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LncRNAs and regulated cell
death in tumor cells

Yingying Wu, Xiaoling Wen, Yufang Xia,
Xiao Yu and Yanhui Lou*

Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
Regulated Cell Death (RCD) is a mode of cell death that occurs through drug or

genetic intervention. The regulation of RCDs is one of the significant reasons for

the long survival time of tumor cells and poor prognosis of patients. Long non-

coding RNAs (lncRNAs) which are involved in the regulation of tumor biological

processes, including RCDs occurring on tumor cells, are closely related to tumor

progression. In this review, we describe the mechanisms of eight different RCDs

which contain apoptosis, necroptosis, pyroptosis, NETosis, entosis, ferroptosis,

autosis and cuproptosis. Meanwhile, their respective roles in the tumor are

aggregated. In addition, we outline the literature that is related to the

regulatory relationships between lncRNAs and RCDs in tumor cells, which is

expected to provide new ideas for tumor diagnosis and treatment.
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1 Introduction

Cell death is a common physiological process that can be found in nearly all organisms.

According to the Nomenclature Committee on Cell Death in 2018, cell death can be

divided into Accidental Cell Death (ACD) and Regulated Cell Death (RCD) (1). ACD is an

inevitable cell death due to physical breakdown of the plasma membrane caused by drastic

external stimuli, such as chemical, physical, or mechanical stimuli, and this process cannot

be biologically controlled (2). Differently, cell death regulated by drug or genetic

intervention is named RCD that relies on precise signaling cascades and intracellular

molecular mechanisms (3). RCDs can be divided into apoptosis, necroptosis, lysosome-

dependent cell death (LDCD), pyroptosis, NETotic cell death (NETosis), immunogenic cell

death (ICD), entotic cell death (entosis), PARP-1-dependent cell death (parthanatos),

ferroptosis, autophagy-dependent cell death (ADCD/autosis), oxeiptosis, pH-dependent

cell death (alkaliptosis), cuproptosis etc. (1). Usually, one signal transduction pathway can

regulate a variety of RCDs, and a certain RCD can be regulated by multiple signal pathways.

Therefore, blocking some important molecules on the signal transduction pathways can

inhibit the occurrence of cell death (4).

Cancer is a major global public health problem. Due to cancer incidence and mortality

increasing rapidly all over the world, cancer becomes one of the leading causes of death

worldwide (5). Cancer has a high mortality rate and poor prognosis, which is closely related
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to the unlimited proliferation ability of tumor cells (6). The ability

of tumor cells to proliferate indefinitely depends on the inhibition of

cell death in the cells, such as imbalance of pro-apoptotic versus

anti-apoptotic systems, and loss of p53 gene function (7, 8).

Long non-coding RNAs (lncRNAs) are RNAs of more than 200

nucleotides in length that lack open reading frames and do not

encode proteins. In recent years, the role of lncRNAs in regulating

biological functions and cellular activities has gradually been

discovered. The mechanisms of lncRNAs have been reported

which include interaction with DNA, RNA, and proteins (9–11).

LncRNAs are involved in the development and progression of many

diseases, especially the progression of tumors. LncRNAs play

complex and precise regulatory roles in biological processes such

as tumor cell proliferation, migration, invasion and drug resistance,

etc. (12, 13). More than one study has reported that multiple RCDs

occurring within tumor cells can be regulated mediated by lncRNAs

(14, 15).

Recently, many scholars have conducted in-depth studies on the

generation mechanisms of lncRNAs in regulating different RCDs in

tumor cells and have made remarkable progress. These have certain

guiding significance for the diagnosis and treatment of tumors. In

this paper, we focus on the regulatory relationships between

apoptosis, necroptosis, pyroptosis, NETosis, entosis, ferroptosis,

autosis, cuproptosis and lncRNAs in tumor cells in recent years,

hoping to provide new ideas for tumor diagnosis and treatment.
2 Apoptosis

2.1 Mechanisms of apoptosis

Apoptosis plays a significant role in tissue differentiation, organ

development and aging, and clearance of injured or mutant cells.

When cells undergo apoptosis, their morphology is mainly

characterized by cell contraction, chromatin condensation,

apoptotic body formation, and DNA fragmentation (1). The core

mechanism of apoptosis is the activation of caspases, which are a

large class of cysteine proteases that act in a cascade manner, of

which caspase-3, -7, -8, and -9 play important roles in apoptosis

(16). The two common activation pathways of apoptosis are the

intrinsic pathway (also called mitochondrial pathway) and extrinsic

pathway (also called death receptor pathway).

The initiation of the intrinsic pathway is caused by internal

stimulus such as oxidative stress and genetic damage in cells. The

intrinsic pathway is closely regulated by B cell lymphoma-2 (Bcl-2)

family proteins, which are divided into two major classes: pro-

apoptotic proteins (e.g., Bax, Bak, and Bid) and anti-apoptotic

proteins (e.g., Bcl-2, Bcl-xL, and Bcl-w) (17). When the balance of

Bcl-2 family proteins is broken, Bax and Bak form an opening in the

outer mitochondrial membrane and induce changes in

mitochondrial outer membrane permeability (MOMP) (18).

Cytochrome c (Cytc) enters the cytoplasm through the

mitochondrial intermembrane space and assists the pro-apoptotic

factor, apoptotic protease activating factor 1 (APAF-1), in

functioning to form apoptotic bodies (19). At the same time,

when MOMP events occur in cells, caspase-9 binds to APAF-1
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and is activated. And then caspase-9 further activates downstream

caspase-3, ultimately triggering apoptosis (20).

The extrinsic pathway is activated by the combined action of

different tumor necrosis factor (TNF) family members, including

Fas receptor, tumor necrosis factor receptor (TNFR), TNF-related

apoptosis-inducing ligand receptor (TRAILR), which are initiated

by binding with their corresponding ligands. After binding to each

other, these factors become type II membrane proteins with

homotrimeric structures. They cleave the cell membrane to form

soluble forms which can increase cell membrane permeability (21).

The death-inducing signaling complex (DISC) is formed

intracellularly, which includes the Fas-associated death domain

(FADD), TNFR1-associated death domain (TRADD), and pro-

caspase-8, after binding to the TNF family ligands. DISC can

activate caspase-8 intracellularly and promote its maturation,

which in turn activates downstream caspase-3 and caspase-7 and

triggers apoptosis (22). In hepatocytes and fibroblasts, caspase-8

activates the pro-apoptotic protein Bid, and then induces Cytc

release from mitochondria which leads to the initiation of the

intrinsic pathway (23).

There is also a less common apoptosis within cells: the

endoplasmic reticulum (ER) stress-induced apoptosis. When

events occur in cells, such as hypoxia, oxidative damage, Ca2+

imbalance and viral infection, misfolded or unfolded proteins in

the ER will increase, allowing the stress signal of the ER to be

transmitted from the ER membrane to the nucleus, and promoting

apoptosis (24). There are three apoptotic pathways induced by ER

stress: IRE1/ASK1/JNK pathway, caspase-12 kinase pathway, and

CHOP/GADD153 pathway. All three pathways play important

roles in ER stress-induced apoptosis (25). (Figure 1)
2.2 Apoptosis in tumor cells

In tumor cells, the imbalance between the regulation of

apoptosis and anti-apoptosis system often results in its

antagonistic effects, promoting and suppressing cancer, and thus

affecting cells survival. Anti-apoptosis, as an acquired feature of

tumor cells, gives tumor cells survival advantages and promotes

tumor evolution, growth and drug resistance (26). It has been

reported that under apoptotic stress, cells release the growth

factor FGF2, which rapidly up-regulates Bcl-2 and triggers the

Bcl-2 dependent MEK-ERK pathway, thereby protecting

neighboring cells from apoptosis (27). Similarly, apoptotic cells

attract macrophages and polarize them into a regeneration-

activated state to become tumor-associated macrophages (TAMs)

in tumors. TAMs have the potential to promote tumor evolution

and progression through multiple pathways. TAMs release anti-

inflammatory mediators such as TGF-b1, IL-10 and PGE2, which

promote tumor growth, activate angiogenesis, and promote

tumor invasion and metastasis through proliferative signaling,

regeneration and repair responses, and anti-tumor immune

silencing of TAMs (28). For example, in aggressive non-Hodgkin

lymphoma, apoptotic cells highly express genes encoding growth

factors and angiogenesis, which can provide nutrients to the tumor

microenvironment and promote TAMs accumulation, tumor
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growth and angiogenesis (29). However, how the balance between

apoptosis and anti-apoptosis in tumor cells is disrupted, and how

more elaborate mechanisms are regulated has yet to be elucidated,

which require us to conduct further studies.
2.3 Apoptosis and lncRNAs in tumors

LncRNAs can induce or inhibit apoptosis of tumor cells by

regulating key molecules of apoptosis. One study has suggested that

lncRNAMNX1-AS1 up-regulates the expression of Bcl-2 by sponging

miR-6785-5p in gastric cancer cells, which can promote proliferation,

migration and invasion, and then inhibits apoptosis (14). LncRNA

PCAT1 interacts with dyskerin pseudouridine synthase-1 (DKC1) to

activate the vascular endothelial growth factor (VEGF)/protein kinase

B (AKT)/Bcl-2/caspase-9 pathway and promote the transcription and

translation of Bcl-2, contributing to enhancing abilities in proliferation

and invasion of non-small cell lung cancer cells and inhibiting

apoptosis of tumor cells (30). Subsequent experiments revealed that

lncRNA H19, LINC00662, lncRNA SNHG6, and LINC01087 can act

on different miRNAs in cholangiocarcinoma, colon cancer, gastric

cancer and glioma, respectively. However, these all lncRNAs cause

increased expression level of Bcl-2, inhibition of apoptosis, and tumor

progression ultimately (31–34). Among them, lncRNA H19 plays a

role in sepsis, myocardial injury, and vascular smooth muscle injury in

addition to acting in cholangiocarcinoma (35–37). LncRNAs can

induce or inhibit apoptosis by regulating apoptosis-related molecules

in the caspase family. Experiments performed by Pan et al. indicated

that lncRNA PDPK2P can interact with 1,3-phosphoinositide‐

dependent protein kinase-1 (PDK1) and regulate the development of

hepatocellular carcinoma through PDK1/AKT/caspase-3 signaling
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pathway (38). PDK1 plays a crucial part in regulating the

phosphorylation of AKT, which is involved in apoptosis thereby

changing the states of cells (39). LncRNA PDPK2P promotes AKT

phosphorylation and inhibits the expression of caspase-3 by

interacting with PDK1, and then inhibits the apoptotic pathway of

hepatocellular carcinoma cells and promotes proliferation of tumor

cells (38).

LncRNAs are also involved in the regulation of the extrinsic

pathway of apoptosis. It has been reported that lncRNA MAGI2-

AS3 can inhibit breast cancer cell growth by increasing the

expression of Fas and Fas ligand and promoting apoptosis (40).

LncRNA MAGI2-AS3 inhibits tumor cell proliferation in

hepatocellular carcinoma cells as well (41). LncRNA MAGI2-AS3

binds to miR-374b-5p and inhibits its expression, thereby playing a

positive regulation part on genitalia family member-1 (SMG1), and

increasing the expression levels of SMG1, which in turn plays a

tumor suppressor role. SMG1 is a potential tumor suppressor that

can antagonize mammalian target of rapamycin (mTOR) to

regulate leukemia cell growth in acute myeloid leukemia (42).

However, conclusions from studies regarding the effect of SMG1

on apoptosis are not entirely consistent. In response to Smac

mimetic compounds (SMC), an experimental small molecule,

SMG1 inhibited SMC-mediated TNF-a-induced apoptosis to

protect cells. Downregulation of SMG1 expression promotes

SMC-mediated TNF-a-induced caspase-8 activation (43).

Wang et al. revealed that when osteosarcoma cells undergo ER

stress, LINC00629 expression is increased by activating the KLF4/

LAMA4 pathway, and ER stress-induced apoptosis is inhibited to

promote tumorigenesis and metastasis (44). Taken together,

lncRNAs play a significant role in the regulation of various

pathways of apoptosis. (Table 1)
FIGURE 1

Mechanisms of apoptosis and necroptosis.
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TABLE 1 Regulation of RCDs by different lncRNAs in tumor cells.

LncRNA Pathway Function RCDs Disease Reference

LncRNA MNX1-AS1 LncRNA MNX1-AS1/miR-6785-5p/Bcl-2 Axis Inhibition Apoptosis Gastric Cancer (14)

LncRNA PCAT1 LncRNA PCAT1/DKC1/VEGF/AKT/Bcl-2/caspase-9
Pathway

Inhibition Apoptosis Non-small Cell Lung Cancer (30)

LncRNA H19 LncRNA H19/miR-612/Bcl-2 Axis Inhibition Apoptosis Cholangiocarcinoma (31)

LINC00662 LINC00662/miR-340-5p/ERK Signaling Pathway Inhibition Apoptosis Colon Cancer (32)

LncRNA SNHG6 LncRNA SNHG6/ miR-1297/Bcl-2 Axis Inhibition Apoptosis Gastric Cancer (33)

LINC01087 LINC01087/miR-384/Bcl-2 Axis Inhibition Apoptosis Glioma (34)

LncRNA PDPK2P LncRNA PDPK2P/ PDK1/AKT/caspase-3 Signaling
Pathway

Inhibition Apoptosis Hepatocellular Carcinoma (38)

LncRNA MAGI2-AS3 LncRNA MAGI2-AS3/Fas/FasL Signaling Pathway Promotion Apoptosis Breast Cancer (40)

LncRNA MAGI2-AS3 LncRNA MAGI2-AS3/miR-374b-5p/Smg1 Signaling
Pathway

Promotion Apoptosis Hepatocellular Carcinoma (41)

LncRNA MAGI2-AS3 LncRNA MAGI2-AS3/miR-374b-5p/SMG1/mTOR
Pathway

Promotion Apoptosis Acute Myeloid Leukemia (42)

LINC00629 LINC00629/KLF4/LAMA4 Pathway Inhibition Apoptosis Osteosarcoma (44)

LncRNA H19 LncRNA H19/miR-675/p-MLKL/RIP3 Axis Promotion Necroptosis Liver Cancer (56)

LncRNA PVT1 LncRNA PVT1/ZBP1/EZH2 Axis Promotion Necroptosis Hepatocellular Carcinoma (57)

LncRNA NEAT1 LncRNA NEAT1/miR-296-5p/GSDMD Axis Inhibition Pyroptosis Glioma (76)

LncRNA NEAT1 LncRNA NEAT1/miR-448/GSDME Axis Inhibition Pyroptosis Colorectal Cancer (77)

LncRNA XIST LncRNA XIST/miR-335/NLRP3 Axis Promotion Pyroptosis Non-small Cell Lung Cancer (79)

LncRNA ADAMTS9-
AS2

LncRNA ADAMTS9-AS2/miR-223-3p/NLRP3 Axis Promotion Pyroptosis Gastric Cancer (80)

LncRNA AP LncRNA AP/NADPH/GSH/ROS Axis Promotion NETosis Colorectal Cancer (106)

LncRNA OR3A4 LncRNA OR3A4/NADPH/ROS Axis Inhibition NETosis Osteosarcoma (107)

LncRNA KTN1-AS1 LncRNA KTN1-AS1/KTN1/Rho GTPase Axis Inhibition Entosis Bladder Cancer (122)

LncRNA NORAD LncRNA NORAD/miR-125a-3p/RhoA Axis Inhibition Entosis Pancreatic Cancer (124)

LncRNA NORAD LncRNA NORAD/CXCR4/RhoA/ROCK Signaling
Pathways

Inhibition Entosis Lung Cancer (125)

LncRNA NORAD LncRNA NORAD/Rho GTPase Pathway Inhibition Entosis BreastCancer (126)

LncRNA PVT1 LncRNA PVT1/miR-214-3p/GPX4 Axis Inhibition Ferroptosis Liver Cancer (141)

LncRNA GABPB1-AS1 LncRNA GABPB1-AS1/GABPB1/ROS Axis Promotion Ferroptosis Hepatocellular Carcinoma (143)

LncRNA NEAT1 LncRNA NEAT1/SLCA11/ROS Axis Promotion Ferroptosis Non-small Cell Lung Cancer (135)

LncRNA H19 LncRNA H19/miR-19b-3p/FTH1 Axis Promotion Ferroptosis Lung Cancer (15)

LncRNA H19 LncRNA H19/mTOR Signaling Pathway Inhibition Autosis Glioma (162)

LncRNA H19 LncRNA H19/mTORC1/4E-BP1 Axis Promotion Autosis Pituitary Cancer (163)

LncRNA CASC9 LncRNA CASC9/AKT/mTOR Pathway Inhibition Autosis Oral Squamous Cell Carcinoma (164)

LncRNA HAGLROS LncRNA HAGLROS/miR-100-5p/mTOR Signaling
Pathway

Inhibition Autosis Gastric Cancer (165)

LncRNA EPIC1 LncRNA EPIC1/Myc/AKT-mTORC1 Signaling Pathway Inhibition Autosis Breast Cancer and Ovarian
Cancer

(166)

LncRNA MIR31HG LncRNA MIR31HG/miR-193a-3p/TNFRSF21 Axis Inhibition Cuproptosis Lung Adenocarcinoma (184)

LncRNA XIST LncRNA XIST/miR-92b-3p/MTF1 Axis Promotion Cuproptosis Breast Cancer (188)
F
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3 Necroptosis

3.1 Mechanisms of necroptosis

Necroptosis belongs to a nonapoptotic cell death independent

of the caspase pathway. Necroptosis differs from necrosis.

Necroptosis can be induced by stimulation with superfamily

members of TNFR, pattern recognition receptor (PRR), T cell

receptor, and chemotherapeutic agents; but necrosis is considered

an “accidental” death that is not regulated by molecular events (45).

Necroptosis is morphologically similar to necrosis, which is

characterized by loss of integrity of the plasma membrane,

swelling of the cytoplasm and organelles, chromosome

condensation, and release of cellular contents (46).

Necroptosis is associated with activation of receptor-interacting

protein-1 (RIP1), receptor-interacting protein-3 (RIP3), and mixed

lineage kinase domain-like protein (MLKL), of which RIP3 and

MLKL are considered biomarkers of necroptosis (47). Upon binding

of TNF and TNFR1 on cell membranes, the complex I is formed,

including receptor-interacting protein kinase 1 (RIPK1), TRADD,

cellular inhibitor of apoptosis-1/2 (cIAP1/2), TNFR-related factor

2/5 (TRAF2/5), which in turn stimulates different signaling

pathways and induces cell death (48). When RIPK1 is

polyubiquitinated by cIAP1/2, the nuclear factor-kB (NF-kB)
pathway is activated and cells survival predominate. However, when

RIPK1 is deubiquitinated by cylindromatosis (CYLD), the NF-kB
pathway is suppressed, forming the complex II consisting of RIPK1,

TRADD, caspase-8, and FADD. Caspase-8 inactivates RIPK1 and

RIPK3 by proteolytic cleavage, which leads to apoptosis. When

caspase-8 is inhibited by cell FLICE-like inhibitory protein (cFLIP),

RIPK3 phosphorylates its substrate, MLKL, to form p-MLKL. P-

MLKL oligomerizes and translocates to the plasma membrane,

ultimately leading to necroptosis (49). Toll-like receptor 3/4 (TLR3/

TLR4) on the cell membrane can also initiate RIPK3-mediated

necroptosis after lipopolysaccharide (LPS) stimulation (50).

Furthermore, there is an inside-out death pathway in cells.

Z-DNA-binding protein-1 (ZBP1/DAI/DLM-1) in the nucleus is a

nucleic acid sensor containing a RIP homotypic interaction motif

(RHIM). Upon viral stimulation, RHIM can recruit and activate

RIPK3, thereby initiating RIPK3- andMLKL-dependent necroptosis,

which contributes to nuclear envelope breakdown, DNA leakage into

the cytoplasm, and cell death eventually (51). (Figure 1)
3.2 Necroptosis in tumor cells

In tumors, foci of cell death (i.e., tumor necrosis) are often

present due to conditions such as hypoxia and nutritional

deficiencies (46). Necroptosis plays a very complex part in tumor

cells. For one thing, down-regulating expression of necrosis factors

allow tumor cells to resist necroptosis. Necroptosis-induced

inflammatory reactions can also promote tumorigenesis and

metastasis. For another, necroptosis can trigger strong immune

responses in tumor cells, induce cell death, and then protect against

tumor progression (45). MLKL, RIPK1, and RIPK3 have all been

revealed to be down-regulated in breast cancer, rendering tumors
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is evaded and cancer-promoting effects are exerted (52).

Accumulation of large amounts of RIPK3 in intestinal epithelial

cells brings about severe necroptosis and promoting colon

carcinogenesis (53). When tumor cells are glucose deficient, ZBP1

and its downstream pathways will be activated. RIPK3 expression

increases, and necroptosis of tumor cells is induced, but cell

metastasis is promoted as well (54). Additionally, in ovarian

cancer, RIP1 has a dual role, both promoting cancer cell

proliferation and reducing tumor resistance of drug thereby

promoting the anticancer effects of chemotherapeutic agents such

as cisplatin (55). However, in tumor cells, it still is an open question

how the carcinogenic and anticancer effects of these necrosis factors

are coordinated, and the mechanism behind it needs further study.
3.3 Necroptosis and lncRNAs in tumors

LncRNAs can regulate necroptosis through different pathways

in tumor cells and improve or reduce tumor proliferation, invasion

and migration. LncRNA H19 is the upstream of miR-675, and the

expression levels of the two are positively correlated. MiR-675 can

downregulate FADD and inhibit apoptosis; however, miR-675 has

the ability to induce significant upregulation in p-MLKL and RIP3,

which triggers necroptosis (56). A study collectively suggested that

upregulation of lncRNA PVT1 is associated with elevated

expression of necroptosis-related proteins, such as ZBP1, RIPK3,

and p-MLKL (57). Enhancer of Zeste Homolog-2 (EZH2)

negatively correlates with lncRNA PVT1 in hepatocellular

carcinoma cells, and lncRNA PVT1 can increase methylation of

the ZBP1 promoter and promote necroptosis by combining with

DNA methyltransferase-1 through EZH2 (57, 58). However, in

studies on breast cancer, promoter hypermethylation is found to

lead to downregulation of ZBP1 expression, which promoted

growth and migration of tumor cells (59).

Necroptosis-associated lncRNAs perform increasingly vital

regulatory roles in many different tumors. In a key study by Luo

et al., LINC00460, LINC02773, CHROMR, LINC01094, FLNB-AS1,

ITFG1-AS1, LASTR, and LINC01638 are analyzed in TCGA

database, which are highly expressed in gastric adenocarcinoma

cells, while REPIN1-AS1, UBL7-AS1, PINK1-AS, and PVT1 are

lowly expressed. These lncRNAs together regulate necroptosis in

gastric adenocarcinoma cells (60). LncRNAs such as AP003392.3,

AL928654.1, AL133371.2, AC007991.4, AC011445.1, and

LINC00996 have been associated with necroptosis in ovarian

cancer studies (61).
4 Pyroptosis

4.1 Mechanisms of pyroptosis

Pyroptosis is an inflammatory cell death mediated by the

gasdermin superfamily that is triggered by the activation of

certain inflammasomes and presents a form of DNA damage

distinct from apoptosis (62). When pyroptosis occurs, the
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cytomorphology shows the following changes: the cell membrane

forms transmembrane pores under inflammatory stimulation, and

the cell permeability increases, resulting in cell swelling and osmotic

lysis, intact nuclei but fragmented chromatin, and the release of

intracellular pro-inflammatory components (63).

The gasdermin superfamily consists of gasdermin A/B/C/D/E

(GSDMA/B/C/D/E) and DFNB59, of which GSDMD is of great

importance to induce pyroptosis (64). Most inflammasomes

contain three parts: nucleotide-binding domain, leucine-rich-

repeat-containing receptors (NLRs), pro-caspase-1 and apoptosis-

associated speck-like protein containing a caspase activation and

recruitment domain (ASC) which consists of pyrin domain (PYD)

and caspase activation and recruitment domain (CARD). The

NLRP3 inflammasome, containing PYD, as an important

cytosolic PRR, is activated upon TLR recognition of stimuli such

as infection. NLRP3 recruits ASC via PYD-PYD domain

interaction, and then activates pro-caspase-1 via CARD-CARD

domain interaction (65). Activated caspase-1 can stimulate the

activation of pro-IL-1b, pro-IL-18 and GSDMD cleavage

N-terminal domain of GSDMD (N-GSDMD) appears

oligomerization, inducing the formation of holes on the cell

membrane, promoting cell membrane rupture, while releasing

inflammatory factors such as IL-1b and IL-18, which leads to the

occurrence of pyroptosis ultimately (66). It has been documented

that caspase-8 can be activated by inflammasomes in caspase-1-

deficient cells (67). Pyroptosis mediated by caspase-8 is

independent of GSDMD, which belongs to a delayed, alternative

form of cell death involving inflammasomes, accompanied by the

release of massive mature IL-1 which has a protective function in

the host (67).

There is also a pyroptosis pathway induced by caspase-4/5 in

human cells. Caspase-4/5 can be activated by direct binding to the
Frontiers in Oncology 06
CARD at the N-terminus of LPS, which in turn cuts GSDMD into

N-GSDMD. And then, N-GSDMD is oligomerized and transferred

to the cell membrane to induce the assembly of NLRP3

Inflammasomes, and pyroptosis occurs finally (68). (Figure 2)
4.2 Pyroptosis in tumor cells

Pyroptosis is a double-edged sword in tumors. On the one hand,

it can inhibit the occurrence and development of tumors; on the

other hand, it can form a microenvironment suitable for the growth

of tumors (69). For example, as an critical link in the development

of pyroptosis, high expression of GSDMD in some tumors can

improve the survival time of patients, while high expression of

GSDMD often leads to poor prognosis in adrenocortical carcinoma,

chromophobe renal cell carcinoma and other tumors (70). GSDMD

expression is decreased in gastric cancer tissues, and S/G2 cell

transition is accelerated by activating signal transducer and

activator of transcription-3 (STAT3) and phosphatidylinositol 3-

kinase (PI3K)/AKT signaling pathway to regulate cell cycle-related

proteins and promote tumor proliferation in vitro and in vivo (71).

Besides GSDMD, GSDME also plays different roles in tumor

development. GSDME can enhance the phagocytosis of TAMs

and the number and function of tumor lymphocytes, activating

caspase-independent pyroptosis in target cells to inhibit tumors and

enhance anti-tumor immunity (72). However, some studies run

counter to the conclusions above. GSDME-mediated pyroptosis can

promote the release of high-mobility group box-1 (HMGB1) to

induce the proliferation of tumor cells and the development of

colorectal cancer (73). Although the research on pyroptosis is

getting deeper and deeper, the outcome brought about by

pyroptosis on tumors still needs us to continue to explore.
FIGURE 2

Mechanisms of pyroptosis and NETosis.
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4.3 Pyroptosis and lncRNAs in tumors

Recent advances have begun to clarify that molecules in the

mechanism of pyroptosis (e.g., GSDM) are regulated by lncRNAs.

Knockdown of lncRNA PVT1 significantly decreased the production

and release of inflammatory factors, while the expression of GSDMD

and caspase-1 is inhibited, which gives rise to inhibition of pyroptosis

(74). LncRNA MALAT1 inhibits miR-141-3p, which in turn

promotes the expression of GSDMD and induces pyroptosis (75).

One study has demonstrated that lncRNAKCNQ1OT1, LINC01278,

lncRNA MIRLET7BHG and lncRNA NEAT1 can act as upstream

targets of miR-296-5p and regulate the occurrence and development

of glioma (76). Among them, lncRNANEAT1 can inhibit pyroptosis

by regulating GSDMD (76). However, findings by Su et al. showed

that down-regulated lncRNANEAT1 suppresses pyroptosis through

sponging miR-448 to regulate GSDME expression levels in ionizing

radiation-induced colorectal cancer cells (77).

LncRNAs also regulate pyroptosis through other molecules in

the pyroptosis mechanisms. For instance, lncRNA KCNQ1OT1

reduces pyroptosis by targeting miR-214-3p and caspase-1 (78). In

non-small cell lung cancer, lncRNA XIST increases the expression

of mitochondrial superoxide dismutase-2 through sponging miR-

335; while knockdown of lncRNA XIST promotes reactive oxygen

species (ROS) production and NLRP3 inflammasomes activation,

resulting in triggering pyroptosis (79). Overexpressed lncRNA

ADAMTS9-AS2 can downregulate miR-223-3p and activate

NLRP3 inflammasomes in gastric cancer, which promotes the

development of pyroptosis (80).

Wang et al. analyzed the database that lncRNA ZFPM2-AS1,

lncRNA KDM4A-AS1, lncRNA LUCAT1, lncRNA NRAV,

AL031985.3, AL049840.5, lncRNA MKLN1-AS, AC099850.3 and

LINC01224 promote pyroptosis in hepatocellular carcinoma, while

lncRNA CRYZL2P-SEC16B and AC008549.1 play a protective role

and inhibit pyroptosis (81). AC006001.2, LINC02585, AL136162.1,

AC005041.3, AL023583.1, and LINC02881 are associated with the

development of ovarian cancer and involved in regulating

pyroptosis in ovarian cancer (82). LncRNAs involved in the

regulation of pyroptosis have been reported in different tumors

such as breast cancer, prostate cancer, glioblastoma, head and neck

squamous cell carcinoma, soft tissue sarcoma and so on, which are

not repeated here (83–87).
5 NETosis

5.1 Mechanisms of NETosis

NETosis is a form of cell death that depends on neutrophil

extracellular traps (NET) produced after neutrophil activation.

NET is composed of DNA-histone complexes and cytotoxic

proteins. NETs can not only capture invading pathogens, but also

degrade them with NETs associated proteolytic enzymes (88, 89).

Morphological changes in NETosis are characterized by chromatin

decondensation accompanied by separation of the inner and outer

layers of the nuclear membrane, fusion of the nucleoplasm and
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cytoplasm, cell size reduction, cell membrane rupture, NETs release,

and ultimately cell death (90).

Themechanisms of neutrophil extracellular trapping net withering

are divided into two types according to whether nicotinamide adenine

dinucleotide phosphate (NADPH) is dependent or not. Cells attacked

by viruses, bacteria and other pathogens activate TLR on the cell

membrane, which initiates NF-kB signaling pathway, promotes the

release of IL-8, and then induces NADPH-oxidase (NOX) activation

and ROS production (91). ROS facilitates the release of antimicrobial

proteins such asmyeloperoxidase (MPO) and neutrophil elastase (NE)

from neutrophils (92). These proteases induce chromatin

decondensation in the nucleus, which is enhanced by MPO (93).

Furthermore, IL-8 also activates downstream Src/MAPK signaling

pathway through combining with CXC chemokine receptor-2

(CXCR2), which will promote the release of MPO (94). These

proteins enter the nucleus, disrupt chromatin structure. The

decondensed chromatin binds to proteins released by neutrophils to

form NETs, and finally the cell membrane is destroyed, the cell

ruptures, and intracellular NETs are released into the plasma (92).

However, it remains unresolved how NETs are released from the

nucleus into the cytoplasm through the nuclear envelope.One theory is

that GSDMD mediates the nuclear envelope permeabilization,

resulting in the release of NETs into the cytoplasm (95). Another

perspective suggests that DNA is released from the nucleus into the

cytoplasm via vesicles (96). In addition, neutrophil stimulation triggers

the release of calcium stored in the ER. Upon intracellular calcium

overload, NOX is also activated to stimulate the production of ROS,

triggering NETosis that is not associated with infection (97).

NADPH-independent NETosis is mainly driven by peptidyl

arginine deiminase-4 (PAD4) via citrullinated histones. Activation

of PAD4 requires high concentrations of calcium (98). PAD4 is

mainly localized in the nucleus of resting neutrophils, where it

mediates citrullination of nucleosomal histone H3, resulting in

reducing histone positive charge and the affinity between histones

and negatively charged DNA, which brings about dissociation of

histones from DNA and loss of chromatin structure, and induces

NETs formation (96). In addition, PAD4 is involved in NLRP3-

mediated ASC oligomerization and speckle formation in

neutrophils, and then activates caspase-1 and its downstream

molecule, GSDMD, touching off NETosis (99, 100). (Figure 2)
5.2 NETosis in tumor cells

NETs have been reported to exert carcinogenic and anticancer

effects. Important components in NETs, such as MPO and protease,

can inhibit tumor growth and metastasis and promote tumor cell

death; however, some proteases in NETs can also degrade the

extracellular matrix and promote tumor cell extravasation and

metastasis (88). NETs also have the ability to awaken dormant

tumor cells (101). There was a study showing that CXCR1 and

CXCR2 agonists acting as major mediators of NETosis, interact

with chemokines, CXC motif chemokine ligand 1/6/7/8 (CXCL1/6/

7/8), induce NETs formation in tumors, and inhibit immune-

mediated cytotoxicity (102). Studies using a nude mice model
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have suggested that CXCL1/2 knockdown significantly reduces

tumor metastasis (103). NETs can directly alter the metabolic

program of tumor cells to promote tumor growth as well, which

is mainly due to NE released fromNETs activating TLR4, increasing

mitochondrial biogenesis related gene expression, increasing

mitochondrial density, increasing ATP production, and accelerating

tumor growth (104). A study has shown that the NETs content in the

blood of patients with early stage of head and neck cancer is

significantly higher than that of healthy people, while in the

advanced stage of cancer, the NETs level is reduced (105). Therefore,

NETs are of essential as cancer therapeutic targets to delve into the

regulation of NETosis and the balance between NETs formation and

destruction in tumor cells.
5.3 NETosis and lncRNAs in tumors

In recent years, there have not been many reports on the

regulation of NETosis by lncRNAs, but studies have shown that

lncRNAs are involved in regulating related molecules of NETosis.

Pep-AP encoded by lncRNA AP can inhibit pentose phosphate

pathway, reduce NADPH/NADP+ and glutathione (GSH) levels,

promote ROS accumulation, induce redox imbalance, and thus

inhibit colorectal cancer cell growth (106). In osteosarcoma,

knockdown of lncRNA OR3A4 suppresses NADPH production

and increases intracellular ROS, leading to ER stress and cell death

(107). He et al. predicted five lncRNAs (AC079336.5, LINC00623,

AC087752.4, AL645933.2, and LINC00426) to be associated with

NETosis by database analysis, which affects cancer prognosis in

head and neck squamous cell carcinoma (108).
6 Entosis

6.1 Mechanisms of entosis

Entosis was first proposed in 2007 by Overholtzer and

colleagues (109). This cell death pattern occurs in tumor cells and

epithelial cells when cells are embedded in vacuoles of host cells

and degraded by lysosomal enzymes of host cells. Under the

microscope, internalized cells are surrounded by host cells which

contain large vesicles, forming cell-in-cell (CIC) structures, but the

cell membrane integrity of both cells is not disrupted. Host cells are

stretched and form narrow cytoplasmic areas with crescent-shaped

nuclei (110). Garanina et al. described five stages of entosis through

electron microscopy. In the first stage, the internalized cells are

round and the nuclei remain round. In the second stage, the

internalized cells contract and produce short protrusions

extending from the cell body to the entotic vacuole membrane.

During the third stage, internalized cells further decreases with

irregular nucleus shape and accumulation of cytoplasmic vacuoles.

At the fourth stage, the shape of the internalized cells and nuclei is

further deformed. The accumulation of cytoplasmic vacuoles

increases and the nucleoli disappear. In the fifth stage, the entotic

cells contain only residuals (111).
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Cell adhesion and cytoskeletal rearrangement play a central part

in entosis (4). Recent evidence suggests that cell-cell junctions are

involved by both E-cadherin and a-catenin and regulated by Rho

guanosine triphosphatases (Rho GTPases) (112). Aneuploid mitotic

arrest occurs when cells are exposed to external stimuli that cause

DNA damage (113). Cells detach from the extracellular matrix.

Rho-GTP activates the downstream effector molecule Rho-

associated coiled-coil containing protein kinase (ROCK), and

then induces the activation of Rho protein, which promote actin-

myosin interaction and increase contractility. Due to the action of

cadherin, cells are tightly connected to their adjacent cells, so that

cells are internalized by adjacent cells, and encapsulated by

lysosomes of host cells. Finally, internalized cells degrade and die

through the lysosomal pathway mediated by LC3-associated

phagocytosis (114). However, it has been suggested that P53

locally inhibits RhoA signaling and myosin contraction at cell-cell

junctions by targeting Rnd3, which leads to asymmetric RhoA

activation and thus promotes entotic CIC formation (113). UV

radiation is also one of the triggers of entosis. Upon cells stimulated,

JNK/p38 signaling pathway is activated, which triggers ROCK-

dependent entosis (115). Most interestingly, the present study has

demonstrated that entosis occurs when breast tumor cells are

deficient in glucose in which AMPK plays an important role

(116). (Figure 3)
6.2 Entosis in tumor cells

In many cancers, tumor malignancy and poor prognosis are the

link with entosis which even acts as an escape mechanism to evade

adverse factors from other cells, contributing to treatment failure or

cancer recurrence (117). In high-grade clear cell renal carcinomas,

CIC structures tend to indicate high malignancy and metastasis

(118). While Durgan, J et al. found that epithelial cells can

phagocytose and kill abnormally dividing cells to inhibit tumor

growth when entosis happens (119). For example, TRAIL-induced

entosis in colorectal tumor cells results in the appearance of CIC

structures and poor prognosis (120). Entosis can exert anticancer

effects in novel methylselenoesters-induced pancreatic cancer cells

(121). Entosis plays a dual role of cancer, but there is no complete

and systematic study on the antagonistic mechanism of these two

effects, which suggests new ideas for future studies on entosis.
6.3 Entosis and lncRNAs in tumors

Rho GTPases are important links in entosis. LncRNAs have

been reported to modulate Rho GTPases-mediated signaling and

affect the survival of cells (122, 123). In bladder cancer, lncRNA

KTN1-AS1 promotes tumor development by regulating the KTN1/

Rho GTPase axis (122). An elegant study out of Li et al. examined

that lncRNA NORAD competitively sponges miR-125a-3p,

bringing about dysregulation of RhoA and migration and

invasion of pancreatic cancer cells (124). LncRNA NORAD has

also been shown to promote lung cancer cell proliferation, invasion,
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and migration through CXCR4 and RhoA/ROCK signaling

pathway (125). According to latest bioinformatics research,

lncRNA NORAD can also promote breast cancer progression

through the Rho GTPase pathway (126). However, the research

about lncRNAs and entosis in other tumors is still elusive.
7 Ferroptosis

7.1 Mechanisms of ferroptosis

Ferroptosis was first proposed by Dixon in 2012 (127).

Morphologically, ferroptosis is characterized by mitochondria

shrunk, mitochondrial cristae reduced or disappeared,

mitochondrial membrane density increased and mitochondrial

outer membrane ruptured, while nuclear structure is intact,

without nuclear fissures and chromatin marginalization, as

opposed to cellular morphological changes that occur in apoptosis

and necroptosis (128). Biochemically, ferroptosis is characterized by

iron-dependent lipid peroxidation and increased intracellular

ROS (129).

Ferroptosis is based on iron accumulation and lipid

peroxidation. Typically, excess iron is present as ferritin.

However, when cells are stimulated internally or externally,

ferritin is degraded and Fe3+ is released in large amounts, which

is reduced to Fe2+ by transferrin receptor-1 (TFR1) and released

into the iron pool in the cytoplasm, increasing ROS and causing

destructive effects (130, 131). On the cell membrane, SLC7A11 and

SLC3A2 are critical subunits of glutamate-cystine reverse

transporter (System Xc-) which can mediate glutamate transport

out of the cells, cystine transport into the cells. Intracellular cystine

is reduced to cysteine that synthesizes reduced GSH (132).

Glutathione peroxidase 4 (GPX4) is a selenocysteine enzyme
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which can regulate the sensitivity of cells to ferroptosis. GPX4,

which is activated by cystine via mTOR complex 1 (mTORC1)

signaling pathway, can detoxify lipid peroxidation in the presence of

GSH, thus reducing lipid ROS to inhibit ferroptosis (133, 134).

When the antioxidant system, especially the System Xc-/GSH/

GPX4-dependent antioxidant defense system, is inactivated, lipid

ROS accumulates and ferroptosis occurs. Erastin is a commonly

used ferroptosis-inducing factor, which suppresses SLC7A11

expression rendering System Xc-dysfunction, and then inhibits

cystine uptake, reduces GSH production, and produces ferroptosis

(135). (Figure 3)
7.2 Ferroptosis in tumor cells

Since the concept of “ferroptosis” has been proposed, there have

been increasing studies on the role of ferroptosis in tumor

suppression. Ferroptosis can be activated or resisted through

different signaling pathways to regulate tumor growth and drug

resistance, such as hippo signaling pathway, PI3K/AKT/mTOR

signaling pathway and so on (136). PARP inhibitors have

been approved for use in ovarian and breast cancers. It has

been suggested that PARP inhibitors promote ferroptosis

by suppressing SLC7A11 in a p53-dependent manner. In

combination with erastin, the sensitivity of PARP inhibitors can

be improved in the treatment of ovarian cancer, thereby exerting

anticancer effects (137). Like PARP inhibitors, STAT3 inhibitors

down-regulate SLC7A11 and GPX4 to trigger ferroptosis, inhibit

gastric cancer progression and reduce chemoresistance (138).

Ferroptosis, in addition to anticancer effects, can also produce

inflammation-related immunosuppression in the tumor

microenvironment, which facilitates tumor growth. HMGB1 can

bind to receptor for advanced glycation end-products (RAGE or
FIGURE 3

Mechanisms of entosis and ferroptosis.
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AGER) to promote inflammatory responses in macrophages, and

inhibition of HMGB1 may have potential therapeutic effects on

ferroptosis-related diseases (139). Furthermore, AGER in

pancreatic cancer mediates the uptake of oncogenic protein KRAS

by macrophages, which ultimately leads to macrophage polarization

and stimulates tumor growth (140). Ferroptosis plays an

anticancerous role in most tumors and is still a major hotspot in

the study of cancer treatment.
7.3 Ferroptosis and lncRNAs in tumors

With the growing knowledge of ferroptosis, the regulation

between lncRNAs and ferroptosis is continuously being

investigated and developed. It has been shown that high level of

lncRNA PVT1 directly interacts with miR-214-3p, hindering

adsorption of GPX4, increasing GPX4 content and maintaining

GSH in a reduced state, which inhibits ferroptosis and promotes

tumor cell proliferation (141). Under the induction of erastin, miR-

214 increases with GSH decreasing, lipid oxidation enhancing and

ROS production increasing, causing ferroptosis in hepatocellular

carcinoma (142). Erastin can also up-regulate lncRNA GABPB1-

AS1 which downregulates the protein level of GABPB1 by blocking

the translation of GABPB1 mRNA. Due to a series of biological

effects mediated by GABPB1, intracellular ROS is increased which

promotes ferroptosis and prolongs the survival time of liver cancer

patients (143). There has been a study reporting that silencing of

lncRNA NEAT1 can act in combination with erastin to down-

regulate SLCA11 and GPX4, induce ROS increase, and promote

the upregulation of Bax and caspase-3, inhibit the expression of Bcl-

2, which motivates ferroptosis and apoptosis, and inhibits tumor

proliferation, metastasis and invasion in non-small cell lung cancer

(135). In addition to lncRNA NEAT1, lncRNA H19 can also trigger

ferroptosis in lung cancer via the miR-19b-3p/FTH1 axis (15).

LncRNAs can promote or suppress ferroptosis by regulating the

expression of miRNAs or mRNAs which affect key molecules of

ferroptosis. There are still many studies on ferroptosis mediated by

lncRNAs, which have been reported in different tumors, such as

ovarian cancer, prostate cancer, bladder cancer, acute myeloid

leukemia and so on (144–147). However, in benign tumors, the

role of lncRNAs in regulating ferroptosis remains to be explored.
8 Autosis

8.1 Mechanisms of autosis

According to published guidelines, we can classify cell death

into three types by the tightness of the relationship between

autophagy and cell death: autophagy-associated cell death,

autophagy-mediated cell death, and autophagy-dependent cell

death (148). In 2013, Beth Levine named autophagy-dependent

cell death “autosis” (149). We focus here on autophagy-dependent

cell death. When autosis occurs, the morphological features

of cells are characterized by enhanced adhesion between cells

and extracellular matrix, disruption or disappearance of ER
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structure, swelling around the nucleus, and mild chromatin

condensation (149).

Autosis usually occurs as a result of stimulation by high doses of

autophagy-inducing peptides, starvation, and permanent cerebral

ischemia, and the key to initiation is the Unc-51-like autophagy

activating kinase 1 (ULK1) complex (150). ULK1 complex which is

the core complex in autosis consists of ULK1, ATG13, ATG101, and

FAK family kinase-interacting protein of 200 kDa (FIP200) (151).

The ULK1 kinase complex recruits the PI3K complex to phagocytes,

which catalyzes the conversion of phosphatidylinositol to

phosphatidylinositol 3-phosphate (PI3P) and promotes

autophagosomes formation. The PI3K complex consists of PI3K,

the autophagy protein beclin-1 (BECN1), vacuolar protein sorting-

15, and other partners (150). PI3K can interact with a variety of

regulatory proteins to form different complexes that will selectively

participate in different stages of autosis and initiate downstream

cascade enzymatic reactions (152). MTORC1 regulates the ULK1

complex to inhibit autosis (153). The upstream molecule of

mTORC1 is AMP-activated protein kinase (AMPK), which

inhibits mTORC1 and induces autosis (154, 155). Moreover, it

has been shown that Na+, K+-adenosine triphosphatase (ATPase)

can promote autosis by activating BECN1 (156). (Figure 4)
8.2 Autosis in tumor cells

It is well-known that autophagy exists as a pro-survival stress

response in most cases. Moreover, the above three types of autophagy

are not clearly divided in most studies, and most of the studies are on

autophagy-mediated cell death. However, autosis still plays an

important role in inducing tumor cell death, especially as a spare cell

death program in apoptosis-deficient tumors (157). As early as more

than a decade ago, Degenhardt et al. reported that autosis may suppress

tumors by attenuating metabolic stress in apoptosis-deficient cells

(158). In addition, autosis can act together with ferroptosis to exert

anticancer effects in tumor cells. The AMPK signaling pathway

activates BECN1, which promotes ferroptosis in tumor cells by

directly blocking System Xc- and binding to SLC7A11 to improve

anticancer therapy (159). The interaction with two pathways of GPX4

andmTORcan regulate autophagy-dependent ferroptosis in pancreatic

cancer cells (160). Interestingly, autosis, in addition to its anticancer

role, also plays a carcinogenic role in the early stage of tumors. Studies

using a Drosophila melanogaster malignant tumour model have

demonstrated that TNF and IL-6 mediated autophagy can modulate

the tumor microenvironment and participate in tumor growth (161).
8.3 Autosis and lncRNAs in tumors

LncRNAs have been reported to affect autosis in tumor cells by

regulating the ULK1 complex and mTOR signaling pathway. Zhao

et al. found that lncRNA H19 can impact on glioma cell

proliferation, migration, and autophagy by regulating the mTOR

signaling pathway. Overexpression of lncRNA H19 inhibits mTOR

phosphorylation and promotes ULK1 phosphorylation, thereby

inhibiting the development of autosis and promoting tumor cell
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proliferation (162). LncRNA H19 has also been reported in

pituitary tumor (163). LncRNA H19 suppresses mTORC1

function and blocks mTORC1-mediated phosphorylation of 4E-

BP1 to inhibit pituitary tumor cell proliferation in vitro and in vivo

(163). LncRNA CASC9 can promote tumor proliferation by

inhibiting autosis and autophagy-mediated apoptosis through

AKT/mTOR pathway in oral squamous cell carcinoma (164).

There are two pathways by which lncRNA HAGLROS regulates

the mTOR signaling pathway in gastric cancer. One is to increase

the expression of mTOR mRNA and mTOR by sponging miR-100-

5p; the other is that lncRNA HAGLROS interacts with mTORC1

components to activate the mTORC1 signaling pathway and inhibit

autosis in gastric cancer cells (165). LncRNA EPIC1 can activate

AKT-mTORC1 signaling pathway through regulating the

expression of transcription factor Myc, which leads to rapamycin

resistance and reduced autosis in tumor cells in breast and ovarian

cancers (166). In addition to ULK1, two other proteins in the ULK1

complex have not been covered to be regulated by lncRNAs.

There are quite a few reports on the regulation of autophagy by

lncRNAs, but there are few reports on the involvement of lncRNAs

in the regulation of autophagy-dependent cell death, and there is

still much room to be explored on the relationship between

lncRNAs and autophagy-dependent cell death.
9 Cuproptosis

9.1 Mechanisms of cuproptosis

Cuproptosis belongs to RCDs discovered in 2022. Tsvetkov and

colleagues showed that intracellular copper accumulation leads to

aggregation of lipoylated proteins and destabilization of Fe-S cluster

proteins in mitochondria, which in turn induces a unique type of
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cell death named cuproptosis (167). Changes in cell morphology

have not been reported when cuproptosis occurs.

Elesclomol and copper ion complex (ES-Cu) can induce

cuproptosis. ES in ES-Cu complexes can promote Cu2+ into cells.

Ferredoxin 1 (FDX1) is a direct target of ES, and Cu2+ are reduced

to Cu+ by FDX1 (168). FDX1 is a key component in the Fe-S cluster

assembly pathway and also involved in lipoylation of the

tricarboxylic acid (TCA) cycle proteins (169). TCA cycle proteins

that can be lipoylated include line dihydrolipamide branched-chain

transacylase E2, glycine cleavage system protein H, dihydrolipamide

S-succinyltransferase, and dihydrolipamide S-acetyltransferase

(DLAT), which are important components of the pyruvate

dehydrogenase complex (170, 171). Cu+ reduced by FDX1 can

combine directly with lipoylated DLAT and promote disulfide-

bond-dependent DLAT oligomers formation. Meanwhile, FDX1-

dependent Fe-S cluster proteins undergo degradation, causing

cuproptosis in cells (167). (Figure 4)
9.2 Cuproptosis in tumor cells

As a key molecule of cuproptosis, serum copper has been

reported to be more abundant in lung cancer, hepatocellular

carcinoma, colorectal cancer, breast cancer, cervical cancer, oral

cancer and other tumors compared with normal tissues, and copper

is considered to be involved in tumor growth, metastasis, and drug

resistance (172–178). A mitochondria-targeted, copper-depleting

nanoparticle chelates copper in mitochondria, reduces oxygen

consumption and oxidative phosphorylation, converts metabolism

to glycolysis to reduce ATP production in triple-negative breast

cancer cells, and ultimately inhibits tumor growth and improves

survival rate (179). In addition, copper depletion activates AMP-

activated protein kinase to inhibit mTORC1 pathway, and reduce
FIGURE 4

Mechanisms of autosis and cuproptosis.
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oxidative phosphorylation which in turn weakens the ability of

tumor invasion (180). The expression level of cuproptosis-related

gene SLC31A1, i.e., copper transporter 1 (CTR1), is negatively

correlated with overall survival. The study revealed that CTR1 is

abnormally elevated in breast cancer and copper activates the

PDK1/AKT pathway in a CTR1-dependent manner and promotes

tumorigenesis (181). Apart from copper and SLC31A1, other

cuproptosis-related genes, such as FDX1, ATP7B, and

lipoyltransferase-1, are also involved in tumor development (182,

183). FDX1 which expression is significantly lower than normal

tissues in a variety of cancer types, is positively correlated with

immune cell infiltration and tumor mutation load, and has a clear

correlation with tumor survival and prognosis. Therefore, FDX1 is

expected to be a tumor biomarker and potential therapeutic

target (169).
9.3 Cuproptosis and lncRNAs in tumors

After cuproptosis was reported, studies about lncRANs and

cuproptosis-related genes have gradually increased, and have been

reported in a variety of tumors. Mo et al. analyzed that AC008764.2,

AL022323.1, lncRNA ELN-AS1 and LINC00578 are protective

lncRNAs that promote cuproptosis in lung adenocarcinoma cells,

while AL031667.3, AL606489.1 and lncRNA MIR31HG are

considered as dangerous lncRNAs (184). Among them, lncRNA

MIR31HG can inhibit cuproptosis and promote the proliferation,

migration, and invasion of lung adenocarcinoma cells by down-

regulating miR-193a-3p and increasing downstream TNFRSF21

expression (184). In osteosarcoma, AL645608.6, AL591767.1,

lncRNA UNC5B-AS1, lncRNA CARD8-AS1, AC098487.1,

AC005041, lncRNA TIPARP-AS1, lncRNA RUSC1-AS1, and

LINC02315 play a role in regulating cuproptosis (185, 186). The

studies on the regulatory relationship of lncRNAs on cuproptosis in

breast cancer have also been reported. Jiang et al. found that

lncRNAs such as lncRNAs GORAB-AS1, AC079922.2,

AL589765.4, AC005696.4, lncRNA Cytor, lncRNA ZNF197-AS1,

AC002398.1, AL451085.3, lncRNA YTHDF3-AS1, AC008771.1,

and LINC02446 are associated with cuproptosis and can affect the

prognosis of breast cancer and the sensitivity of immunotherapy

(187). LncRNA XIST can sponge miR-92b-3p and regulate the

cuproptosis-related gene MTF1 to influence the progression of

breast cancer (188). In cervical cancer, AL441992.1, LINC01305,

AL354833.2, lncRNA CNNM3-DT and lncRNA SCAT2 can

promote cuproptosis to protect the body from tumor cells attack

and improve tumor prognosis; while AL354733.3 and AC009902.2

can inhibit cuproptosis to facilitate tumor growth (189). In addition,

there are many relevant reports on lncRNAs regulating cuproptosis

in head and neck squamous cell carcinoma, gastric cancer, liver

cancer, and colorectal cancer (190–193).

However, the regulatory relationship between lncRNAs and

cuproptosis is only analyzed in the database, but there are fewer

experimental studies about the two relationships. Therefore, it
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remains many doubts whether lncRNAs can regulate cuproptosis

in tumor cells, which needs further exploration.
10 Discussion

LncRNAs have been the research focus in recent years, especially

in the regulation of tumor biological function. LncRNAs can initiate

RCDs mediated by different pathways which act on tumor cells for

the purpose of promoting or inhibiting tumor proliferation,

migration, invasion, prognosis, and drug resistance. The

occurrence of a particular RCD is often regulated by many

different lncRNAs in the same tumor. For example, lncRNA

PDPK2p/PDK1/AKT/caspase-3 signaling pathway can inhibit

apoptosis, while the lncRNA MAGI2-AS3/miR-374b-5p/Smg1 axis

can promote apoptosis in liver cancer cells (38, 41). In cervical cancer,

lncRNA FAM13A-AS1/miRNA-205-3p/DDI2 axis and lncRNA

PTENP1/miR-106b/PTEN axis can jointly promote apoptosis and

inhibit the progression of cervical cancer, while lncRNAHOXD-AS1

plays an anti-apoptosis role to promote the progression of cervical

cancer (194–196). In addition to apoptosis, different lncRNAs have

also been reported to regulate the same tumor in other RCDs such as

necroptosis and ferroptosis. Homologous lncRNAs can play different

roles in different tumors and initiate different RCDs. LncRNA H19

has been reported to regulate apoptosis, ferroptosis, and others (197).

LncRNA NEAT1 regulates pyroptosis in glioma cells and colorectal

cancer cells by targeting miR-296-5p or miR-448; while its high

expression promotes ferroptosis in non-small cell lung cancer (76, 77,

135). Furthermore, lncRNAH19 and lncRNANEAT1 act upon each

other and respectively regulate apoptosis by targeting miR-675 and

miR-204 in breast cancer (198). Although lncRNAs have been

demonstrated successively as potential targets for tumor diagnosis

and treatment, there is no mature means to use lncRNAs for clinical

diagnosis and treatment, which is still a great gap waiting to

be explored.

RCDs can occur on almost all cells and play indispensable roles

in the normal growth and development of the human body. The

signaling pathways of RCDs can interact with each other. As a very

vital connection in the process of apoptosis, caspase family also play

a part in necroptosis and pyroptosis; ROS is not only working in

ferroptosis, but also participates in NETosis. In addition, some

forms of cell death can also act depending on other forms of cell

death. Apoptosis, which is dependent on caspase, can stimulate

GSDM cleavage through caspase activation and alter GSDM

expression in triggering pyroptosis (199). LINC00618 exerts

apoptosis by upregulating levels of Bax and caspase-3, while

LINC00618 induces ferroptosis by increasing ROS and decreasing

SLC7A11. Findings used caspase inhibitors Z-VAD-FMK and

erastin demonstrated that LINC00618-induced ferroptosis was

dependent on apoptosis (147). However, the specific mechanism

by which lncRNAs promote or inhibit different RCDs in tumor cells

through targeting common key molecules that regulate multiple

pathways remains unreported.
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Finally, due to the limited available medical technology, people

still do not conquer cancers. It is difficult to diagnose malignant

tumors in time and provide effective and specific treatment for a

long time, resulting in the prognosis of most malignant tumors is

still not optimistic. Therefore, we need a target that is specific and

sensitive, and lncRNAs may become this target. LncRNAs can

improve tumor prognosis by triggering different RCDs, which

provides us with new ideas for diagnosis and treatment.
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