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Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor

levels, and this heterogeneity is a crucial determinant of malignant progression

and response to treatments. In addition to genetic diversity and plasticity of

cancer cells, the tumor microenvironment contributes to tumor heterogeneity

shaping the physical and biological surroundings of the tumor. The activity of

certain types of immune, endothelial or mesenchymal cells in the

microenvironment can change the effectiveness of cancer therapies via a

plethora of different mechanisms. Therefore, deciphering the interactions

between the distinct cell types, their spatial organization and their specific

contribution to tumor growth and drug sensitivity is still a major challenge.

Dissecting intra-tumor heterogeneity is currently an urgent need to better define

breast cancer biology and to develop therapeutic strategies targeting the

microenvironment as helpful tools for combined and personalized treatment.

In this review, we analyze the mechanisms by which the tumor

microenvironment affects the characteristics of tumor heterogeneity that

ultimately result in drug resistance, and we outline state of the art preclinical

models and emerging technologies that will be instrumental in unraveling the

impact of the tumor microenvironment on resistance to therapies.
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1 Introduction

Breast cancer (BC) is the second leading cause of cancer death

in women. Data fromWHO (World Health Organization) reported

about 2.3 million new cases and about 685,000 deaths from BC

globally (1). Similarly, American Cancer Society’s projections for

BC incidence in the United States in 2023 (https://www.cancer.org/

cancer/breast-cancer/about/how-common-is-breast-cancer.html),

estimate about 297,790 new cases of invasive BC in women, about

55,720 new diagnosis of ductal carcinoma in situ (DCIS), and about

43,700 death from this disease. The same statistics indicate for 2023

more than 3.8 million BC survivors in the United States, and 7.8

million worldwide, including both patients currently being treated

and making this type of cancer the most prevalent worldwide. The

median age at the time of diagnosis is 62 years and a woman’s

lifetime risk of acquiring breast cancer in the United States is

around 13%, with incidence rates rising by 0.5% annually in

recent years. Currently, a woman’s chance of dying from BC is

around 2.5%, death rates have been decreased due to improved

therapeutic regimens, as well as earlier BC detection through

screening programs and increased awareness. However, in recent

years, the trend has marginally halted.

The breast cancer mass is composed not only by epithelial

cancer cells, but also by a plethora of heterogeneous populations

coming from the host, including endothelial cells, stromal

fibroblasts, and a variety of immune cells that form the so-called

tumor microenvironment (TME) (2, 3). The TME is a highly

complex biological community embedded in a composite matrix

of structural proteins constituting the extracellular matrix (ECM),

i n wh i c h immun e c e l l s ( i n c l ud i n g ma c r oph a g e s ,

polymorphonuclear cells, mast cells, natural killer cells, dendritic

cells (DCs), and T and B lymphocytes) and non-immune cells (such

as endothelial cells and stromal cells) establish subtle interactions

with cancer cells. This cellular cross-talk is based on the production

of specific soluble (growth factors and cytokines) and insoluble

(ECM proteins) molecules, and it determines the tumor’s

natural history.

BC comprises numerous subtypes that differ genetically,

pathologically, and clinically. Indeed, it is currently considered a

group of neoplasms originating from mammary gland epithelial

cells caused by a variety of genetic alterations, with different disease

courses, responses to treatments, and clinical outcomes. This was

best exemplified by next-generation sequencing studies depicting

comprehensive molecular BC portraits in Cancer Genome Atlas (4,

5) and identifying more than 1600 likely driver mutations in 93 BC

genes (6). BC can have distinct molecular profiles from one another,

leading to a complex heterogeneity of tumor cell subpopulations

within single tumors, between primary tumors and their metastasis,

or between independent metastasis, as a consequence of tumor

clonal evolution (7, 8). In addition to clonal evolution, tumor

heterogeneity can occur also at the level of cancer cell plasticity.

The capability of BC cells to reprogram their gene expression and

change their behavior when triggered by internal or external stimuli

coming from surrounding cells and secreted factors, provides

dynamic and context-dependent features to tumor heterogeneity

(9, 10). Moreover, heterogeneity is also modulated by the different
Frontiers in Oncology 02
composition of the TME, with different ratio between tumor-

infiltrating lymphocytes, myeloid cells, macrophages (3), with the

increased presence of cancer-associated fibroblasts (CAFs) (11) and

endothelial cells that controls cancer cell properties. The

heterogeneity in components of the BC mass can be either

observed between the different BC subtypes, known as inter-

tumor heterogeneity, or within the same tumors, known as intra-

tumor heterogeneity (12).

Therapeutic approaches are still currently largely based on

clinical and pathological BC features, mostly on the presence or

absence of targets like the hormone receptors or the Human

Epidermal growth factor Receptor 2 (HER2) (13), and they are

not yet tailored to individual patients. In particular, endocrine

therapy is expected for hormone-dependent BC patients, targeted

therapy with monoclonal antibodies for HER2-positive patients,

and chemotherapy for TNBC patients. However, the different

mechanisms that contribute to the inter- and intra-tumor

heterogeneity are responsible for tumor escape from

therapeutic interventions.

Drug resistance is among the major obstacles to reach a long-

term cure, and overcoming this problem is the biggest challenge in

BC research today. Indeed, the heterogeneous pattern of molecular

aberrations found in each cancer plays a crucial role in the

resistance to anticancer treatment (14–16). The goal of cancer

therapy is to target a population of cancer cells within a

particular host environment. The pharmacological properties of

the therapy, together with intrinsic and acquired molecular features

of cancer cells, controlled also by the TME components, dictate the

therapy’s efficacy. Unfortunately, despite the clinical management

of BC improving every day, the number of patients developing

drug-resistant tumors is still high (17). The resistance can be already

present before the treatment (innate) or appear after the treatment

administration (acquired) (18–20). The innate resistance is mainly

due to intrinsic tumor heterogeneity: in primary cancer one or more

subpopulations (e.g., Cancer Stem Cells) are resistant to the

treatments from the beginning; on the contrary, the acquired

resistance becomes evident after the therapy. In the clinical

setting, innate and acquired resistance may coexist, making the

long-term fight against cancer more complex.

In BC, standard chemotherapies and targeted therapies have

both been extensively correlated to the escape of tumor cells that

shape the clonal evolution of tumors, giving rise to drug-resistant

subclones (21–23). Moreover, a comparison of the genetic diversity

between pre- and post-treatment in tumor specimens indicates the

role of therapy in selectively expanding resistant cancer clones that

were initially present but at low frequency (14). In this context,

TME cells play an important role in mediating the drug response

and educating the cancer cells to become resistant to the therapy

through extensive molecular crosstalk that we will discuss below

(24–26).

We will first describe here what is currently known regarding

inter-tumor and intra-tumor heterogeneity and the impact of TME

on cancer progression and drug resistance. Moreover we will

discuss the up-to-date tools for studying these complex

interactions in preclinical models and in patient derived samples

in cancer progression and drug resistance. We will present
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emerging technologies, such as the spatial location of tumor

subclones and TME cells within their native spatial context. We

will show how the rapid growth of these techniques together with

the multi-omics conjoint analysis mode and deep learning network

architecture, promise to provide a more comprehensive

understanding of cell-to-cell variation within and between

individual tumors.
2 Heterogeneity in breast cancer

2.1 Inter-tumor heterogeneity

Surgeons and pathologists have long reported BC heterogeneity,

and its classification system has been continuously updated as

knowledge of cancer cell biology increases (27–29). To be

exploited as a prognostic factor (to estimate disease outcome of

newly diagnosed patients) and predictive factor (to predict response

to specific treatment), the classification system has been integrated

with information on patient treatments and survival. Classical

histopathologic evaluation distinguished preinvasive (in situ) and

invasive BC based on their morphology and structural organization,

classifying the vast majority of tumors as invasive ductal carcinoma

not otherwise specified (IDC NOS, 75%), invasive lobular

carcinoma (ILC, 15%) and other special subtypes of BC, rare and

significantly different in terms of prognosis and response to

treatment (30).

Immunohistopathologic classification, based on the expression/

absence of Estrogen Receptor (ER), Progesterone Receptor (PR), or

receptor tyrosine kinase HER2, allowed the definition of the major

BC subtypes (Figure 1). This classification has strong prognostic

and predictive significance, and it is critical together with grade and
Frontiers in Oncology 03
stage in the selection of targeted therapeutic options for every

patient (31). The expression of these biomarkers is highly variable

between tumors, with ER/PR positive cells ranging from 1 to 100

percent, where a frequency of stained cells higher than 1% in tumor

biopsy is considered a cutoff for ER/PR positivity. In addition, HER2

expression is heterogeneous, and its positivity is accompanied by a

score that integrates the percentage of positive cells, staining

intensity, and membrane distribution (31). The concomitant lack

of ER, PR, and HER2 defines Triple- Negative Breast Cancer

(TNBC), a subtype that comprises 15-20% of all BC, highly

prevalent in women younger than 40, Black, or with BRCA1 gene

mutation, and represents the most challenging BC to be treated.

Molecular characterization of BC, based on gene expression

profiling (32) and the definition of distinct transcriptional

signatures, provided intrinsic molecular subtypes that partially

recapitulated the histological classification (33): 1. luminal A (ER-

positive/PR-positive, enriched in genes regulated by ER signaling

pathway), 2. luminal B (ER-positive/PR-negative, HER2-positive or

negative, enriched in genes regulated by ER signaling pathway and

proliferation-associated genes), 3. HER2 enriched (HER2-positive,

HER2-related gene expression, ER and PR-positive, and ER and PR-

negative), 4. Basal-like (enrichment for genes expressed in basal

epithelial cells, 70% of them are TNBC), 5. Claudin low (stem-like

and Epithelial-to-Mesenchymal Transition-like signatures, mainly

TNBC) (34). Contributing to heterogeneity, several genes are

mutated, amplified, or deleted in various subtypes of BC and can

be considered as drivers, the top 10 most frequent being: TP53,

PIK3CA, MYC, CCND1, PTEN, ERBB2, ZNF703/FGFR1 locus,

GATA3, RB1 and MAP3K1 (6). BRCA1 and BRCA2 germline or

somatic inactivating mutations, as well as methylation of the

BRCA1 promoter, also represent driver mutations for BC, usually

associated with many genomic rearrangements. These different
FIGURE 1

Inter-tumoral and intra-tumoral heterogeneity. BC is subdivided in three major subtypes based with inter-tumoral heterogeneity, on the expression
of hormone receptor (HR-positive, HR+), HER2 receptor (HER2-positive, HER2+) or their complete absence (TNBC, basal like/claudin low). A strong
heterogeneity inside each of these subtypes (the Intra-Tumoral Heterogeneity) is caused mainly by clonal evolution, cell plasticity (in terms of
transition between Epithelial and Mesenchimal and/or Cancer Stem Cells and non-Cancer Stem Cells), and tumor microenvironment. Created with
BioRender.com.
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transforming events can originate in different cells of the mammary

gland, and the differentiation state of these cells-of-origin plays a

role in the determination of the tumor phenotype (31, 35, 36).

Moreover, alterations in the expression of BC key genes have been

reported as associated with epigenetic changes in DNA methylation

and histone modifications, providing a further source of

heterogeneity (30).

The metastatic progression of BC reflects its heterogeneous

nature, with metastases to regional lymph nodes and in different

distant organs such as bone, liver, lung, and brain. Association of

molecular BC subtypes and metastatic sites has been reported with

an increased frequency of brain metastases in the basal-like subtype,

while showing bone metastases in luminal A and B subtypes and

soft tissue metastases in the ER-negative subtype. It is well accepted

that metastases originate from subsets of cells within the primary

lesion, and the “seed and soil” model suggests that metastasizing

cells may find in different organs the local microenvironment (the

so-called niche) that favors their growth, generating secondary

lesions that are the results of complex context-dependent

interactions (30, 37).
2.2 Intra-tumor heterogeneity

Beside the differences found between tumors in different patients,

distinct tumor cell populations, with different molecular and

phenotypic profiles have been clearly described within the same

tumor specimen, adding a further level of complexity to BC biology.

Here we will focus on clonal evolution and cell plasticity as sources of

intra-tumor heterogeneity (Figure 1).

2.2.1 Genetic diversity of cell subpopulations:
clonal evolution

Tumor initiation and progression rely on stochastic mutational

events that ultimately lead mutated cells to acquire advantageous

properties in terms of cell proliferation, resistance to cell death, and

resistance to therapy. Tumors are generally thought to originate from

a single cell, in which genetic driver alterations are followed by the

acquisition of genomic instability, generating spontaneous mutations

that can confer competitive advantages and driving the evolution of

subclones with different functional features (6, 38). As described in (8,

10, 39), tumor subclones can derive from the selective pressure of

therapy and can acquire drug resistance through i) the selection of rare

pre-existing subclones that are able to expand or ii) the presence of

new genomic/transcriptomic/epigenetic aberrations contributing to

the drug-resistant phenotype (40). However, the resistance can be pre-

existing in a large majority of the cells, and therefore the therapy does

not impact the frequency of subclones (10). Relapsed or metastatic BC

largely share the vast majority of their genomic alterations with the

corresponding primary disease indicating pre-existing resistant clones.

However, many metastatic cancers also harbor additional mutations

that were previously undetected or are subclonal in the primary

disease (8, 41).

From clonal evolution emerges the concept of temporal

heterogeneity that indicates that tumor composition constantly
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changes over time. Tumors are the result of constantly ongoing

competition between subclones under the selective pressure exerted

by other clones, TME interactions, and therapies (42–44). The

spatial distribution of the different clones is an additional source

of heterogeneity; indeed, multiple biopsies from primary BC

showed a locally constrained expansion of subclones, implicating

their clonal evolutionary outgrowth and suggesting that sampling of

a particular tumor’s area can be misleading in its molecular

characterization (9).

2.2.2 Cell plasticity: cancer stem cells and EMT
The genetic information encoded in cells’ nuclei is far from

representing the only determinant of their complex behaviors;

indeed, regulation of gene expression in response to intrinsic

signaling pathways and extracellular stimuli from the TME

strongly dictate tumor cells’ phenotype.

For a long time, mammary tumors have been considered a

hierarchical model, with some rare cells capable of self-renewing,

the Cancer Stem Cells (CSCs), relatively quiescent and resistant to

treatments at the top of the hierarchy, and a vast majority rapidly

dividing non-CSCs (45). According to this model, only CSCs, due to

their intrinsic properties, can give origin to new tumors, including

metastasis and relapse, and by asymmetric division to all the

heterogeneous cell types found in a tumor. These non-CSCs are

rapidly proliferating but poorly tumorigenic, incapable of self-

renewal, and intended to differentiate (46). As in many other cancer

types, lineage tracing experiments revealed cell plasticity in BC,

showing that in the mouse mammary tumor virus-polyoma middle

tumor-antigen (MMTV-PyMT) mouse model of mammary tumor

(see below), some CSCs can disappear and new CSCs can form,

demonstrating that stem cell state is plastic and cells can dynamically

transit between CSCs and non-CSCs (47). Tumor cells of different

phenotypic states coexist and evolve within the same tumor leading to

cell subpopulations with different functional properties. Indeed, cell

subpopulations showing stem cell-, basal- or luminal-like features

isolated from BC cell lines are capable of generating functionally

competent cells of all three phenotypes in a stochastic manner.

Interestingly, under specific environmental stimuli, all three

subpopulations efficiently seeded tumors in xenografts models,

showing the tumorigenic phenotype classically ascribed to CSCs

(48). In BC, a CSC-like phenotype can be acquired by cancer cells

upon the activation of the so-called Epithelial-to-Mesenchymal

Transition (EMT), a transient developmental program that leads to

the de-differentiation of tumor cells with the acquisition of

mesenchymal features. During EMT, cell-cell contacts between

epithelial cells are lost, and cancer cells acquire a migratory and

invasive phenotype, which can be reverted to more epithelial states via

Mesenchymal-to-Epithelial Transition (MET). EMT is emerging as a

heterogeneous range of differentiation states rather than a binary

process; indeed, distinct intermediate states have been described in

BC, with similar tumor-initiating capabilities but different plasticity

and invasive potential (49, 50). The plasticity described between

various differentiation states is not exclusively intrinsic to cancer

cells but is also sustained by signaling from the TME surrounding

CSCs and is defined as the CSC niche. Interestingly, CSC themselves
frontiersin.org
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can reprogram stromal cells to further sustain their activity, not only

in the primary tumors but also in distant organs, eventually priming

them for metastatic colonization. Indeed, it has been shown that BC

circulating cells can reach nearly every organ, but tissue-specific

microenvironments play a differential role in their engraftment and

generation of metastases (51).
3 Cellular components of the
tumor microenvironment

We will briefly introduce the main cellular components of TME

cells, such as Type 2 Tumor-Associated Macrophages (M2-TAMs),

Myeloid-Derived Suppressor Cells (MDSCs), Cancer-associated

Fibroblasts (CAFs) and Tumor Endothelial Cells (TECs)

((Figures 1, 2) (3, 11, 52–54).
3.1 Type 2-tumor associated
macrophages M2-TAM

Tumor Associated Macrophages (TAMs) are an important and

abundant immune component in the BC microenvironment. They

mainly derive from circulating monocytes that reach the primary

site, influencing several aspects of the tumor progression (53).

Generally, TAMs have been classified as M1, with anti-tumor

activity, or M2, with tumor sustaining roles.
3.2 Myeloid-derived suppressor cells

MDSCs are immature heterogeneous cells belonging to the

myeloid family. Generally, they are subdivided into two main
Frontiers in Oncology 05
groups: polymorphonuclear (PMN) and monocytic (Mo) MDSC.

The first population is characterized by the CD11b+Ly-6G+Ly-

6Clow phenotype and the expression of high levels of arginase-1

(Arg-1). The second one is identified by the expression of

CD11b+Ly-6GlowLy-6Chi surface markers (55). As underlined by

their name, the main feature of MDSCs is immunosuppression. In

cancer, several soluble molecules, such as such as for example

granulocytic-colony stimulating factor (G-CSF), C-X-C

chemokine ligand (CXCL)2, CC-chemokine ligand (CCL)2,

CCL5, CXCL5, and CXCL12 secreted by the tumor cause the

block of myeloid differentiation, affecting their mobilization from

the bone marrow and infiltration into the primary and secondary

tumors (3). G-CSFAs underlined by their name, the main feature of

MDSCs is immunosuppression. We recently described the ability of

the adaptor protein p140Cap to counteract the mobilization and

intratumor accumulation of polymorphonuclear myeloid-derived

suppressive cells (PMN-MDSC), to prevent the establishment of a

tumor conducive immune environment (56). (Salemme et al., 2023

in press).
3.3 Cancer-associated fibroblasts

Within BC TME, CAFs are a highly abundant and

heterogeneous cell population belonging to the mesenchymal

lineage. CAFs actively contribute to cancer progression via the

production and remodeling of extracellular matrix components,

secreted factors, and exosomes, influencing tumor growth and

progression, angiogenesis, immune responses, and drug resistance

(57) both in primary and metastatic lesions. Several hypotheses co-

exist regarding CAFs’ origin, ranging from recruitment of bone

marrow or adipose tissue-derived mesenchymal stem cells, EMT of

tumor cells, activation of tissue-resident fibroblasts, to the trans-
FIGURE 2

TME cellular components and drug resistance. We summarize here some molecular mechanisms through which TME cells, in particular Type 2
Tumor-Associated Macrophages (M2-TAMs), Myeloid-Derived Suppressor Cells (MDSCs), Cancer-associated Fibroblasts (CAFs) and Tumor
Endothelial Cells (TECs) are able to induce drug resistance. Created with BioRender.com.
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differentiation of endothelial cells. CAFs are also heterogeneous

from the functional point of view, with a plethora of evidence

showing their pro-tumorigenic effects (58) and some suggesting

their tumor-constraining role in the early phases of tumorigenesis

(59, 60). Limitation to our understanding of CAFs’ biology in BC

derives from the lack of specific surface markers to identify and

functionally characterize this heterogeneous cell type. Morphology

is still the most consistent manner to distinguish CAFs within the

TME, as commonly used biomarkers, such as a-smooth muscle

actin (SMA), fibroblast-specific protein 1 (FSP-1/S100A4), or

fibroblast activation protein (FAP), are neither all-encompassing

nor completely specific, suggesting that CAFs include several

subtypes of cells.
3.4 Tumor endothelial cells

The endothelium is a key component of the TME. Endothelial

cells (ECs) play a role in regulating the exchanges between the

bloodstream and the tissues. In pathological conditions, such as

cancer, the TECs show a distinct phenotype at the molecular,

structural, and functional levels. In particular, the vasculature

becomes irregular, excessively fenestrated, and loose intercellular

junctions, contributing in this way also to tumor growth,

proliferation, dissemination, and metastasis (54).
4 TME mediated drug resistance

Overall, the cellular components of the TME engage in dynamic

and extensive cross-talks based on both cell-cell interactions and

paracrine signaling between each other and with the cancer cells,

ultimately contributing to drug resistance with many mechanisms,

some of which will be underlined below.
4.1 Type 2-tumor associated macrophages

TAMs protect cancer cells from drug attacks through the

secretion into TME of numerous soluble factors, including

enzymes, exosomes, interleukins, and chemokines. Shree et al.

found that macrophages expressing cathepsin B and S protected

BC cells against paclitaxel-induced cell death. Indeed, the combined

administration of paclitaxel and cathepsin inhibitors can effectively

enhance the therapeutic response (61).

Moreover, in BC, the treatment with cyclopamine, a known

Hedgehog pathway inhibitor, increases the infiltration of M2-TAMs

that, in turn, can limit the efficacy of chemotherapy by secreting

Interleukin-6 (IL-6) (62). Interestingly, neutralizing antibodies

directed against TAMs-derived Interleukin-10 (IL-10)

significantly enhance the sensitivity of BC cells due to the

reported relationship between the IL-10/STAT3/Bcl-2 signaling

pathway and the BC cell resistance to paclitaxel treatment (63).

As a positive feedback loop between M2-TAMs and BC cells,

the TAM-mediated secretion of the chemokine CCL2 contributes to

the activation of the PI3K/Akt/mTOR pathway in BC cells,
Frontiers in Oncology 06
increasing their resistance to the anti-estrogen tamoxifen

treatment. In contrast, tamoxifen-resistant BC cells secrete Tumor

Necrosis Factor alpha (TNF-a), activate mTORC1-FOXK1, and

promote TAMsM2 polarization that, in turn, secrete a high amount

of CCL2 (64).

Another example of how TAMs are able to induce drug

resistance is provided by Niu X. et al., reporting that the M2-

TAMs activate the EGFR/PI3K/Akt pathway and, consequently, the

sodium/glucose cotransporter 1 (SGLT1) expression to promote

tamoxifen resistance in ER-positive BC cells (65).

Moreover, M2-TAMs, by secreting a variety of cytokines such as

basic Fibroblast Growth Factor (bFGF), Interleukin-2 (IL-2), IL-6,

TNF-a, prostaglandin 2 (PGE2) can trigger increased aromatase

activity and estrogen production (66–68). TAMs could mediate

doxorubicin and paclitaxel chemotherapy resistance through the

secretion of high levels of IL-10 and activation of IL-10/IL-10

receptor/STAT3/Bcl-2 signaling pathway in TNBC cells (63, 69).

In addition, in BC, resistance to carboplatin chemotherapy is related

to M2-TAMs. Interestingly, in the study, the authors described that

macrophages in the bone marrow stroma contribute to BC cell

dormancy, leading to a CSC behavior. M2-TAMs and CSCs form

intercellular gap junction communication, which is responsible for

carboplatin resistance (70).

Several articles identify the M2-TAMs’ involvement also in

resistance against targeted therapy. Ahmed S. et al. showed that,

by secreting Interleukin-8 (IL-8), the TAMs activate Src/STAT3/

ERK1/2-mediated EGFR signaling in BC cells, contributing to the

resistance of HER2-positive BC to the small drug HER2 inhibitor

lapatinib (71). Hu et al. described another interesting mechanism in

which TAMs, after neoadjuvant treatment with the anti-HER2

humanized antibody trastuzumab, develop an immunosuppressive

phenotype, upregulating B7-H4, a member of the B7 family of T cell

costimulatory molecules, and causing the immune escape of HER2-

positive BC cells (72). This TAMs’ “evolution” leads to a poor

response after trastuzumab treatment.

The immunotherapy efficacy is also affected by the M2-TAMs

infiltration into the primary tumor, as reported by Ekiz HA. et al. In

particular, the expression of the receptor tyrosine kinase RON on

macrophages inhibits the anti-tumor immune response enhancing

the PDL-1 expression on TAMs as well as the Macrophage

stimulating protein (MSP)-Macrophage Stimulating-1 Receptor

(RON) signaling up-regulates the binding of CD80 and CTLA-4

to inhibit T cell activation, reducing the effectiveness of immune

checkpoint inhibitors in the BC treatment (73).

Overall, the interactions between tumor cells and TAMs that

promote TAMs to differentiate into immunosuppressive M2-

polarized macrophages under treatment pressure play a role in

drug resistance because M2-TAMs through the mechanisms above

reported (and not only) are able to reduce the treatment efficacy.
4.2 Myeloid-derived suppressor cells

As underlined by their name, the main feature of MDSCs is

immunosuppression; indeed, both PMN- and Mo-MDSCs are able

to inhibit different types of immune cells, negatively impacting the
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ability of the host immune system to counteract the tumor

progression and affecting the efficacy of the immunotherapy (3,

52, 74).

Thus, the MDSCs are the main obstacle to cancer

immunotherapies, and the inhibition of their expansion/

recruitment into the primary/secondary tumor sites may be a

benefic i a l s t r a t egy fo r improv ing the e ffic i ency o f

immunotherapeutic interventions.
4.3 Cancer-associated fibroblasts

In BC, different subsets of CAFs have been reported to

accumulate differently in distinct subtypes and exhibit specific

spatial distribution, with myofibroblastic subtypes accumulating

in TNBC able to confer a tumor-suppressive TME (75). In

particular, CAF secrete the C-X-C Motif Chemokine Ligand 12

CXCL12 attracting and retaining both myeloid (76) and CD4

+/CD25+ T cells in the tumor, ultimately promoting their

differentiation to Tregs immune cells and their survival via the

expression of T cell interacting proteins (58, 75). BC CAFs have

been characterized at the molecular level (77). Recent single-cell

analysis of 768 CAFs isolated from the genetically engineered

MMTV-PyMT preclinical model of BC reported three

transcriptionally diverse subpopulations of CAFs, with a spatial

separation of the CAF subclasses attributable to different origins,

including the perivascular niche, the mammary fat pad, and the

transformed epithelium. Notably, gene expression profiles of the

three distinct CAFs classes correlate to different functional

programs. Moreover, these profiles had independent prognostic

values as biomarkers for metastatic disease and biomarker-driven

development of drugs for precision targeting of CAFs.

The involvement of tumor stroma in BC prognosis is so evident

that stromal gene expression can predict disease progression and

clinical outcome independently of standard prognostic factors and

published molecular signatures (11, 78–81). Moreover, in ER-

negative BC, a stromal gene signature has been identified as

associated with resistance to anthracycline-based neoadjuvant

chemotherapy (82), with a predictive value for therapy response.

CAFs’ role in conferring drug resistance has been observed in

different tumors (83–86) and can occur via the release of

paracrine survival factors or by activating pathways in tumor cells

that ultimately lead to decreased chemosensitivity, such as the

expansion of therapy-resistant tumor-initiating cells (87) and the

enhanced expression of multidrug transporters (88). However,

reflecting the heterogeneity of CAFs subpopulations and

phenotypes, a few pieces of evidence indicating a role for tumor

stroma in sensitizing BC to treatment have been reported (89).

A mechanism through which CAFs confer resistance to therapy

is mediated by their role in the deposition and remodeling of

extracellular matrix components. In particular, the integrins’

ligands collagens and fibronectin have been shown to be

responsible for the decreased drug sensitivity of different BC cell

lines to several treatments (i.e., paclitaxel, vincristine chemotherapy,

tamoxifen, ionizing radiation, lapatinib, trastuzumab) through the

activation of PI3K/AKT and Ras/Raf/MEK/ERK1-2 pathways (89).
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Tumor cells themselves can reprogram CAFs to increase the

production of collagen, leading to the generation of a niche

favoring the acquisition of CSC phenotype, resistance to

chemotherapy (90), and driving tumor progression (91, 92).

Moreover, CAFs release various soluble factors which contribute

to the evasion of cancer cells from the cytotoxic effects of

chemotherapy. CAF-secreted HGF and its receptor c-Met have

been linked to increased resistance to EGFR and HER2 inhibitors in

BC cells from different subtypes (89). An emerging technology

based on microenvironment microarray (MEMA, consisting of

printed ECM protein supplemented with soluble ligands) allowed

to monitor of the growth of tyrosine-kinase inhibitors treated BC

cells in more than 2500 different combinations of 56 soluble

components and 46 matrix proteins of the TME (86). This study

showed that specific soluble factors, highly expressed in BC CAFs,

conferred lapatinib resistance to different BC cell types: in basal-like

HER2-positive cells, HGF-mediated MET activation, while in

luminal-like HER2-positive cells, neuregulin 1 beta (NRG1b), a
ligand for the tyrosine kinase HER3, favored HER2-HER3

heterodimerization (86).

CAFs play a crucial role in sustaining tumor inflammation,

engaging in intense cross-talk based on cytokines signaling with

both TME components and tumor cells (11, 93, 94). As extensively

reviewed by Dittmer and Leyh, cytokines such as the Tumor

Growth Factor beta (TGF-b) and IL-6 are secreted by CAFs and

contribute to drug resistance through both maintenances of CSCs

and induction of EMT, whose key transcription factors (i.e., Snail,

Twist) mediate the upregulation of transporters genes responsible

for multidrug resistance. IL-6, IL-8, and complement cascade have

been recently linked to CAF-mediated BC resistance to treatment.

Indeed, a new subset of CAF defined as CD10+/GPR77+ (a C5a

receptor) has been described as functionally relevant for stem cell

maintenance. Niches formed by these CAFs foster the survival of

CSCs, providing constant IL-6 and IL-8 secretion, which leads to

persistent NF-kB signaling in BC cells and protects them from

chemotherapy-induced cell death (88), regulating ABCG2

transporter expression.

A recent work exploited 3D co-cultures and microfluidic to

unravel the dynamics of four TME cell populations (cancer,

immune, endothelial cells, and fibroblasts) in the presence of the

antibody-based HER2 targeting therapy Trastuzumab. Cell

interactions have been visualized and quantified ex vivo, showing

that Trastuzumab promotes longer interactions between cancer and

immune cells that result in an anti-tumor ADCC (antibody-

dependent cell-mediated cytotoxicity) immune response, while

CAFs antagonized this effect (95) (see below). In line with this,

recent evidence obtained analyzing 2 cohorts of Trastuzumab

treated patients and a fully humanized immunocompetent ex vivo

model of HER2-positive BC identified a population of TGF-b-
activated CAFs specific of tumors resistant to Trastuzumab therapy

(96). This CAF population has immunosuppressive functions

associated with low IL-2 activity of functional relevance since

antibody-based FAP-mediated stromal delivery of IL-2 in non-

responsive tumors restored Trastuzumab efficacy (96). Another

explanation for CAF-mediated Trastuzumab resistance resides in

the newly identified subset of BC CAFs that express CD16 (also
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known as FcgRII, a cluster of differentiation molecule found on the

surface of natural killer cells, neutrophils, monocytes, macrophages,

and certain T cells) and which abundance in HER2-positive patients

is associated with poor prognosis and resistance to Trastuzumab.

The peculiar pro-tumor effect of CD16 in this CAF subpopulation

has been explained by the ability of Trastuzumab-CD16 interaction

to activate intracellular signaling involving the SYK-VAV2-RhoA-

ROCK-MLC2-MRTF-A pathway, that ultimately leads to elevated

contractile force, enhanced matrix production, and stiffness.

Targeting of a Rho family guanine nucleotide exchange factor,

VAV2, which is indispensable for the function of CD16 in

fibroblasts rather than leukocytes, reverses desmoplasia provoked

by CD16+ fibroblasts, revealing a role for the fibroblast FcgR in drug

resistance, and suggesting that VAV2 is a promising target to

enhance the effects of Trastuzumab treatment (97).
4.4 Tumor endothelial cells

Some evidence indicates an involvement of TECs in BC drug

resistance. Bovy N. et al. reported that BC patients receiving

neoadjuvant chemotherapy showed increased miR-503

production. Interestingly, the origin of this increased production

is ascribed to the exosome released by TECs, mediating an acquired

resistance (98). Moreover, the product of the NF-kB signaling

cascade TNF-a was upregulated in BC ECs after doxorubicin

chemotherapy treatment. In turn, TNF-a induces the

overexpression of CXCL1/2 in BC cells that, through its receptor

CXCCR-2, stimulates the CD11b+Gr1+ myeloid cells to secrete

S100A8/9. The activation of the TNF-a-CXCL1/2-S100A8/9
paracrine network mediates the pro-survival effect in BC cells and

drives chemoresistance by activating ERK1/2, p38 MAPK, and

p70S6K (99). In addition, as an alternative pathway, TEC cells,

through Notch signals, are able to promote BC stemness mediating

the acquisition of resistance to therapy (100). An important role of

TECs in drug resistance against immunotherapy has been

described. In particular, TECs are able to favor the recruitment of
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immunosuppressive cells as well as to inhibit primary tumor

infiltration by anti-tumor immune cells. The downregulation of

the endothelial E-selectin/P-selectin, ICAM-1, and VCAM-1

proteins results in the inhibition of T cell adhesion as well as the

altered chemokine expression such as the nitrosylation of CCL2 by

reactive nitrogen species blocks CD8+ T cell recruitment while

improving MDSCs recruitment. Moreover, the increased expression

on TECs of both PD-L1/2 and FasL expression induces T cell

exhaustion and apoptosis, respectively (101).
5 In vivo models to mimic
BC complexity

Nowadays, preclinical mouse models are widely used to

recapitulate the tumor complexity and how this complexity affects

drug response. Accurately choosing the best model is crucial to

translate the in vivo preclinical findings to patients (Figure 3).
5.1 Orthotopic injection in syngeneic
mouse models

In syngeneic mouse models, mouse-derived BC cells are

implanted orthotopically into immune-intact mice of the same

genetic background. These immune-competent models allow the

investigation of different aspects of the tumor-immune system

crosstalk. The high engraftment rate and the rapid tumor growth

make this model an attractive approach to studying BC biology and

drug response. Nevertheless, a recent study by Zhong et al. revealed

significant differences in the genomic, proteomic, and

immunohistochemistry profile of a panel of ten commonly used

syngeneic mouse models, including the most widely used BC

syngeneic models EMT-6 and 4T1, compared to the subtype-

matched human tumors (102). It is crucial to carefully consider

that syngeneic mouse models of BC do not form these cancers

spontaneously. Therefore, they do not recapitulate the complex
FIGURE 3

Pre-clinical models to recapitulate the TME. The common in vivo platforms that mimic different aspects of the BC TME are syngeneic Genetically
Engineered Mouse Models (GEMMs), Patient-Derived Xenografts, and Humanized mouse models. Among the in vitro models we describe spheroids
and organoids co-cultures with native or reconstituted TME components, engineered extracellular matrices (ECMs), and tumor-on-a-chip platforms.
Created with BioRender.com.
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interactions between tumor cells and the TME that characterize the

slow evolution of human neoplasms (103). Indeed, most cell lines

used for syngeneic BC models are derived from advanced tumors

that have already undergone immune selection in vivo. Another

aspect that should be thoughtfully evaluated when trying to

recapitulate the human TME is optimizing the experimental

design for the in vivo tumor growth of transplantable cell lines. In

particular, injection of different numbers of cancer cells could

detrimentally affect infiltrating leukocyte populations and

response to immune checkpoint blockade (104).
5.2 Genetically-engineered mouse models

Genetically-engineered mouse models (GEMMs) develop cancer

in an autochthonous manner upon overexpression of oncogenes or

deletion of tumor suppressor genes (often combined) in a tissue-

specific and temporally controlled manner (105). Compared to

syngeneic models, GEMMs better recapitulate the multistep

pathogenesis of BC and the crosstalk between neoplastic cells and

the TME. Moreover, the competent immune system of GEMMs

makes them uniquely suited for investigating cancer

immunotherapy approaches. The Mammary-specific Polyomavirus

Middle T antigen overexpressionmouse model (MMTV-PyMT) is the

most commonly used GEMM. Although theMiddle T oncogene is not

present in human tumors, its expression in the mammary epithelia

induces transformation and generation of multifocal tumors that

readily metastasize to the lungs without the need for additional

mutations in metastasizing cells (42, 106). Interestingly, this murine

model was used to demonstrate, via intercrossing with 27 different

mouse strains, that the genetic background determines the age of

tumor onset and the development of metastases, providing the first

evidence that genetic heterogeneity plays an important role in tumor

progression (42, 107).

According to a gene expression profile analysis, the PyMT tumor

closely resembles the aggressive forms of the luminal B subtype of

human BC, exhibiting loss of ER and PR expression and

overexpression of HER2 and cyclin D1 with the progression of the

disease (108). PyMT-derived BC tumors have provided significant

genetic and mechanistic insights into breast tumorigenesis, as well as

for preclinical testing of potential therapies (82). The K14cre BRCA1f/

f Tp53f/f mouse model spontaneously develops tumors mimicking the

human clinical features and genetics of basal-like/TNBC. This model

has recently helped to provide new understandings into the crosstalk

between cancer cells-intrinsic redox mechanisms and the formation of

protumorigenic TME (110, 111). Specifically, activation of the

transcription factor aryl hydrocarbon receptor by ROS promotes the

production of chemokines to attract monocytes and activate the

proangiogenic activity of macrophages (110).
5.3 Patient-derived and humanized
mouse models

Preclinical mouse models that more likely recapitulate the

intra-tumor and inter-tumor heterogeneity of human cancer are
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the patient-derived mouse models (PDXs). These models are

becoming the standard platforms used for preclinical drug

testing since they preserve the tumor architecture and the

relative proportion of cancer cells and stromal cells. In PDXs,

cancer tissue is implanted subcutaneously, orthotopically, or

under kidney capsules in immunodeficient mice and can be

serially transplanted. The ability to preserve the TMEs’

structure, the clonal genomic landscape, transcriptomic,

epigenomic and signaling pathway signatures of the original

parental tumors makes PDXs a valuable tool for precision

medicine, enabling drug testing and resistance studies,

assessment of tumor heterogeneity and evolution during disease

progression (112–114). Indeed, they are currently used for co-

clinical trials, whereby preclinical studies are conducted in

parallel with human trials. Using an animal “avatar” allows the

integration of valuable data in a real-time manner for each

patient, thus enabling a more precise stratification and

treatment customizat ion. Many research centers and

pharmaceutical companies have successfully developed and

characterized PDXs as models for the different clinical and

molecular subtypes of BC (115–119). More recently, an

extensive collection of PDXs recapitulating the deadliest forms

of BC has been generated (120). This platform includes drug-

resistant, metastatic, endocrine-resistant estrogen ER+ and

HER2-positive tumors, many of which are primary-metastatic

pairs or longitudinal collections from an individual patient over

time. Importantly, these PDXs reflect the intrinsic heterogeneity

of the subtypes in terms of mutational signatures, paving the way

for new therapeutic opportunities for these aggressive tumors

(120). The significant disadvantage of PDXs in faithfully

representing the TME is the lack of human immune system

components, such as circulating T and B cells.
5.4 Humanized mouse models for cancer

Humanized mouse models have been developed to overcome

species-specific differences in the genetics and immune system

between mice and humans (121). Humanized mouse models of

cancer are immunodeficient mice reconst i tuted with

representative subsets of human immune cells and engrafted

with human tumors (122). The engraftment of specific cell

populations in mice will influence the relative abundance of

different human immune cell types. Therefore, it is crucial to

select the most appropriate humanized mouse platform to

specifically address the experimental question and gain

translational potential. Injection of human Peripheral Blood

Mononuclear Cells (PBMCs) into immunodeficient SCID mice

is the most straightforward method for developing humanized

models, namely the Human Peripheral Blood Leukocyte (Hu-

PBL) SCID mice. Hu-PBL-SCID mice are characterized by

limited numbers of engrafted human myeloid cells and B cells.

Conversely, CD4+ and CD8+ subsets of CD3+ T cells are

abundant, and their expansion eventually develops an acute

immune response against mouse MHC molecules, leading to

xenogeneic Graft-Versus-Host Disease (GVHD) and restricting
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the experimental window for these animals to a few weeks (123).

To overcome GVHD, genes encoding mouse MHC class I and II

molecules have been inactivated, enabling a more extended time

window for conducting experiments. Iizuka and coworkers took

advantage of a human PBMC-transplanted MHC class I- and

class II–deficient NOG mice engrafted with BC cell lines to test

the cytotoxic activity of a bispecific antibody targeting human

CD3 and B7-H4, considered to be a negative regulator of immune

responses. B7-H4 is overexpressed in many human cancers,

suggesting its potential role as a cancer therapy target. This

therapeutic strategy resulted in enhanced tumor infiltration of

activated CD8+ T cells and reduced tumor growth. Of note,

because B7-H4 is highly expressed independently of HER2 or

PD-L1 expression in breast cancers, they propose the use of this

therapeutic agent for PD-L1−B7-H4-expressing tumors or anti-

HER2 antibody nonresponsive breast tumors (124). An adequate

immune reconstitution is achieved with the human Stem

Repopulating Cell (Hu-SRC) mouse model, which results from

the engraftment of immunodeficient mice with human CD34+

Hematopoietic Stem and Progenitor Cells (HSPCs). Hu-SRC

engrafted with PDX or Cell line-Derived Xenografts (CDX)

have been used to study the human immune system–tumor

crosstalk, evaluate biomarkers, and the preclinical activity of

immuno-oncology agents (125–127). For instance, Scherer and

coworkers recently developed and characterized an immune-

humanized PDX model of estrogen-independent endocrine-

resistant ER-positive metastatic BC that harbors a naturally

occurring ESR1 mutation (126). Mutant ESR1 promotes

endocrine resistance since it renders the ER protein

constitutively active and less dependent on estrogen for its

function, limiting treatment options. Importantly, ESR1 mutant

tumors gain basal-like features associated with increased immune

activat ion, implicat ing potentia l immune therapeutic

vulnerabilities that should be deeply investigated using immune

humanized preclinical models (128). The limitations of this

model are mainly the requirement of pre-experimental sub-

lethal g-irradiation to enable engraftment and the limited

maturation of human T cells in the murine thymus (121). To

promote the development of T cells in a human thymus-like

environment, researchers have co-implanted human CD34+

HSPCs and autologous fetal thymus tissue into SCID mice,

generating a mouse model named BLT (bone marrow - liver -

thymus) (129).
6 In vitro models to mimic
BC complexity

In vitro systems have a major advantage over mouse models: the

ability to precisely control the experimental settings (Figure 3).

Indeed, in vitro platforms can recapitulate different aspects of the

TME, including the cellular compartments, physical properties, and

chemical cues (130). Compared to cell lines grown in conventional

2D culture, 3D systems enable the integration of these elements,
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capturing more faithfully the intra-tumor heterogeneity and

allowing the study of tumor-stromal interactions and drug

responses. Here, the commonly used and emerging platforms to

study the BC TME are presented (Figure 3).
6.1 Spheroids

To investigate the role of the TME in 3D conditions, researchers

have developed a variety of protocols for the generation of

spheroids, cellular entities cultured as free-floating aggregates,

with or without the addition of extracellular matrix and growth

factors (131). Mammospheres are BC spheroid cultures enriched in

progenitor cells that differentiate along multiple lineages. To this

concern, mammospheres derived from freshly isolated BC samples

exhibit CSC-like properties and multiple drug resistances (132). L.

Hamm and coworkers established a high throughput tumor

spheroid microprinting technology to produce homogeneously-

sized spheroids to model the interaction of CAFs and TNBC cells

and examine drug resistance (133). In another work, the 3D

bioprint technology was leveraged to manufacture a 3D structure

containing BC cells in the core and adipose-derived mesenchymal

stem/stromal cells (ADMSCs) in the edges. The authors proposed

the use of this 3D model for chemoresistance studies (134).
6.2 Patient-derived organoids

Tumor organoids are complex 3D structures that originate from

dissociated tumor tissues or circulating tumor cells that are

embedded into the bio-mimetic matrices with growth factor

supplements to encourage a self-organizing process (135).

Compared to spheroids, they better resemble the original tissue

both histologically and genetically Patient-derived organoids

(PDOs) largely retain the parental tumor heterogeneity, therefore

providing the enormous potential to understand resistance

mechanisms and predict response to treatment in individual

patients (136, 137). Organoids can be cryopreserved and

expanded for long-term culture. Of note, banks of human BC

organoids are currently available (120, 138). In particular, the

collection of nine sets of matched human BC tumors, PDXs, and

PDOs generated by Guillen and coworkers represent a promising

platform for drug screening treatment-resistant tumors (120).

Primary PDOs contain subsets of stromal cells, including

fibroblast and immune cells; however, these cells are gradually

lost during the long-term culture (139). Nevertheless, researchers

have grown organoids with native or reconstituted TME elements

(140). Recently, Rivas and coworkers developed an ex vivo 3D

model of HER2-positive BC that recapitulates patients’ response to

treatment, consisting of fluorescent human HER2-positive BC cells

co-cultured with patient-derived fibroblasts and naïve primary

immune cells collected from the peripheral blood of healthy

donors (96).
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6.3 Mimicking the ECM

Organoids are commonly cultured in hydrogels enriched in

extracts of ECM proteins. Among these, the basement membrane

extract Matrigel is considered the gold standard for supporting

tumor organoids’ growth. However, Matrigel typically suffers from

inherent compositional variation and lot-to-lot variability, which

can confound analysis and affect the model’s reproducibility (141).

As an alternative biomaterial, decellularized breast tumors or

Patient-Derived Scaffolds (PDSs) have been used to better

recapitulate the native tumor ecosystem. In recent work, BC PDSs

were recellularized with cancer cell lines as platforms for drug

testing, revealing that MCF7 cells enhanced their resistance against

the conventional chemotherapy drugs 5‐fluorouracil, doxorubicin,

and paclitaxel in comparison to 2D cultures (142). These data

suggest that PDSs could be exploited to examine the effects of the

ECM on cancer drug responses in the clinical setting and may

represent a significant step forward in the field of personalized

medicine (143). The MEMA platform is used to interrogate the

impact of thousands of microenvironmental proteins on the

phenotype of different cancer cells, including primary cells and

cell lines (144). By printing specific and defined combinations of

functional proteins into well plates, it was possible to study

microenvironment effects on anti-HER2 tyrosine-kinase inhibitors

response (86).
6.4 Tumor-on-a-chip

Recent advances in tissue engineering technology allow the

development of organ-on-a-chip devices in which cancer cells are

grown in a dynamic environment consisting of microchannels that

can be perfused at tailorable flow rates. The ability to finely control

mechanical stress, shear flow, and concentration gradients makes the

organ-on-a-chip technology particularly useful for studying

angiogenesis, metastasis, mechanotransduction pathways, and

cancer cell behavior under shear stress (145). However, several on-

chip models were designed to mimic tumor-stromal cell interactions.

For example, Aung and coworkers, taking advantage of a BC-on-a-

chip model consisting of a heterogeneous mix of cells and noncellular

elements, investigated the role of tumor-associated hypoxia and the

BC-immune cell interaction on T lymphocyte recruitment (146). BC-

on-a-chip platforms could represent powerful ex vivo platforms to

study, within immunocompetent settings, drug responses that depend

on the TME (95). Moreover, it is possible to integrate these platforms

with advanced live cell microscopy technologies and automated image

analysis to capture the behavior of single cells in the tumor ecosystem

and the cell-cell interactions (95).
7 Emerging technologies to study BC
complexity

Tumor profiling is a powerful tool to dissect key molecular

signatures of cancer cells and deeply investigate the sources of

diseases. The role of large landmark projects, such as The Cancer
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Genome Atlas Program (TCGA (4)) and Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC (147)), and

of specific analysis strategies, such as GSEA (148, 149), have allowed

scientists to begin to approach the complexity of the tumor system

in question, enabling accurate and precise stratification of patients.

Subsequent meta-analyses based on separate BC and TME data

showed that very different results emerge from the bulk

transcriptomic data (150).

Single-cell analysis refers to the investigation of individual cells

to obtain genomic, transcriptomic, or multi-omics information at

the single-cell level. The data obtained with these technologies have

a much higher resolution than conventional bulk sequencing

methods in terms of the number of cells. Taking advantage of

these emerging technologies, including spatial analysis and artificial

intelligence, it is possible to identify comprehensive biomarkers

allowing more precise patient stratification, signal resistance

identification as it begins, and relapse prediction (151, 152)

(Figure 4) A brief description of emerging technologies for

unravelling breast cancer complexity is included in Table 1.
7.1 Single-cell RNA sequencing

The important next step in data generation and subsequent

analysis occurred with single-cell experiments, leading to the

opportunity of analyzing the transcriptome at the single-cell level

for millions of cells in a single study. Single-cell RNA sequencing

enables scientists to characterize, discriminate, and identify each

cell at the transcriptome level, leading to the finding of rare but

functionally significant cell sub-populations (153).

Today, a growing number of modified and enhanced single-cell

RNA sequencing technologies have been designed to bring

important adjustments and improvements in sample collection,

single-cell capture, barcoded reverse transcription, complementary

DNA (cDNA) amplification, library preparation, sequencing, and

refined bioinformatics analysis. Most importantly, the cost has been

drastically decreased, while throughput and automation have both

been greatly boosted (153).

In single-cell RNA sequencing, single cells are isolated from

tissue samples, captured, and then combined with a bead inside a

nanoscale droplet (each bead contains unique molecular

identifiers). Barcoding, cDNA amplification, and the library

preparation steps follow this stage. In order to present and

categorize the landscape of gene expression in cells of a

heterogeneous population, snapshot data from single-cell RNA

sequencing can be examined (153, 154).

Single-cell sequencing technologies’ most recent technical and

computational advancements have greatly expanded researchers’

toolkits for studying TME directly from patient tissues. BC is just

one of the many tumor types for which single-cell RNA sequencing

has been extensively employed to depict the intra-tumoral immune

landscape (155).

For instance, despite the immune checkpoint blockade (ICB)

therapy having produced impressive and long-lasting clinical

responses in a limited number of cancer patients, its overall

response rate has been low, and many patients with initial
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TABLE 1 Brief description of emerging technologies for unravelling breast cancer complexity.

Technologies Description Advantages Limits References

Single-cell
sequencing

Genomic, transcriptomic, or other-omics information at the
single-cell level.

•Higher resolution compared to
conventional bulk sequencing

methods in terms of the number
of cells.

•Heterogeneity dissected at
single-cell resolution.

•Analysis of gene expression
changes upon drug. treatment.

•Relatively low cost.
•Can be integrated with other

omics approaches.

•Useful as starting point
for the other emerging
techniques, taken alone
is not much informative.

(153, 154)

Single -omic

Large-scale studies which refer to the systematic identification
and quantification of the overall components of a specific cell

domain (such as transcriptome, proteome, metabolome,
lipidome…).

•Quite a complete overview on a
single aspect of a sample of cells.
•Well-assessed and validated

methods.
•At the level of Transcriptome is

feasible also in patients but
expensive, while for proteomic,
metabolomic and lipidomic is

still far from patients.

•Single-omics data offer
only a limited amount of
information on biological
mechanisms restricted to

a single field.

(155–157)

Multi -omics
Combination and integration of several methods and data sets

of different -omic groups during the biological analysis.

•A potent integrative approach,
which provides a high amount of
information, allowing to connect
a genotype to a phenotype for a

full cellular readout.
•Depending on the type of

analysis and data sets employed
it can lead to the direct measure
of causes and consequences of

biological phenotypes.

•Highly expensive. (158, 159)

Spatial biology

Combination of different techniques of sequencing and imaging
(such as MERFISH/SeqFISH, CyCIF,IMC…) in order to

examine the types of cells, their distribution throughout the
tissue, the patterns of biomarker co-expression, and the
organization and cross-talk in their microenvironment.

•Learn new biological insights by
analyzing cells in their

environment.

•Highly expensive.
•Need of specialized

facilities.
•Complexity of data

analysis.

(160–171)
F
rontiers in Oncolog
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FIGURE 4

Flow diagram of good practice guidelines for spatial analysis users. Schematic representation of complexity and interconnectivity of single-cell
multi-omics data in spatial analysis, from experimental data to scientific report to address a biological/clinical investigation. These techniques benefit
from an integration with relative online available data and from an extensive computational analysis in order to increase the accuracy, reproducibility
and reliability of the obtained results in a specific research field.
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responses have refractory disease or have developed acquired

resistance. The observed variability in ICB efficacy has been

associated with a number of TME-related factors, through single-

cell analysis, specifically with markers of the intra-tumoral T cell

states, such as overall T cell infiltration, activation, and exhaustion.

In fact, the enhancement of single-cell transcriptomic tools applied

to TME studies improved our knowledge of tumor complexity,

adaptability, and its intricate cross-interaction between various cell

types within the TME (20, 155, 156).

With a similar approach, Gambardella et al. studied tumor

heterogeneity and drug response, providing a transcriptional

analysis of several BC lines. They demonstrated that the

expression of clinically important markers could be detected

through single-cell transcriptomics. Furthermore, they showed

that different cells within the same BC cell line express

heterogeneously relevant well-known BC receptors, including PR

and HER2. Additionally, they observed dynamic plasticity as a

consequence of drug responsiveness (157). In particular, they

developed a bioinformatics tool that, starting from single-cell

profiles, leads to drug response prediction at the single-cell level,

firstly detecting expression-based biomarkers of drug sensitivity for

several drugs, then correlating them with drug potency in different

cellular lines. To experimentally validate their bioinformatic tool,

they applied it to a BC cell line, the MDA-MB-361, identifying and

sorting two cell subpopulations for HER2 receptor expression.

Based on their computational prediction, they tested in both cell

types representative drugs, obtaining results in line with the

expected outcome (157).

Moreover, in line with these findings, the massive parallel

sequencing and other omics technologies have demonstrated the

level of heterogeneity in TNBCs, underling the potential impact of

TME in therapeutic responses (152).
7.2 Multi-omics

Researchers can now study and define the TME at single-cell

resolution thanks to the advent of multimodal omics technologies,

which presents an unprecedented opportunity to comprehend the

heterogeneous complexity of the TME (158). In fact, an efficient

way to connect the patients’ genetic background with a condition or

trait is through genome-wide association studies, which connect

genotype to phenotype, and multi-omics provides a potent

integrative approach, as it consists of the combination of data sets

of different omic groups during the biological analysis. Indeed,

multi-omics data must be integrated to increase the accuracy of

predicting the biological relationship between genotype and

phenotype because single-omics data only offer a limited amount

of information on biological mechanisms (132, 172). Moreover, a

good practice is to further integrate the obtained multi-omics data

with online available raw and processed data in the same field in

order to generate reproducible and reliable results through different

open datasets (173) (Figure 4).

There is an emerging need to construct integrated multi-omics

data databases, such as the Multi-Omics Breast Cancer Database

(MOBCdb) proposed by Xie and colleagues (174). It is an available
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library that incorporates clinical, genomic, transcriptomic,

epigenomic, and treatment response data of many BC subtypes.

By using several search methods, users of MOBCdb can receive

information on single nucleotide variation, gene expression,

microRNA expression, DNA methylation, and particular

pharmacological responses. With this online resource, users have

access to integrated multi-omics data of various BC subtypes,

allowing the identification of possible new biomarkers for

personalized medicine (174). Another example comes from the

work by Fan et al., which provides insights into the molecular

pathways behind BC prognosis, building a dataset of gene-

interaction networks in BC and describing genes linked to long-

term BC survival (132). Indeed, emerging evidence attributes multi-

omics data integration to a prognostic value; for instance, Nguyen

and colleagues identified two therapeutically relevant molecular

subgroups of BC with subgroup-specific characteristics employing

multi-omics datasets. These approaches hold the promise for the

creation of specific diagnostic tests and personalized

medicine (175).

As TME components have been shown to play a crucial role in

the occurrence, growth, and metastasis of BC, the development of

single-cell omics largely addressed the limitations of purely

biological assays and allowed us to comprehend the changes in

cell populations, metabolic profiles, and immunological state of the

TME throughout tumor progression. Now there is a better

understanding of tumor complexity thanks to the ongoing

development of integrated tools for single-cell omics that not only

detect cell heterogeneity but also expand analysis for transcription-

based cell cloning aberration (176), cell traceability (177), cell-to-

cell interaction (178, 179), rare cell resolution (180), and disease

process simulation (181). The recent single-cell omics results have

mapped out breast TME with fairly high accuracy, sorting stromal

cells and immune cells into functional populations and significantly

employing the TME components for clinical diagnosis and targeted

treatment intervention (182).

In particular, TNBC heterogeneity is characterized by genomic

instability and elevated mutation rates, with an impact on immune

surveillance (183). Therefore, to pinpoint the therapeutic approach

for TNBC, specific driver genes, and pathways should be

determined for better patient subtyping and target therapy (184).

The most frequently altered genes, the genetic profile most likely

contributing to the malignancies’ development, and the genes

associated with metastatic TNBC can all be identified through

recent advancements in whole genome sequencing. Emerging

targeted therapies may enhance therapeutic effects by overcoming

drug resistance and promoting patients’ survival (183, 184). For

instance, Xiao et al. performed an extensive immunogenomic

analysis to investigate the heterogeneity and prognostic

importance of the TNBC microenvironment using a big original

multi-omics dataset of TNBC. They also investigated TNBC’s

potential immunological escape pathways. This trial is a step in

the direction of individualized immunotherapy for TNBC patients,

as TME phenotypes were classified in different clusters and

validated with a significant prognostic efficacy (185).

Furthermore, Xie et al. focused their study on FOXO family

genes and their correlation with TME in several cancers, including
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breast. As they examined the relationship between the FOXOs score

and a variety of drugs, they showed that the FOXOs score might

reflect patients’ responses to different therapies. They discovered

that the majority of drugs’ IC50 values in pan-cancer, but

particularly in BC, were negatively linked with the FOXOs score,

corroborating the theory that a high FOXOs score would make a

patient more susceptible to chemotherapy and targeted

medications. Collectively, their data show that the FOXOs score

has a substantial correlation with the TME and may be used as a

biomarker to predict the effectiveness of various treatments,

including immunotherapy (159).
7.3 Spatial biology and phenotyping

The study of a variety of cellular landscapes across different

dimensions is known as spatial biology. Studies of spatial biology

examine the types of cells, their distribution throughout the tissue,

the patterns of biomarker co-expression, and the organization and

interactions that compose the TME, allowing to learn new

biological insights by analyzing cells in their environment

(Figure 5) (160–162).

Methods for spatial molecular profiling have dramatically

increased recently and differ in resolution, scale, and molecular

multiplexing, with an improvement of spatial methods, in particular

for transcriptomic, proteomic, and metabolomic (160). Different

length scales are used by methods to capture a variety of data: from

averages across cells spanning thousands of micrometers in spot-

based procedures like spatial transcriptomics to single-molecule

resolution in methods like MERFISH or SeqFISH. Consequently, a

variety of questions can be addressed using the most suitable

technique. The number of molecular features acquired varies

between methods as well, ranging from tens in Fluorescence In
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Situ Hybridization (FISH), Cyclic Immunofluorescence (CyCIF),

and Imaging Mass Cytometry (IMC) to hundreds or thousands in

specialized probe-based spatial transcriptomics methods

(MERFISH or SeqFISH), imaging mass spectrometry, and tens of

thousands in spot-based spatial transcriptomics, including Slide-

Seq, Visium and High-Definition Spatial Transcriptomics (HDST)

(160, 161, 163). To detect and quantify biomarkers expression as

well as to visualize how cells interact and organize throughout the

entire tissue landscape, true spatial biology investigations exploit

whole-slide imaging at single-cell resolution. This method is also

known as spatial phenotyping.

An interesting use of this new technological branch is the one

applied to the study of TME. Studies utilizing spatial multi-omics

methods have demonstrated the complexity of the TME

heterogeneity and showed that, in addition to the cellular

composition, the relative localizations and interactions with

different cell types in the TME significantly impact tumor

formation. In fact, a better understanding of spatial interactions

led to the redefinition of tumor subtypes and the shifting of research

attention to tumor-immune interaction units, to the discovery of

additional cell types, and of the changes in the TME compartment

throughout cancer progression (160, 164). For example, in BC, the

different subclones that contribute to the heterogeneity of the

cancer mass were found to map in distinct regions (165, 166),

with a specific architecture suggestive of a deep role of the TME,

where CAFs show great heterogeneity and spatial separation (167).

Liu et al. provide a novel insight into the cellular architecture of BC

and potential therapeutic strategies, revealing differential

association with patient survival and therapeutic response

through single-cell and spatially resolved analysis (165). The

analysis of two BC samples showed that malignant subclones map

to regions of stromal cell enrichment, indicating that, even if only

two BC were analyzed in detail, the diverse abundance of genetically
FIGURE 5

Overview of spatial tumor profiling applications. Schematic representation of the main opportunity offered by spatial techniques in the molecular
biology field with possible applications to personalized medicine. Created with BioRender.com.
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and spatially distinct subclones is differently associated with patient

survival and therapeutic response (165). This evidence suggests that

it might be worth investigating how the heterogeneous architecture

of cancer cells impact therapy response.

Moreover, the treatment of several cancers has been transformed

by ICB. However, unfortunately, most patients only have minimal

benefit from ICB, even after an initial response. Multi-omics TME

assessment is indeed required for precision immune oncology in order

to discover distinctive prognostic features and proactively personalize

combinatorial treatments. Through accurate epitope colocalization,

multiplexed single-cell spatially resolved tissue analysis enables the

discernment of cellular functional states from their spatial

organization, and emerging markers evaluated in multiplexed spatial

protein analysis may help determine prognostic and predictive

patterns in BC (168).

In particular, the work from Tietscher and colleagues suggests

that single-cell data used for a comprehensive, spatially resolved,

immune-focused analysis of TME could be useful for patient

stratification to select them for ICB therapy. Indeed, they have

defined two unique immunological microenvironments in breast

tumors; each one may influence the response to immunotherapy,

considering tumor antigen presentation, T cell phenotypes,

cytotoxic potential, cellular interaction, and spatial organization.

As the primary marker currently utilized to stratify patients for

immune checkpoint treatment in BC is PD-L1, their findings imply

that PD-1, CXCL13, and MHC-I, possibly in combination with

previously identified T cell exhaustion markers like LAG-3 and

TIM-329, are more effective at differentiating immunological TME

that may show to be differentially receptive to this treatment.

Therefore, these variables may be helpful in selecting individuals

for prospective clinical trials of ICB, along with other patient

stratification techniques (169).

Further work by Kulasinghe et al. provides new insights into the

TNBC TME and its association with chemotherapeutic response

and patient survival (170). In particular, spatial studies on TNBC

samples revealed differentially expressed proteins and protein

signatures within tumors and stroma compartments that associate

with prognosis (overall survival) and treatment response. Following

this approach, they were effectively able to stratify patients by their

response to therapy (170).

Overall, recent evidence indicates that cancer study in a spatial

context will improve the current knowledge of how the complex

cross-talk between tumor and surrounding microenvironment

results in the malignant subclones’ growth and progression, with

an impact on survival and resistance to therapies (Figure 5) (171).
8 Mathematical modelling and
artificial intelligence in unraveling
BC complexity

8.1 Mathematical modelling

As well known, the origins of BC heterogeneity lie in both the

stochastic nature of biological phenomena and their nonlinear
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dynamics. In these contexts, small changes in the complex

interact ions among different genetic , epigenetic , and

environmental factors can have dramatically different effects on

the evolution of the biological system. This strong dependence on

probabilistic mechanisms and initial conditions makes it extremely

difficult to fully understand the mechanisms and implications of

heterogeneity in breast cancer.

To address this challenge, mathematical models have been

developed and widely used to study and understand the complex

processes underlying breast cancer heterogeneity. These models are

based on mathematical equations, both deterministic or

probabilistic, and simulations that allow researchers to investigate

how different factors interact with one another and how they

contribute to the development of the disease.

Examples of such models date back to at least a decade ago

(48), with studies connecting different axes of phenotypic

plasticity to explain the emergence of heterogeneity and drug

resistance (186). These models have shown how genetic and

epigenetic changes can lead to the development of different

breast cancer subtypes, and how these subtypes can respond

differently to different treatments.

Additionally, mathematical models have shown how a single

axis of plasticity can give rise to extensive diversity upon mutations

(187). This has important implications for the development of new

treatments, as it suggests that targeting specific mutations may not

be sufficient to treat breast cancer effectively. Instead, a more

comprehensive understanding of the underlying mechanisms and

interactions is needed to develop targeted and effective treatments.

In particular (48), and (187) highlight how the heterogeneity of

breast cancer rests on a stochastic and combinatorial nature of the

genetic and epigenetic elements that could interact together.

Finally, an additional dimension of non-linearity was

highlighted in two different types of epithelial-mesenchymal

transition (EMT) dynamics: one hysteretic and one non-hysteretic

(188). In particular, specific gene patterns characterized by

significant clinical prognosis value were highlighted in the EMT

hysteretic dynamics.

These modeling efforts have been demonstrated to be useful for

implementing therapeutic targets in vivo, allowing researchers

refine their understanding of the mechanisms underlying breast

cancer, to test the efficacy of new treatments and improve the

effectiveness of therapies (189).

In summary, mathematical models have proven to be valuable

tools for understanding the complexity of breast cancer

heterogeneity while providing predictive tools on how biological

systems may respond to specific perturbations.

Integration with increasingly precise and specific data, derived,

for example, from scRNA_Seq techniques, will allow these models

to help shed light on the mechanisms underlying the disease and

develop more effective treatments for patients. The availability of

increasingly rich and detailed databases has enabled the application

of powerful and versatile Machine Learning/Artificial Intelligence

systems to model and attempt to decipher additional levels of non-

linear characters of this heterogeneity as discussed in the

next paragraph.
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8.2 Artificial intelligence in BC and TME

The use of Artificial Intelligence (AI) and Machine Learning

(ML) is becoming widespread in the field of biology and life sciences

(190). The existence of large databases, such as the one derived from

the omics study in TME, necessitates the use of advanced tools and

techniques. These new AI tools are rapidly becoming important for

researchers (Figure 4) by leveraging the connection of large

amounts of data and their elaboration, simplify the discovery of

non-linear correlation in complex datasets. ML can be classified

into three main categories: supervised learning, unsupervised

learning, and reinforcement learning, where supervised learning

involves learning from labelled data to make predictions,

unsupervised learning involves finding patterns in unlabeled data,

and reinforcement learning involve learning from interactions with

an environment to maximize a reward signal (191).

Clustering is a popular omics analysis method that is used to

find regularity and patterns in the data to help differentiate cancer

molecular subtypes. One example of clustering is the assessment of

immune cell infiltration levels using neural network techniques.

This method can be used to classify patients based on the degree of

immune cell infiltration in lung cancer (192).

Another important method is feature selection with Principal

Component Analysis (PCA). This technique helps to reduce the

dimensionality of the dataset, thus reducing the number of features.

This can be done using different machine learning algorithms, such

as Random Forest, that can be very useful in identifying genes that

present a correlation with different types of cancer (193).

Feature transformation is another emerging approach that is

still under development. This method aims to merge and modify

existing features to create new ones. This can be helpful in merging

different types of data, such as in vitro and clinical data. Feature

transformation is an important approach to consider as it can

uncover new insights and relationships in the data that are not

immediately apparent.

A practical application of advanced machine learning to the

study of TME in BC is DeepSpaCE (Deep learning model for Spatial

gene Clusters and Expression), where advanced deep learning

techniques have been applied in the context of spatial

transcriptomics. In the paper (194), the authors applied a

Convolutional Neural Network (CNN) to obtain a system able to

reproduce with super-resolution the spatial gene expression from

TME samples and then predict gene-expression levels in tissue

sections within consecutive sections. This method enables users to

derive hidden histological characters via spatial transcriptome and

gene annotations, leading to accelerated biological discoveries

without additional experiments. Indeed, they confirmed its

performance using the spatial-transcriptome profiles and

immunohistochemistry images of consecutive human breast

cancer tissue sections. For example, the predicted expression

patterns of SPARC, an invasion marker, highlighted a small

tumor-invasion region that was difficult to identify using raw

spatial transcriptome data alone because of a lack of

measurements. They further developed semi-supervised

DeepSpaCE using unlabeled histology images and increased the
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imputation accuracy of consecutive sections, enhancing

applicability for a small sample size.

In particular, recent developments in ML algorithms have

shown that deep learning (DL)-based models can recognize non-

linear relationships in the data, along with linear relationships, from

highly dimensional data derived from different -omics (195). In the

context of omics and data analysis, ML, such as DL, can be used to

identify patterns and correlations in the data that would be difficult

or impossible to detect by humans (196, 197).

Finally, ML algorithms can also be applied to a well-curated

scRNA-seq dataset of breast cancer patients. In this study (198), the

authors developed an advanced ML model to identify cell lineage

and subtypes and to automatically obtain the lowest unique

molecular identifiers (UMI) threshold, reducing the time required

for these analyses and simplifying the entire procedure.
9 Conclusions and perspectives

The complexity of BC, mainly due to the intra- and inter-tumor

heterogeneity present in both primary tumors and metastatic

lesions, represents a great obstacle in unraveling drug resistance

mechanisms. In this Review, we have addressed the various

determinants that contribute to BC heterogeneity, highlighting

the primary role of the tumor microenvironment. We have deeply

discussed the recent advances in uncovering BC heterogeneity,

thanks to the ability to dissect the genetic diversity of cell

subpopulations, the cancer cell plasticity, and the complexity of

TME. We have also discussed the impact of tumor heterogeneity

and TME on tumor progression and drug resistance, with the idea

that the new molecular insights that are emerging need to be

translated into improved therapeutics (Figure 4).

How to overcome cancer heterogeneity to improve cancer

therapy remains a major challenge. Actually, mortality in BC is

generally due to resistance to successfully treating metastatic

disease. Metastases spawned via dissemination in different organs

evolve in entities that are distinct from each other and from the

primary tumor. Therefore, they need to be handled as independent

tumors, with ongoing epigenetic evolution combined with the

contribution of the specific TME in the metastatic site. Recent

results also strongly put forward that dissimilar TME can affect the

metastatic sites, leading to selection for survival and outgrowth of

genetically different metastatic variants.

We describe the developments in single-cell RNA sequencing

and in multi-omics technology on clinical samples, which are

already providing insights into the phylogenetic correlation of

primary tumors and metastases at the level of somatic tumor

genetics, and that can reveal fundamental mechanisms of the

metastatic process. However, deeper insights are needed to study

variations that occur at the epigenetic level of matched primary and

metastatic tumors of larger numbers of patient and experimental

tissue samples. An emerging field to take into account is also the

importance of the personal genetic landscape of each patient, which

can strongly modify tumor and metastasis biology, their response to

TME, and their drug responsiveness.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1170264
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Salemme et al. 10.3389/fonc.2023.1170264
The in vivo preclinical models remain fundamental to study

processes that cannot be readily inquired in humans and also to

allow the study of the natural history of disease progression in the

untreated state. However, since these studies are costly and labor-

intensive, the bright use of mouse models should take into account

the features that differ from human BC. Preclinical models,

therefore, offer an important vehicle for generating and testing

hypotheses that can then be validated across the broader human

population. Where possible, models should include an intact

immune system, the humanized mice being important platforms

to overcome species-specific differences in the genetics and immune

system between mice and humans. Moreover, attempts should be

made to incorporate genetic heterogeneity in study designs by using

several diverse models on different genetic backgrounds. On the

other hand, in vitro organoid models derived from GEMMs or

human clinical material could offer new perspectives in terms of

rapid functional screening of genes and pathways that can influence

tumor progression and of availability of material to analyze

epigenomics and chromatin landscape evolution that is currently

difficult to do using only human biopsies.

In conclusion, overcoming cancer heterogeneity to date remains

a difficult task. In terms of TME, a better understanding of its

complex organization, spatial heterogeneity, and changes in

metastatic progression under the pressure of therapy is crucial for

patient survival. The available targets are few and this field still

needs further research. In the meantime, it’s worth mentioning that

using a combination of drugs can increase therapy response, likely

due to the synergistic effect of the drugs in selectively killing cancer

cells and creating a more restrictive environment. In addition, high-

resolution sequencing techniques prior to therapy and longitudinal

sampling can provide a good source of information to delineate the

optimal therapeutic strategy.

As shown by Navarro Ocon et al., new nanomedicine-based

therapies have been proposed to alleviate immunosuppression in

tumors and reduce the emergence of tumor heterogeneity in BC

patients. Indeed, nanomedicine can improve the delivery, retention,

and release of immunostimulatory agents in targeted cells and

tumor tissues in numerous malignancies, including breast cancer

(199). Moreover, the goal of finding new ways to revert a hostile

TME by immune-activating cytokines is frequently hampered by

the severe toxicity associated with their systemic administration.

Very recent works in mouse models of glioblastoma (GBM) (200),

melanoma, and mammary tumors (201) demonstrated a TME

reprogramming toward anti-tumor activity upon targeted delivery

of IL-12 via different approaches. In particular, Birocchi et al.

describe a lentiviral vector-based platform that can engineer

hematopoietic stem cells ex vivo with the aim of releasing, via

their tumor-infiltrating monocyte/macrophage progeny, Interferon

alpha (IFN-a) or IL-12 at the tumor site with spatial and temporal
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selectivity. In a preclinical syngeneic GBM mouse model, the

inducible release of IFN-a within the TME achieved strong

tumor inhibition up to eradication and outperformed systemic

treatment with the recombinant protein in terms of efficacy,

tolerability, and specificity. Single-cell RNA sequencing of the

tumor immune infiltrates revealed reprogramming of the immune

microenvironment toward a proinflammatory and antitumoral

state, demonstrating a potential therapeutic approach for GBM

(200) and paving the way to treat with locally delivered IL-12 other

solid tumors, including melanoma and BC.
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