can inhibit

canonical NF-kB dimers rendering them responsive to non-

canonical pathway activity (19), and NF-kB proteins from both

pathways compete to form dimers (20). The prevailing direction of

crosstalk in non-malignant B cells is non-canonical activity

inducing canonical dimers, as canonical pathway activity does not

induce RelB:p52 (19, 21). The magnitude and functional

significance of this crosstalk in CLL is not known and likely

dependent on the microenvironmental context.

Overactivation of the NF-kB pathway has been identified in

several conditions, including chronic inflammatory conditions,

autoimmune conditions and hematological malignancies (22–24).

In CLL, the NF-kB pathway is aberrantly active compared to age-

matched healthy B cells, and several recurrent genetic mutations

that alter NF-kB activity have been reported (25, 26). Genetic

mutations in NOTCH1 are found in approximately 11% of CLL

patients (8) and cause increased canonical and non-canonical NF-

kB activity (27), which correlate with CLL cell survival and poor

response to chemotherapy agents (28–30). Gene expression

profiling has shown that NOTCH1 mutated CLL cells have higher

expression of genes associated with NF-kB than their wild-type

counterparts (31) and these mutations lead to increased NOTCH1

activity and increased nuclear translocation of p65 (RelA). As a

result, there is raised expression of NF-kB target genes such as

CD49d (32). Xu et al (33) suggested that the crosstalk between

NOTCH1 and NF-kB is caused by an increase in intracellular

NOTCH1 in mutated CLL cells resulting in amplified nuclear NF-

kB DNA binding (34). Other genetic mutations affecting the NF-kB
pathway in CLL include: NFKBIE mutations (causing a reduction in

the activity of the negative regulator of NF-kB: IkBϵ), BIRC3
mutations (causing an increase in NIK levels) and MYD88

mutations (causing constitutive signaling in the TLR signaling

pathway) (35–37). However, genetics alone cannot explain the

critical role of NF-kB in the pathology of CLL, so the protective

microenvironment that supports CLL cells is an emerging topic of

importance (11).
The CLL microenvironment

Within the body, CLL cells circulate between the peripheral

blood and lymphoid organs where they receive survival and

proliferation signals. Within the lymph node, they are also more

resistant to therapeutic destruction and depend largely on

surrounding stromal and T cells, which comprise the CLL

‘microenvironment’ (Figure 2) (38). Interactions with this

microenvironment promotes cell division and tumor cell survival

(39). Furthermore, activated CLL cells produce chemo-attractants

such as CCL3, CCL4, CCL17 and CCL22 in order to draw in these

supportive cells and facilitate crosstalk between the CLL cell and its

microenvironment (40). The following are some of the cells that

interact with and support CLL cells by activating the NF-

kB pathway:
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Nurse like cells

Nurse-like cells (NLC) represent a population of leukemia-

associated macrophages expressing CD14, CD45, HLA-DR, CD33,

and CD68, which are induced by CLL cells through nicotinamide

phosphoribosyl transferase (NAMPT) and high-mobility group

protein B1 (HMGB1) signaling (41–43). In addition to their

ability to establish firm contact and support CLL survival through

stromal-derived factor 1-a (SDF-1a) and lymphocyte function-

associated antigen 3 (LFA-3), these cells cause overactivation of

both the canonical and non-canonical NF-kB pathway via several

mechanisms (43). Primarily these include the release of B cell

activation factor (BAFF), a proliferation-inducing ligand (APRIL)
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and B cell receptor (BCR) signaling via antigen dependent and

independent mechanisms (44).
Mesenchymal stromal cells

The multipotent mesenchymal stromal cells (MSC) form part of

the CLL protective microenvironment (45) and are characterized by

CD73, CD90 and CD105 expression (46). Part of MSC's ability to

encourage CLL cell survival is independent of the NF-kB pathway,

with transforming growth factor b1 (TGFb1) and stromal cell

derived factor 1 (SDF1) driving CLL cell survival (45). However,

by activating the BCR through ligands such as calreticulin and
FIGURE 1

Schematic summary of the canonical and non-canonical NF-kB signaling pathways and the dimers formed by the 5 different subunits. The canonical
signaling pathway is shown in green, and primarily induces RelA:p50 and cRel:p50 through the degradation of Inhibitors of NF-kB (IkBs). The non-
canonical pathway is indicated in blue and primarily activates RelB:p52 through the processing of p100 into p52. The potential for bi-direction
crosstalk between the two pathways is indicated in gray. Both p100 and RelB are target genes on canonical NF-kB signaling creating the potential
for crosstalk from canonical to non-canonical signaling. P100 that is not processed into p52 can form an inhibitory complex that inhibits canonical
dimers. This p100 can be degraded by NIK creating the potential for crosstalk from non-canonical signaling to canonical dimers. Additional crosstalk
can occur due to the competition between p50 and p52 for binding to a limited pool of RelA and RelB.
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vimentin, the MSCs cause aberrant canonical NF-kB activity in the

CLL cell, promoting survival and proliferation (47).
Follicular dendritic cells

Located in the secondary lymphoid organs and bone marrow in

CLL, follicular dendritic cells (FDCs) also provide support for the

CLL cells (48, 49). Expressing high levels of complement receptors

CR1 and CR2, these cells crosstalk with CLL cells via NF-kB
independent interactions such as plexin-B1/CD100 and ICAM1/

LFA-1 (intracellular adhesion molecule 1/lymphocyte function-

associated antigen 1) (50, 51). Crucially, in a similar fashion to

the MSCs, FDCs trigger activation of NF-kB through the BCR and

BAFF in order to nurture and support the CLL cells (52, 53).
CD4+ T cells

CD4+ helper T cells are a key component of the adaptive

immune system which contribute to the CLL microenvironment

(54). The presence of CD4+ T cells is essential for CLL

development, as exemplified by the inability of CLL cells to

proliferate in mice lacking CD4+ T cells (55). CD4+ T cells

increase STAT6 driven BCR signaling through release of IL4 (56)
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and in normal B cells, this has been shown to be via activation of the

non-canonical NF-kB pathway (57). CD4+ T cell activation of the

non-canonical NF-kB pathway in CLL is also through CD40L

activation of CD40 (58, 59) and, as a result, CD40L and IL4 are

important components of laboratory-based co-culture systems

which aim to mimic the tumor microenvironment (40, 60, 61).
Microenvironmental activation
of the NF-kB pathway

The above components of the microenvironment act on the

CLL cell through several receptors, posing exciting potential

therapeutic targets for this disease. Below are the key receptors

involved in activating the NF-kB pathway in this malignancy:
B cell receptor (BCR) signaling

The BCR is a transmembrane receptor located on the surface of

B cells, and is comprised of the co-receptors CD79A and CD79B,

along with the membrane bound immunoglobulin molecule (sIgM)

(62). After ligand binding to the BCR, the Src family kinases Lyn

and spleen tyrosine kinase (SYK) phosphorylate the cytoplasmic

segment of the CD79A and CD79B heterodimers. As a result,
FIGURE 2

Schematic summary of some of the components and interactions in the CLL microenvironment.
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several adaptor proteins and kinases are phosphorylated and

activated, including BTK, PI3Kd and phospholipase Cg2 PLCg2
(63). Activation of BTK induces the canonical NF-kB pathway, with

downstream degradation of IkBs leading to NF-kB translocation

and target gene transcription (63, 64).

BCR signaling is increased in CLL cells compared to normal B

cells, with CLL cells also expressing higher levels of LYN, SYK and

BTK than non-malignant B cells (65). Gene expression profiling has

shown that BCR signaling, canonical NF-kB activation and

proliferation are all up-regulated in lymph node resident CLL

cells compared to those in the peripheral blood (58).

Autonomous antigen-independent signaling is one way in which

the BCR is activated in CLL, involving binding of an internal

epitope to the heavy-chain complementarity-determining region

(HCDR3) of the BCR (66). In addition to autonomous BCR

signaling, external activation of the BCR through the CLL

microenvironment has been suggested, with stroma cell

expression of antigens such as vimentin and calreticulin which

activate the BCR (47). In addition to stimulating the BCR directly,

cytokines within the microenvironment, such as IL4 and IL6, have

been found to upregulate sIgM in CLL in vitro (67). NF-kB
activation as a result of microenvironmental activation of BCR

signaling enables the proliferation and survival of the CLL cells.

The importance of the BCR in the CLL microenvironment is

shown by the revolutionary effects of phosphatidylinositol 3 kinase

(PI3K) d inhibitors such as idelalisib and duvelisib and BTK

inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib (68).

Crucially, both PI3Kd and BTK inhibitors exhibit their clinical

effects by causing redistribution of CLL cells out of the lymph nodes

into the peripheral blood, demonstrating the importance of both in

CLL motility and retention (69, 70). In addition to preventing

canonical NF-kB activation through targeting the BCR via BTK,

ibrutinib treatment also induces loss of NLC mediated pro-survival

signaling in the microenvironment (71). Moreover, inhibition of

canonical NF-kB activation through targeting BTK has been found

to reduce CD4+ and CD8+ T cells within the microenvironment

and dampen expression of chemo-attractants produced by tumor

associated macrophages (71–73). Furthermore, BTK inhibition

reduces CXCR4-mediated signaling and adhesion, releasing CLL

cells into the circulation and preventing them from re-entering the

CLL protective niche in vivo (74).
Toll-like receptor (TLR) signaling

The TLRs are transmembrane glycoproteins, composed of a C-

terminal domain, a transmembrane domain and an N-terminal

domain, which are expressed in several cells including B cells (75).

There are 10 functional TLRs in humans, which can either be

expressed on the cell surface or within the endosomes, and they

trigger the NF-kB through two routes. On activation, the TLR

recruits the TIR domain adaptor protein MyD88 (76). MyD88

subsequently interacts with members of the IL1 receptor-associated

kinase (IRAK) family, with activation and phosphorylation of

IRAK1 and IRAK4 causing downstream recruitment of
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transforming growth factor-b-activated kinase-1 (TAK1) (77).

TAK1 is also activated when TLR activation leads to recruitment

of TRIF, activating the IKK complex and thus, the NF-kB
pathway (78).

To date, there is very little in-vivo data to support a role for TLR

in the pathology of CLL. Martines et al. (79) reported that CLL

proliferation is dependent on BCR and macrophage derived signals

as opposed to TLR in the murine Em-TCL1 model of CLL (79).

However, crosstalk between the TLR and BCR pathways (80) and

formation of a supercomplex formed of MyD88, TLR9, and the

BCR (My-T-BCR) (81) has been documented in aggressive

lymphoma and indicate that these pathways cannot be considered

in isolation. Furthermore, neutrophil extracellular traps have been

shown to directly upregulate TLR9 signaling in DLBCL and

subsequently activated NF-kB, STAT3, and p38 pathways to

promote tumor progression (82). Activation of TLR signaling has

been reported in lymph node resident CLL cells (83) and in-vitro

models have suggested that TLR signaling and subsequent NF-kB
activation is associated with an increase in CLL proliferation and

survival, and with resistance to chemotherapy (84, 85).

In CLL patients, TLR1, 2, 6 and 10 are found on the cell surface,

with TLR7, 8 and 9 expressed on intracellular endosomes (84). In

particular, TLR9 has been highlighted as an important receptor in

the CLL microenvironment, with CLL cells demonstrating

increased levels of TLR9 compared to normal B cells (86). TLR9

expression in vitro has been linked with increased levels of CLL cell

migration, while CLL patients have been found to have significantly

higher plasma levels of the TLR9 ligand - unmethylated cytosine

guanine dinucleotide (CpG)-DNA, compared to healthy controls

(87). TLR9 signaling has also been implicated as a potential

resistance mechanism to ibrutinib and venetoclax through NF-kB
driven upregulation of MCL-1 and BCL-XL (87, 88). Furthermore,

IRAK4 and IRAK1, downstream components of the TLR signaling

pathway, have been suggested as potential therapeutic targets for

CLL (89, 90). These in-vitro findings implicate TLR9 as a potential

driver of NF-kB in the CLL microenvironment with the potential to

increase CLL cell activation and migration, even in the presence of

BTK and BCL2 inhibition. However, the clear discrepancy between

in-vivo and in-vitro data supports the need for more studies in

this area.
B cell activating factor (BAFF)

As members of the tumor necrosis factor (TNF) group, BAFF

and APRIL regulate the function of the B cell through the activation

of the following receptors: B cell maturation antigen (BCMA);

Transmembrane activator or the calcium modulator and

cyclophilin ligand-interactor (TACI) and the B cell activating

factor receptor (BAFFR) (91). The latter is key in activating the

pathway, with BAFF/BAFFR ligation leading to the recruitment and

degradation of TRAF3 and subsequently the TRAF/cIAP complex,

releasing NIK and activating the non-canonical NF-kB pathway

(92). BAFF and APRIL also support CLL survival through the

canonical pathway, with receptor ligation leading to downstream
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degradation of IkBa (52). In vitro studies have demonstrated that

malignant B cells in CLL express BAFF and APRIL receptors, and

when stimulated these receptors enhance CLL cell survival (93).

Within the CLL microenvironment, NLCs and FDCs have been

found to express increased levels of BAFF and APRIL, with these

ligands inducing NF-kB pathway activation (52, 94). In vivo, the

Em-TCL1 CLL mouse model crossed with stromal cell-expressing

BAFF transgenic mice showed early progression and decreased

survival (95). Indeed, BAFF has been identified as a component of

the microenvironment that is able to protect CLL cells from NF-kB
inhibition-induced apoptosis (96). The importance of BAFF in the

context of CLL cell survival is also evident in the clinical context,

with patients expressing low serum levels of BAFF showing better

overall survival than those with high serum BAFF levels (97).

Given its role in CLL cell survival, BAFF is a potentially

attractive therapeutic target. Antibodies targeting the BAFFR lead

to increased levels of BAFF-mediated apoptosis, and also improve

the efficacy of ibrutinib in vivo (98). Another therapeutic which

primarily targets PI3K and histone deacetylase (HDAC) has been

shown to work in part by reducing BAFF and APRIL-mediated NF-

kB signaling, with the authors highlighting the importance of

targeting these cytokines as crucial microenvironmental factors

(99). Intriguingly, a phase 2 clinical trial using Belimumab, an

anti-BAFF monoclonal antibody, in combination with Rituximab/

Venetoclax is underway, with preclinical findings showing

promising results (100, 101).
CD40 signaling

A membrane receptor which is present on various

hematopoietic and stromal cells, CD40 binds to its ligand CD40L

(upregulated on activated T cells) causing various effects, including

germinal center formation, cell survival and cytokine production

(102). Through the action of TRAFs, CD40/CD40L binding

activates the canonical and non-canonical pathway in B cells, and

in CLL has induced NF-kB mediated survival (103, 104). In one

arm, CD40/40L binding leads to the activation of TRAF2 and

TRAF6, causing downstream activation of the canonical NF-kB
pathway (104). In contrast, CD40/CD40L recruits TRAF2 and

TRAF3, causing activation of the non-canonical NF-kB pathway

through downstream activation of NIK (105, 106).

Within the CLL microenvironment, CD40 stimulation by

CD40L-expressing CD4+ T cells activates CLL B cells and

contributes to cell proliferation and protection from apoptosis via

the NF-kB pathway (107, 108). These CD4+ T cells are recruited

into the lymphoid niche by chemokines secreted by CLL cells, and

the interplay between malignant B cells and CD4+ T cells leads to

disease progression (109). In addition, stimulating the CLL BCR

causes an upregulation of CD40, while CD40 stimulation has been

shown to activate the BCR signaling pathway, suggesting important

crosstalk between the BCR and CD40 in CLL cell survival

(110, 111).

In addition to contributing to CLL cell survival, CD40L has been

implicated in drug resistance in CLL, with microenvironmental

agonists including CD40L inducing NF-kB mediated resistance to
Frontiers in Oncology 06
Venetoclax and ibrutinib (88, 112, 113). Interestingly, direct

inhibition of NIK in vitro overcomes the protection offered by the

CD40/CD40L interaction and induces CLL cell apoptosis in

previously resistant cells (59). Targeting CD40/CD40L signaling has

also been investigated in the context of CLL, with monoclonal

antibody to CD40 Selicrelumab showing promising results through

the sensitization of CD20 monoclonal antibodies such as Rituximab

and Obinutuzumab (114, 115). Indeed, monoclonal antibodies

targeting CD40 such as Dacetuzumab have been investigated in

phase 1 and 2 clinical trials for conditions such as multiple

myeloma and diffuse large B cell lymphoma (DLBCL), perhaps

paving the way for a new therapeutic for other hematological

malignancies such as CLL (116).
Conclusion

In conclusion, there are multiple avenues in which the CLL

microenvironment protects the malignant B cells and encourages

proliferation via the NF-kB pathway. In contrast to a one-way

model in which the protective niche supports proliferating cells in

isolation, a bi-directional model exists in which CLL cells also

recruit and support cells of the microenvironment in a harmonious

fashion. A variety of stromal and hematopoietic cells contribute to

the microenvironment, and through a variety of receptors including

the BCR, BAFF, TLR and CD40, the NF-kB pathway is

overactivated. Given its importance in CLL, these components are

exciting therapeutic targets and preclinical data suggests an

emerging role for these novel therapeutic approaches.
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