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Receptor–ligand pair typing
and prognostic risk model of
response or resistance to
immune checkpoint inhibitors
in lung adenocarcinoma

Shengqiang Mao, Lingyan Zeng, Ying Yang, Zhiqiang Liu
and Li Zhang*

Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related
Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan
Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Introduction: Currently, programmed cell death-1 (PD-1)-targeted treatment is

ineffective for a sizable minority of patients, and drug resistance still cannot be

overcome.

Methods: To explore the mechanisms of immunotherapy and identify new

therapeutic opportunities in lung adenocarcinoma (LUAD), data from patients

who did and did not respond to the anti-PD-1 treatment were evaluated using

single-cell RNA sequencing, and bulk RNA sequencing were collected.

Results: We investigated the gene expression that respond or not respond to

immunotherapy in diverse cell types and revealed transcriptional characteristics at

the single-cell level. To ultimately explore the molecular response or resistance to

anti-PD-1 therapy, cell-cell interactions were carried out to identify the different LRIs

(ligand-receptor interactions) between untreated patients vs. no-responders,

untreated patients vs. responders, and responders vs. non-responders. Next, two

molecular subgroups were proposed based on 73 LRI genes, and subtype 1 had a

poor survival status and was likely to be the immunosuppressive tumor subtype.

Furthermore, based on the LASSO Cox regression analysis results, we found that

TNFSF13, AXL, KLRK1, FAS, PROS1, and CDH1 can be distinct prognostic biomarkers,

immune infiltration levels, and responses to immunotherapy in LUAD.

Discussion: Altogether, the effects of immunotherapy were connected to LRIs

scores, indicating that potential medications targeting these LRIs could

contribute to the clinical benefit of immunotherapy. Our integrative omics

analysis revealed the mechanisms underlying the anti-PD-1 therapy response

and offered abundant clues for potential strategies to improve precise diagnosis

and immunotherapy.
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Introduction

Lung cancer has been the leading cause of cancer death

worldwide, accounting for 22.7% of malignant tumor

classifications (1). Lung adenocarcinoma (LUAD) is the major

histological subtype of non-small cell lung cancer (NSCLC) and

accounts for more than 40% of all lung cancers (2). Therapeutic

options for LUAD include surgery, radiation, chemotherapy,

targeted therapy, immunotherapy, or a combination of these

treatments that have achieved remarkable success in treatment

(3). Nevertheless, there is still approximately 30% of LUAD cases

lack available targeted therapeutic options (4, 5). EGFR-tyrosine

kinase inhibitors (EGFR-TKIs) and immunotherapy have brought

unprecedented survival benefits to LUAD patients, however

acquired EGFR-TKI resistance mechanism and immunotherapy

resistance also have become the new problems in the treatment

(6, 7). The current treatment focus on overcoming various

resistance mechanisms, precision therapy based on new

therapeutic targets and new therapy is the key to improving the

prognosis of LUAD (8, 9).

High-throughput sequencing technology provides convenience

for the identification of new therapeutic targets. Recently, single-cell

RNA sequencing (scRNA-Seq) has shown promise of unraveling

the biology of LUAD at an unprecedented level of resolution.

Several studies have explored LUAD at the single-cell level,

focused on finding potential targets for early diagnosis and

treatment, and described the significance of cellular interactions

in the tumor microenvironment (10, 11). LRIs, as essential

components of cell–cell communication, play a vital role

mediating cellular communication and signal transduction.

Immunotherapies that target ligand-receptor interactions (LRIs)

have recently made significant strides in the treatment of various

tumors, such as colorectal cancer (CRC) and bladder urothelial

carcinoma (BLCA) (12, 13). In contrast, the pattern of LRIs in

LUAD and their effect on tumor microenvironment and clinical

value are still unclear (14, 15). The scRNA-seq has been used to

study cell-cell interaction networks in the TME, revealing breast

cancer anti-PD-L1 immunotherapy combined with chemotherapy

alterations of molecular characterization in the TME (16, 17).

Therefore, we envision that cell-cell interaction analyses based on

scRNA-seq can contribute to determining critical cell-cell

interactions involved in response or resistance to anti-PD-

1 therapy.

In this study, we integrated bulk mRNA-seq, scRNA-seq, and

genomics data collected from LUAD patients. mainly explored

the mechanisms of response or resistance to anti-PD-1 therapy

from untreated patients and several immunotherapy datasets.

Based on pivotal LRIs, the new molecular characteristics and

mapping of the immune cell infiltration landscape are developed.

Several crucial LRIs play critical roles in immunotherapy and

increase survival after anti-PD-1 therapy. Overall, our findings

provide in-depth insight into the processes underlying the

crucial cell-cell interactions that affect the effectiveness of anti-

PD-1 treatment.
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Materials and methods

Sample collection

Fresh tumor tissues were collected from patients with lung

cancer at West China Hospital (WCH). All patients signed

informed written consent. Clinical characteristics, including age,

sex, smoking status, pathological subtype, and stage, were recorded

at recruitment and are listed in Supplementary Table S1.
Tissue dissociation and single-cell
suspension preparation

Freshly obtained resected tissues were sliced into smaller pieces

on ice with collagenase I/IV in HBSS and incubated for 30 minutes at

37°C with manual shaking every 5 minutes. Following the process,

the tissues were washed with Hank’s balanced salt solution (HBSS)

and cut into smaller pieces. The cells that were still in solution

underwent a five-minute 500 g centrifugation. The supernatant was

removed, the blasted cells were dispersed in red blood lysis solution,

rinsed with HBSS, and then reconstituted in sorting buffer (0.04%

BSA + PBS). After dead cells were cleared by flow cytometry, cell

suspensions were promptly prepared for single-cell RNA-seq.
Library preparation and sequencing

According to the manufacturer’s instructions, single cells were

created using the Chromium Single Cell 3′ Gel Bead, Chip and

Library Kits v2 (10X Genomics), total cells added to each channel

ranged from 6000 to 10000 cells. Following cell lysis and barcoded

reverse transcription of RNA, followed by amplification, shearing,

and attachment of the 5′ adaptor and sample index. At Chengdu’s

West China Hospital, libraries were sequenced using the Illumina

NovaSeq 6000 platform.
scRNA-seq data clustering, dimension
reduction and cell annotation

The R package “Seruat” was used for the following single cell

analysis. First, the data were integrated to use the “harmony”

algorithm and normalized through the log-normalization

function, and the top 2000 highly variable genes were identified

through the “FindVariableFeatures” function. Next, all genes were

scaled using the “ScaleData” function, and the “RunPCA” function

was used to reduce the dimension of PCA for the highly variable

genes. We chose dims=20 and clustered the cells through the

“FindNeighbors” and “FindClusters” functions (resolution=0.5).

UMAP is a method of data dimensionality reduction that

assumes that the available data samples are uniformly distributed

in the topological space, and these limited data samples can be

approximated and mapped to a low-dimensional space.
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The “FindAllMarkers” function was used to screen the marker

genes of 13 subgroups with log2FC=0.25 and min.pct=0.25 (the

expression ratio of the least differential genes). Finally, we used the

corrected p < 0.01 to screen the marker gene. Cell type definitions

were obtained from previous studies and manually annotated

according to marker genes.
Copy number alteration (CNA)

CNAs of each cell type were estimated by sorting the analyzed

genes on chromosomal location and applying a moving average to

the relative expression values, with a sliding window of 100 genes

within each chromosome by inferCNV (18).
Cell−cell communication analysis

Cell−cell communication analysis was performed using the

“CellPhoneDB” function, significant mean and significance of

cell communication based on cell interactions and normalized cell

matrix by P test calculated. LR-pairs were obtained for each cell pair

with nominal p < 0.05. Next, we conducted a deeper analysis of cell

−cell interactions by linking ligand expression on one cell type to

some target genes of interest expressing another cell type

using NicheNet.
Comparison of cell−cell interactions
between untreated patients, responders
and nonresponders

To identify ligand−receptor pairs with significant differences

between pretreatment responders and nonresponders, we used the

Mann−Whitney U test to compare the interaction scores of each

ligand−receptor pair in all cell pairs between untreated patients and

responders. Ligand−receptor pairs with an adjusted p value <0.05

were preserved. For visualization, the ratio of untreated patients/

nonresponder interaction scores was calculated as follows:

Ratio (untreated patients to nonresponders) = Interaction

frequency (untreated patient)/Interaction frequency (nonresponders).

If the ratio (untreated patient/nonresponders) >1, a higher level

of interaction existed in responders than in nonresponders

(indicated with a red color). If the ratio (untreated patient/

nonresponders) <1, a lower level of interaction existed in

responders than in nonresponders (indicated with a blue color).
Gene set enrichment analysis and
functional annotation

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses of DEGs were performed using the R

package “ClusterProfiler”. Cellular component, biological processes,

and molecular functions were all included in the GO enrichment

analysis. Gene set enrichment analysis (GSEA) was used to examine
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the pathways connected to various molecular subgroups using all

potential gene sets in the Molecular Signature Database.

To assess whether a gene set is enriched in a particular cell

subpopulation, single cells were enriched for gene function using

the “irGSEA” method. Each cell was scored separately by multiple

gene set enrichment methods, and multiple gene set enrichment

score matrices were generated. “irGSEA scores” were generated

using preset gene sets collected from the “MSigDB” for cancer

hallmark and signaling route signatures.
Gene expression data, somatic mutation
data and clinical information

For the training cohort, mRNA expression profiles, somatic

mutation data and related clinical data of LUADwere accessed from

the TCGA database via UCSC Xena (https://xena.ucsc.edu/). The

somatic mutation data were analyzed via the “maftools” R package

(version 2.2.10). The TMB scores were obtained by calculating the

total number of mutations/exon length (38 Mb). The mRNA

expression data and related clinical parameters used for validation

cohorts were accessed from the GEO database (http://

www.ncbi.nlm.nih.gov/geo/), including the GSE146100 dataset

and GSE126045. Moreover, we performed log2 transformations

for all mRNA expression data. Samples with a survival time < 30

days were excluded from this study. Finally, the flowchart of this

research is shown in Figure 1A.
LRI-related gene classifications of LUAD
patients in the TCGA cohorts

The “ConsensusClusterPlus” R package was applied to explore

the molecular classification of TCGA LUAD cohorts based on the

expression pattern. For unsupervised consensus clustering based on

k-means machine learning, 80% of the data were iterations of the

1,000-iter clustering algorithm. The prognosis of patients between

the two subgroups was then assessed using the Kaplan−Meier

survival analysis. To further investigate the relationships between

the LRI genes and the clinical characteristics, we carried out

comparisons of the histopathological features between the

two subgroups.
Cell-type and immune infiltration
assessment between two subgroups

To precisely estimate the proportions of cell types in tissues, cell

type deconvolution by the algorithm uses the input matrix of the

gene expression dataset. Here, we compared variations among

diverse immune cells in two groups using “CIBERSORT”

algorithm. To investigate the relationship between the risk score

and invading immune cells, Spearman correlation analysis was

used, the correlation analysis results and variations in immune

cell abundance were displayed using the ggplot2” R package.
frontiersin.org

https://xena.ucsc.edu/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fonc.2023.1170942
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mao et al. 10.3389/fonc.2023.1170942
Establishment of the risk model

The R package “glmnet” was used to perform least absolute

shrinkage and selection operator (Lasso) Cox regression and predict

the prognosis for patients based on LRIs. First, each independent

variable’s change trajectory was examined. Cross validation is used

to select the tuning parameter. The cox.ph function in the R package

“survival” was used to create the Cox proportional hazards model,

which was then used to evaluate the consistency and variability of

the estimates generated by the Lasso Cox regression model. Based
Frontiers in Oncology 04
on the median score, patients were separated into high- and low-

expression groups, survival analysis was performed between

two groups.
Survival analysis and immunotherapeutic
evaluation

Survival analysis was performed by the R package survival. The

hazard ratio (HR) was calculated by the Cox proportional hazards
B C

D

A

FIGURE 1

Diverse cell types in LUAD were delineated by single-cell RNA-seq analysis. (A) Schematic of tissue dissociation, cell isolation, sequencing, and
downstream bioinformatics analysis. (B) UMAP plots of the major LUAD cell populations from untreated patients and responders and nonresponders
after PD-L1 treatment. Each point depicts a single cell, colored according to cell type (top). The distribution of cells from three groups is divided by
treatment or response (bottom). (C) Stacked bar plots showing the frequencies of 13 cell types in seven samples. The chart shows the number and
percentage of each cell type. (D) Dot plots showing the single-cell expression pattern of cell-type-specific top 3 gene markers in each cell type.
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model, the 95% CI was reported, and the Kaplan–Meier survival

curve was modeled by the “survfit” function. The “maxstat.test”

function of the R package “maxstat”, in which all potential cutting

points were repeatedly tested to find the maximum rank statistic,

was used to perform dichotomy of cell population infiltration or

gene expression and then divide the patients into two groups

according to the selected maximum logarithm statistics. The two-

sided long-rank test was used to compare Kaplan–Meier survival

curves. The comparison of the percentage of patients who

responded to ICB treatment between different groups was

determined by the Chi-Squared test.
Statistical analysis

The R programming language was used for all statistical studies

(version 4.2.0). For the correlation analysis, Spearman’s correlation

was used. To examine the differences between these two risk groups,

the Wilcoxon test was applied. Statistical significance was defined as

< 0.05.
Flow cytometry

Detection of target cells by FCM, we used PE Mouse Anti-

Human CD163(BD Pharmingen™) to sort the macrophages cells.

APC Mouse Anti-Human CD326 staining (BD Pharmingen™) to

sort the epithelial cells. Staining was carried out according to the

manufacturer’s instructions. FCM was performed on a BD FACS

Canto II machine. Data were analyzed using FlowJo™

v.10 software.
RT-PCR

RNA was extracted from RNA extraction from cells after flow

cytometry sorting using RNA-easyIsolation Reagent (Vazyme

#R701). iScript™ Advanced cDNA Synthesis Kit (Bio-Rad) was

performed for reverse transcription, and iTaq™ Universal SYBR®

Green Supermix (Bio-Rad) was utilized for the qRT-PCR in

accordance with the instructions. The program of qRT-PCR is

shown below: initial denaturation for 30 s at 95°C, 40 cycles of

denaturation for 5 s at 95°C, and 40 cycles of amplification for 30 s

at 60°C. The mRNA expression in cells was represented as the2^-

(DDCt), and b-actin was used as the internal reference. The primer

sequences are shown in Table S2.
Results

Diverse cell types in LUAD delineated by
single-cell RNA-seq analysis

The study overview is shown in Figure 1A. To explore the

cellular diversity and transcriptional characteristics in LUAD

patients who received anti-PD-1 therapy, we integrated scRNA-
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seq and bulk-RNA sequencing data associated with anti-PD-1

therapy in LUAD patients from our data and the GEO database

(GSE146100) (19). A total of 9 patients were included; of these, 6

patients were treatment-native primary LUAD patients who were

PD-L1 positive form our experiment, 1 responder, and 2 non-

responders after anti-PD-1 treatment from GEO database

(GSE146100). Detailed clinical and pathological information

about these patients is provided in (Supplementary Table 1). To

perform scRNA-seq, cells were dissociated, sorted for viability, and

profiled using 10× Chromium Genomics protocols. (Figure 1A;

STAR Methods). Cells grouped primarily by dataset were mixed

after integration by the “Harmony” package, which showed the

well-integrated scRNA-seq data (Figure 1B). After quality control, a

total of 28,376 cells that met the inclusion criteria were selected for

the following analysis (including 16,764 from untreated patients

7,896 cells form nonresponders and 3,716 from responders

respectively) (Figure 1B). Similar to previous studies, tumor cells

displayed higher heterogeneity than stromal and immune cells,

which grouped together by cell type (20, 21)(Figure 1C). By

characterizing the canonical cell markers, thirteen major cell types

were detected, classified as epithelial cells, immune cell types (CD8

T cells, CD4 T cells, S100A8+ macrophages, SPP1+ macrophages,

NK cells, B cells, monocytes cells, mast cells), and stromal cell types

(fibroblasts and endothelial cells and cell cycling) (Figure 1D and

Supplementary Table 2). In summary, the combination of scRNA-

seq data reflected the distribution of the cell type and transcriptional

features in the anti-PD-1 treatment cohort of LUAD.
Cell type-specific aberrant gene expression
of responders and nonresponders to anti-
PD-1 treatment

To simultaneously define gene expression changes at the global

and cellular levels, we also performed bulk RNA-seq of responder

(CR, complete response; PR, partial response) and non-responder

(SD, stable disease; PD, progressive disease) samples after the anti-

PD-1 treatment from GEO data (GSE126045) (22). Considering the

cut-off criteria (adjusted P-value < 0.05 and |log 2FC| > 1.0), Genes

upregulated or downregulated by more than 2-fold are shown in red

and blue, respectively. Compared to the nonresponders 1,155 genes

were upregulation and 714 genes were downregulated in the

responders (Figure 2A). To further investigate the molecular

function implication of these DEGs (Differentially Expressed

Genes), we further adapted the KEGG enrichment analysis, these

DEGs were shown to be significantly associated with signaling

pathways related to immune and inflammation response

pathways related to cancer, such as cytokine-cytokine receptor

interaction pathways, chemokine signaling pathway, cell adhesion

molecules pathway, natural killer cell mediated cytotoxicity

pathways, and PD-L1 expression and PD-1 checkpoint pathway

(Figure 2B). Our results confirm the previous conclusion that the

response to PD-L1 signaling pathways is activated and that NK cells

are activated in the responders. In addition, we also found that cell-

cell interaction pathways were active in the responder, and we

inferred that altered receptor-ligand interactions may play an
frontiersin.org
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important role in the microenvironment, leading to different

respond to the immunotherapy.

To explore specific aberrancies in the expression of molecules in

each cell type in LUAD, we evaluated changes in the expression of

representative reported genes at the cell level. To distinguish

malignant epithelial cells from nonmalignant cells, we referred to

a previous method of tumor cell identification (23). Each epithelial
Frontiers in Oncology 06
cell was given a malignant or nonmalignant score, the clustering

results showed the ability to clearly distinguish of malignant from

non-malignant cells (Figures S1A, B). Meanwhile, the “inferCNV”

results confirmed the difference in copy number variation between

malignant cells and non- malignant (Figure S1C). As we known, the

NKG7 gene was critical for controlling cancer initiation, growth,

and metastasis upregulated in the responder, Similarly, upregulated
B

C

D
E

A

FIGURE 2

Aberrant gene expression profiles in cell type-specific manners in LUAD with anti-PD-L1 treatment. (A) Volcano plot shows the differentially
expressed genes (DEGs) between responders and nonresponders analyzed by bulk RNA-seq from datasets. Genes upregulated or downregulated by
more than 2-fold are shown in red and blue, respectively. 1488 upregulated genes and 1575 downregulated genes. (B) Bar plots displaying the KEGG
enrichment of up- or downregulated genes in LUAD patients (responders vs. nonresponders). Fisher’s exact tests (two-sided) were performed. A p
value < 0.05 was defined as statistically significant. (C) Dot plots depicting how the relative expression of particular genes varies at all cell type levels
(responders vs. nonresponders). The size displays the values for expression in the cell types, and colors are marked as up- or downregulation in the
bulk cohort (red, increased; blue, decreased). (D) QRT-PCR validation the representative genes were highly expressed in celltype for responders and
nonresponders. (E) Dot plot showing the results of KEGG pathways enrichment analyses for the DEGs of responder vs. nonresponder at the cellular
level. QRT-PCR validation the representative genes were highly expressed in celltype for responders and nonresponders. *p < 0.05; ***p < 0.001.
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in NK cells and CD4 T cells at the single cell resolution. C-C motif

chemokine 5 (CCL5), Fibroblast growth factor-binding protein 2

(FGFBP2), HLA-DQA1 protein (HLA-DQA1), Leukocyte

immunoglobulin-like receptor subfamily B member 3 (LILRB3),

and Notch ligand osm-11 (OSM) shown to be upregulated in bulk

RNA-seq, were upregulated mainly in CD4 T cells, NK cells, SPP1+

macrophage, S100A8+ macrophage, whereas its expression was

unchanged in other cells. Conversely, Napsin-A (NAPSA), LIM

domain only protein 3 (LMO3), Metastasis-associated in colon

cancer protein 1 (MACC1), PRKC apoptosis WT1 regulator

protein (PAWR), and WD repeat-containing protein 74

(WDR74) gene expression was downregulated in most cell types,

but upregulated only in the epithelial cell, fibroblasts cells, and

monocytes cells (Figure 2C). Next, we validate these results in vitro

by using fluorescence-activated cell sorting (FACS) and followed by

q-RT-PCR (Figure S2), Also these results verified by the experiment

are consistent with our previous analysis results (Figure 2D). The

deconvolution of DEGs for bulk RNA-seq in scRNA-seq level, we

found that upregulated genes in non-responders were mainly

expressed in malignant cells, but upregulated genes in responders

were more likely to be distributed in different immune cell types

(Figure S1D). Then, we further investigated the different pathways

in malignant cells within the three groups and the GSVA results

showed that significant difference of responder group and

nonresponses group existed in IL6/JAK2/STAT3 signaling

pathways and inflammatory-response pathways. These differences

reflect cellular heterogeneity in gene expression changes, further

suggesting that investigating gene expression changes in each cell

type in the anti-PD-1 treatment is important (Figure S1E).

Next, to identify gene dysregulation in the responders or

nonresponders at the level of cell type specificity, the

“FindMarkers” algorithm was used to calculate the DEGs between

untreated patients, responders, and non-responders for each cell

type, top3 genes are marked among all cell types. such as MMP7

related to ECM components, highly expressed in tumor cells in the

responder. Immunomodulatory factors, such as LY6E, IFI27 were

both highly expressed in the no responder. GZMB plays an

important role in T cell- and NK cell-mediated tumor killing and

can predict tumor immunotherapy response, which high expression

in NK and T cells of the responding population. FOX and GSN

genes were highly expressed in the nonresponses of fibroblasts and

endothelial cells, respectively, might serve as a potential target for

relieving tumor immunosuppression (Figure S1F). In addition, the

pathway showed that the differential genes at the cellular level were

mainly enriched in immunoregulatory pathways, such as TNF

signaling pathway, NF-kappa B signaling pathway, JAK/STAT

signaling pathway, in addition to some T cell receptor signaling

pathway, B cell receptor signaling pathway plays a role in the

activation of T cells or B cells (Figure 2E). These results suggest that

the immune response of tumor is influenced by multiple cell-cell

interactions in the microenvironment and that intercellular

receptor-ligand signaling plays an important role. For the DEGs

at the tissue and cellular level, we performed differential expression

among the untreated patients, responder, and non-responder for

each cell type in LUAD, providing a comprehensive molecular

expression change of TME in the anti-PD-1 treatment.
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Comparison of cell-cell interactions
between untreated patients, responders,
and non-responders

The single-cell analysis results had identified thirteen cell types

in the LUAD, to further investigate the potential interactions

between different cell types in the TME, the “CellphoneDB” was

be used to calculate cell-to-cell interactions (24). there are many

interactions with other cell subsets in LUAD, indicating complex

and diverse functions in the tumor microenvironment. To

comprehend the cell-cell interactions of untreated patients vs.

treated (responders or non-responders) in the TME, we

calculated the ratio of total interaction frequency within each cell

pair between groups (Figure 3A). Frequency of intercellular

interactions were shown in the Supplementary Table 3. In

general, the ratios of total scores between cell interactions show

endothelial cells, Fibroblasts, Mast cells, Tumor cells, and CD8 T

cells were most relatively upregulated in non-responders compared

with untreated patients, We inferred that these intercellular

interactions changes may be associated with immune

unresponsiveness (Figure 3B). Compared with untreated patients,

we found that CD8 T cells, Endothelial cells, Mast cells, Tumor cells,

and B cells had a strong interaction with the responder, which

implied that changes in these intercellular interactions may be

associated with immune responses (Figure 3C). The ratios of total

cell-cell interactions between no-responders and responders are

shown in (Figure 3D). The abundance of cell-cell interactions in

Mast cells, CD4 T cells, S100A8+ macrophage, and tumor cells

compared to other cells was higher in responders than in non-

responders, which indicated that there was more communication

between these cell types in the responders.

By calculating the change of interaction ratio between cells in

different immunotherapy response patients, the top 5 cell types with

the change in interaction ratio were detected. In the subsequent

analysis, we will focus more deeply on the molecular mechanisms

underlying these changes in cellular interactions in the

microenvironment of responders and nonresponders.
Single-cell transcriptional analysis reveals
the cell-cell crosstalk network in
responders and nonresponders

To further identify the key mediators of the important cell types

cell-cell interactions (CCI) in the anti-PD-1 treatment of LUAD

patients, we evaluated the putative crosstalk with the R package

“NicheNet” R package based on the expression and downstream

targets of ligand-receptor pairs, the “nichenet_seuratobj_aggregate”

algorithm can be used for downstream differential cell

communication and receptor-ligand regulatory network analysis

(25, 26).

We designated epithelial cells or stromal cells as the ‘sender’ and

immune cells as the “receiver” to elucidate cell–cell regulatory

networks. To obtain a comprehensive receptor-ligand molecular

profile for immunotherapy response, we first gather statistics on

differences in CCI between untreated patients vs. no-responder. The
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result showed the top 20 ligands probable regulating sender cells.

There are many significant ligand-receptor pairs between sender

and receiver, such as CDH1-KLRG1, PGF-NRP2, SEMA3F-SELPLG,

and so on. KLRG1 is an immune checkpoint receptor and a

combination blockade of KLRG1, and PD-1 promotes immune

control of local and disseminated cancers. Pathway analysis for
Frontiers in Oncology 08
downstream target genes regulated by receptor ligands shows a high

probability that the target genes belonged to the TNF signaling

pathway, Th17 cell differentiation, T cell receptor signaling

pathways, extracellular matrix pathways, PD-L1 expression and

PD-1 checkpoint pathway in cancer, and the chemokine signaling

pathway (Figure 4A). The results of differential cellular
B

C

D

A

FIGURE 3

Global analysis of ligand–receptor interaction pairs. (A) Detailed network of cell−cell interactions among thirteen cell subsets. Comparison of
pretreatment responders and nonresponders. Dot plots depict the changed numbers of putative ligand–receptors in untreated patients compared
with nonresponder samples (red, increased; blue, decreased). Cell−cell interactions across all cell pairs in pretreatment responders and pretreatment
nonresponders. The top 5 cells with the largest fold change are displayed (B) Comparison of cell−cell interactions between pretreatment responders
and untreated patients (red, increased; blue, decreased). The top 5 cells with the largest fold change are displayed (C) Comparison of cell−cell
interactions between responders and untreated patients (red, increased; blue, decreased). The top 5 cells with the largest fold change are displayed.
(D) Comparison of cell−cell interactions between responders and nonresponders (red, increased; blue, decreased). The top 5 cells with the largest
fold change are displayed.
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communication implicate the role of these receptor-ligand pairs in

immune resistance after immunotherapy. Second, we compare CCI

untreated patients vs. no-responder. The result showed that SELE-

CD44, VEGFB-ADRB2, GRN-TNFRSF1B, and so on. Pathway

analysis of downstream target genes showed Th17 cell

differentiation, chemokine signaling pathway, and NF−kappa B

signaling pathway were enriched (Figure 4B). Finally, the same

method is used for statistical CCI responder vs. no-responder. The

result showed that IL1B-ADRB2, CCL4-CCR5, FPR2-ANXA1, and

so on. Pathway analysis indicated IL−17 signaling pathway, NF

−kappa B signaling pathway, and TNF signaling pathway were

enriched in the downstream target genes (Figure 4C).

All of us provide a comprehensive characterization of LR-Pairs

of responder or no-responder after anti-PD-1 therapy in LUAD,

Ligand-receptor interactions (LRIs) between different cell types in

the TME play a vital role in the occurrence and development of

anti-PD-1 treatment responses.
Molecular characteristics of different
molecular subgroups of LUAD and their
association with clinical outcomes based
on LR-pairs

To further understand the ligand-receptor (LR) pairs related to

immunotherapy, we combined LR pairs related to immunotherapy

response or immunotherapy resistance (Figure 5A). All of us

provide a comprehensive characterization of LR-Pairs of

responders or nonresponders after anti-PD-1 therapy in LUAD.

Therefore, by combining three LR-Pairs datasets we analyzed the

expression profiles of 73 LR-related genes in 501 LUAD samples

from the TCGA database to construct consensus clustering. Based

on their cumulative distribution function and function delta area,

we chose k = 2, where LR-related genes appeared to be stably

clustered, and then we obtained two subgroups designated subtype

1 and subtype 2 (Figure 5B). Two molecular subgroups showed

significant differences in prognosis (p < 0.001), and subtype 2 was

associated with a better prognosis (Figure 5C). Next, we compared

the DEGs between subtype 1 and subtype 2 and found that the

immune response and inflammatory pathways such as the

chemokine signaling pathway, cytokine-cytokine receptor

interaction pathways, Natural killer cell mediated cytotoxicity

pathways, and p53 signaling pathway were more active in subtype

2, implying that subtype 2 might be immune infiltration tumor and

subtype 1 is likely to be an immunosuppressive tumor. Taken

together, tumor immunotyping can be used to predict the

prognosis of LUAD patients and may provide therapeutic

strategies for improving the clinical benefit of cancer

immunotherapy (Figures 5D, E).
The immune landscape of LUAD patients in
different tumor subgroups

To investigate the relationship between LRIs and immune

infiltration in LUAD. Thus, we used the “CIBERSORT” method
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for cell-type deconvolution (27), the Wilcoxon- test to compare the

distribution of 28 infiltrating immune in different LUAD molecular

subgroups (Figure 6A). We found that macrophages M2 and T cells

CD4 memory resting was markedly elevated in subtype 2, which

was concordant with previous observations linking subtype 1 to an

immunosuppressive phenotype (Figure 6B). In addition, we

explored the immune characteristics in distinct LR-Pairs

subgroups. As shown in (Figure 6C), both TCR richness

leukocyte and stromal fractions were increased in Cluster 2.

Cluster 1 had the highest SNV (single-nucleotide variant)

neoantigens, Indel neoantigens, and ITH (Intra-tumor

heterogeneity), while Cluster 2 was defined by the lowest

neoantigens and ITH. Immunomodulators play a critical role in

shaping TME and cancer immunotherapy. Therefore, to further

investigate the complex crosstalk of immunomodulators, immune

infiltration, and LR-Paris genes, we explored the expression of

immunomodulators in the different subgroups. Immune

checkpoint molecules, like CTLA-4, TIM-3, and PD-1 are negative

regulators of immune responses to avoid immune injury.

Checkpoint regulators are thought to actively participate in the

immune defense of infections, prevention of autoimmunity,

transplantation, and tumor immune evasion. Given the

importance of immune checkpoints (ICPs) and immunogenic cell

death (ICD) modulators in cancer immunity, we next analyzed their

expression levels in the different subgroups, ANXA1, PANXA1,

MET, CXCL10, ELF2A were overexpressed in the subgroup1, While

TLR3, HGF overexpressed in subgroup2. For instance, we identified

a number of molecules associated with immune checkpoint

inhibitors like CTLA4, ADORA2A, TNFSF9, TNFRSF18, CD274,

TNFRSF9 were significantly upregulated in subgroup1 in the TCGA

cohort. This result confirmed that subgroup1 might be an

immunosuppressive tumor subtype (Figures 6D, E).

Taken together, our comprehensive analysis revealed that the

LR-Pairs subgroups were significantly correlated with the patient

prognosis and TME characteristics, which might provide new

insights into LUAD anti-PD-1 therapy.
Establishment and validation of the LRI-
based prognostic risk score model for
overall survival in LUAD

The LASSO Cox algorithm was used to identify the most robust

prognostic genes among the 73 candidate LR-related genes. Overall,

by performing least absolute shrinkage and selection operator

(LASSO) Cox regression analysis, the 7 genes (TNFSF13, AXL,

KLRK1, FAS, PROS1, and CDH1) that met the criteria of P < 0.05

were retained for further analysis, Furthermore, the LR-pairs

scoring model was constructed using the 7 LR-pairs (Figure 7A).

Based on two independent cohort KM survival analyses, it was

verified that patients in the high-risk group had significantly worse

OS than those in the low-risk group (p=0.00015, p=0.037)

(Figures 7B, C). To investigate the molecular gene-mutation

characteristics between the LR-score high and LR-score low risk

groups, we first compared the mutation frequency between the two

groups. We used mutect2 to calculate the mutant-allele tumor
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heterogeneity score (MATH) and tumor mutation burden (TMB)

score to assess tumor heterogeneity and somatic mutation rates. As

shown in, the low-risk group showed significantly higher TMB than

the high-risk group, we hypothesized that samples within the low-

risk group may have a better benefit from immunotherapy

(Figure 7D). The mutation frequencies of the TTN, CSMD3 and
Frontiers in Oncology 10
ZFHX4 genes varied significantly among subgroups, with higher

mutation frequencies observed in the high-risk group (Figures S3A,

B). Furthermore, significant disparities in immune cell infiltration

levels were observed among the L-R score groups, Additionally,

there was significant infiltration of T cells regulatory (Tregs), with

the high LR score group displaying much higher infiltration levels
B

C

A

FIGURE 4

Single-cell transcriptional analysis reveals the cell−cell crosstalk network in LUAD. (A) By comparing differences between nonresponders vs
untreated patient cell interaction receptors and ligands in several key cell types. (a) Ligand activity prediction by “NicheNet” showing the top 20
ligands best predicting all DEGs between sender and receiver cells. (b) The bubble plot shows the expression patterns of the predicted ligands on
tumor cells, endothelial cells, and fibroblasts. (c) Ligand–target matrix displayed in LUAD. (d) Representative KEGG pathway enrichment of the
predicted target genes expressed. Statistical analysis was performed by Fisher’s test. (B) By comparing differences between responders vs untreated
patients, cell interaction receptors and ligands in several key cell types. (C) Cell interaction receptors and ligands in several key cell types were
compared between responders and nonresponders.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1170942
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mao et al. 10.3389/fonc.2023.1170942
than the low LR score group (Figures S3C, 7E). The association

between the 22 immune cell scores and the L-R risk score was

examined using Pearson’s correlation coefficient. The findings show

that the L-R score was significantly positively connected with T cells

CD4 memory resting, Eosinophils, and T cells CD4 memory
Frontiers in Oncology 11
activated but negatively correlated with regulatory T cells and T

cells follicular helper (Figure 7F). In summary, these findings

suggest that patients with low risk with longer survival time, high

TMB score and MATH score, hinted at a possible benefit in

the immunotherapy.
B C

D E

A

FIGURE 5

Identification and validation of the LRI-based classification of LUAD patients. (A) The ligand−receptor interaction pairs. The color of the line between
the ligand receptors represents differential LRIs between untreated patients and different treatment responses. (B) Consensus clustering matrix for
the ideal cluster size in the TCGA LUAD cohort, k = 2, which was represented by the matrix. (C) Kaplan−Meier survival analyses of the patients in
subgroups 1 and 2 of LUAD in the TCGA showed that subgroup 1 patients had a worse OS than subgroup 2 in the LUAD patients. (D) Alluvial diagram
depicting the relationships between LRIs and clinicopathological characteristics in two subgroups of LUAD patients in the TCGA cohorts. (E) GSEA of
the chemokine signaling pathway, cytokine−cytokine receptor interaction pathway, natural killer cell-mediated cytotoxicity pathway, and p53
signaling pathway between the two subgroups.
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The relationship between LR-score and
immunotherapy

To ascertain the relationship between the LRIs-score and

immunotherapy, it was examined how well the LR-score could

forecast a patient’s reaction to immune checkpoint blockade (ICB)

immunotherapy efficacy. In the anti-PD-L1 IMvigor210 cohort, 348

patients showed various levels of response to anti-PD-L1 receptor
Frontiers in Oncology 12
blockers, including complete remission (CR), partial response (PR),

stable disease (SD), and progressing illness (PD) (28). The LR-score

was higher in SD/PD patients than CR/PR individuals. A

comparison of percentages between patients with high or low

LRIs score revealed that high-risk score patients have fewer

effective therapies. Further survival studies revealed that, in

patients undergoing immunotherapy, the LRIs score was

significantly correlated with overall survival(p=0.029) (Figure 8A).
B

C

D

A

E

FIGURE 6

The immune landscape in distinct LRI-related molecular patterns in LUAD. (A) “CIBERSORT” analysis identifying the relative infiltration level of immune
cell populations in two LRI subgroups of LUAD samples in the TCGA cohort. (B) Differences in regulatory T-cell and MDSC proportions among distinct
LRI subgroups in TCGA cohorts. (C) The relative distributions of the leukocyte fraction, stromal fraction, SNV neoantigens, indel neoantigens, TCR
Shannon, BCR Shannon, and ITH scores were compared among the two LRI clusters. (D, E) Association between immune subgroupsand ICPs and ICD
modulators. a, b; Differential expression of ICP genes among the two LUAD subgroups. ns p ≥0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Additionally, in a different cohort of GES78220 anti-PD-1 patients,

those with SD/PD had a higher LR score than those with CR/PR

(29). Additionally, percentage data comparing patients with high

and low LRIs score revealed that those with low LRIs score had

superior treatment results, therapeutic benefits, and longer overall

life (p = 0.038) (Figure 8B). These findings suggested the reliability

of the immunotherapy efficacy evaluation and prognostic model,

which can be applied to diverse LUAD patients.
Frontiers in Oncology 13
Discussions

It is well known that the TME is composed of a complex cell

−cell interaction regulatory network by cell type, and it plays a

crucial role in the progression and response to treatment of tumors,

including drug resistance, immune escape, and tumor metastasis

(30). Although current immune checkpoint blockade (ICB) therapy

aimed at targeting receptor−ligand interactions has been successful,
B

C D

E F

A

FIGURE 7

Identification and validation of the LRI-based classification of LUAD patients. (A) Construction of the cellular senescence score (CSS) and the impact
of CSS on the clinical outcome of LUAD patients. A 336 cellular senescence cluster-related differentially expressed genes (DEGs) among the three
cellular senescence clusters are shown in the Venn diagram. (B, C) Kaplan–Meier curves of L-R scores for patients in the high and low groups in the
TCGA-LUAD cohort. (D) The tumor mutation burden (TMB) score and mutant-allele tumor heterogeneity (MATH) in the different subgroups of
LUAD. (E) Analysis of the immune cell scores between the different L-R score groups using the CIBERSORT algorithm. (F) Correlation between the
L-R score and immune cell score. ns p≥0.05; *p< 0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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there are still quite a few patients who cannot benefit from it (31,

32). It is essential to understand the mechanism of intracellular

communication and find new therapeutic targets. scRNA-seq is an

effective method to analyze the TME cell composition and crosstalk

between cell types, and it has provided a large number of resources

LRIs in previous studies. Here, the bulk-Seq and scRNA-Seq data of

LUAD were integrated for further analysis by comparing the

different cell−cell interactions in untreated patients, responders,

and nonresponders to anti-PD-1 treatment. A few crucial LRIs were

detected that revealed the complexity and plasticity of the TME.

Next, these LRIs also provide the foundation for two molecular

subtyping models, prognostic evaluation, and immunotherapy

utility. These findings contribute to a better understanding of cell

−cell communication in the TME of immunotherapy in LUAD and

offer new therapeutic possibilities.

The mechanisms of tumor immune resistance or response are

very complex and involve multiple aspects, such as genes,

metabolism, and inflammation (33). Due to cell type

heterogeneity, bulk RNA-seq results might not identify whether

these changes are intrinsic molecular changes or simply reflect

changes in the proportions of cell types. We not only evaluated
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changes in the expression of representative reported genes in the

cell layer but also identified gene dysregulation in responders or

nonresponders at the level of cell type specificity. Interestingly, the

upregulated genes in the nonresponders were primarily expressed

in epithelial cells, but upregulated genes in the responders were

more likely to be distributed in different immune cell types. We

speculate that epithelial cells play a key role in immune resistance in

LUAD and might target epithelial cells that can relieve

immunosuppression and provide treatment benefits in the future.

In addition, these results confirmed that some genes were

dysregulated in most cell types. We further understand the TME,

and the interactions between tumors and other cells could provide

important insights into tumor biology and help build reliable

prognostic and predictive models.

Single-cell RNA technology applied to immunotherapy

response has become increasingly prominent in oncology in

recent years, with remarkable results also being achieved in

cancer (17, 34). Several studies have identified crucial cell types

that respond to immunotherapy. Temporal scRNA-seq and T-cell

receptor (TCR) sequencing analyses have shown that Texp

(precursor-exhausted T cells) tend to accumulate in lung cancer
B

A

FIGURE 8

Correlation between the LRI score and response to anti-PD-L1 immunotherapy. (A) (a) Differences in L-R scores between responders and
nonresponders in the IMvigor210 cohort. (b) The proportion of patients responding to immunotherapy in the high and low L-R score groups in the
cohort. (c) Prognostic differences between the high and low L-R score groups in the cohort. (B) (a) Prognostic differences between the high and low
L-R score groups in early-stage patients in the GES78220 cohort. (b) Prognostic differences between the high and low L-R score groups in advanced
patients in the cohort. (c) L-R score differences between responders and nonresponders in the cohort.
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and are significantly reduced after PD-L1 therapy (35). In this

study, we focused on LRIs mediated by cell−cell communication

with different immunotherapy responses. We identified several

different cell−cell interaction pairs based on untreated patients,

responders, and nonresponders, and we found that CD8 T cells/

endothelial cells/mast cells/tumor cells/B cells had a stronger

interaction in responders than in untreated patients. The

abundance of cell−cell interactions in mast cells/CD4 T cells/

S100A8+ macrophages/tumor cells compared to other cells was

higher in responders than in nonresponders. Interactions between

these cell types play a key role in immunotherapy response and

nonresponse to anti-PD-1 therapy. Furthermore, to further identify

the key mediators of the important cell types and cell−cell

interactions in the anti-PD-1 treatment of LUAD patients, we

further investigated LRIs and the regulation of downstream genes.

Together, these results provide in-depth insights into the

mechanisms underlying response, provide important insights into

tumor biology, and help build reliable prognostic and

predictive models.

Currently, to further confirm the effectiveness of our typing

analysis, data on the L-R pairs subgroups of TCGA-LUAD data,

wherein LUAD samples were divided into two molecular subgroups

based on 73 LR-related genes. The results showed that the two

molecular subgroups showed significant differences in prognosis (p

< 0.001), and subtype 2 was associated with a better prognosis than

subtype 2. Pathway analysis of DEGs between subgroup 1 and

subgroup 2 showed that the immune response and inflammatory

pathway were more active in subgroup 1, implying that these

important receptor−ligand pairs can delineate the TME well. In

addition, this study examined the relationship between

immunotherapy and the L-R score to assess the benefit of the L-R

score in different immunotherapy cohorts. The results showed that

patients with higher L-R scores showed less favorable responses to

immunotherapy and poorer survival status. This suggests that

immunotherapy could benefit patients with a lower L-R score.

Additionally, the significant differences in survival between the

high and low LR score groups in both immunotherapy cohorts

illustrate its association with immunotherapy.

This new technology offers new opportunities for the analysis of

cell−cell interactions. Current posttranslational modification

(PTM) studies highlight the importance of glycosylation, lipid

modification, and ubiquitination in checkpoint function (36).

However, our understanding of checkpoint PTMs is still very

limited. Spatial transcriptomics (ST) ligand−receptor analysis can

analyze the spatial distribution characteristics of LRIs, reveal the

interaction between cells in spatial niches, and finally infer the

spatial regulatory network between different cell types (37). The

application of these technologies will make our results more

comprehensive in the future and offer multidimensional

information to understand the molecular mechanism of response

and nonresponse after anti-PD-L1 anti-PD-1 treatment.

In summary, multiomics integrative analysis is a valuable and

powerful tool that provides a complementary and more

comprehensive understanding of LUAD and offers an
Frontiers in Oncology 15
opportunity to expedite the translation of basic research to more

precise diagnosis and treatment in the clinic.
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SUPPLEMENTARY FIGURE 1

Aberrant gene expression profiles in cell type-specific manners in LUAD with

anti-PD-L1 treatment. (A) Volcano plot shows the differentially expressed

genes (DEGs) of the tumor compared with the adjacent tissue analyzed by
bulk RNA-seq datasets. (B)Malignant scores (x-axis) and nonmalignant scores

are distributed on a scatter plot (y-axis). Color coding is used to represent
density and assign each point to a cell. (C) Large-scale CNVs for each cell type

are displayed on the heatmap. Tumor cells are represented in the bottom
heatmap, and the expression levels for nonmalignant cells are plotted in the

top heatmap, with genes arranged across the chromosomes from left to right.
(D) Upregulated and downregulated gene scores were assessed in untreated

patients, nonresponders, and responders with differentially expressed genes.

(E) Pathway activities were scored for epithelial cells in LUAD patients using
Frontiers in Oncology 16
the “irGESA” algorithm. (F) Dotplot showing the relative expression of
representative reported immune response genes and other representative

genes in each cell type in nonresponder vs. untreated patients, responder vs.

untreated patients, and responder vs. nonresponder.

SUPPLEMENTARY FIGURE 2

Flow cytometry analysis the cell type in LUAD with anti-PD-L1 treatment. (A)
APC Mouse Anti-Human CD326 staining (BD Pharmingen™) to sort the
epithelial cells in the responders and non-responders (Left: APC-Black;

Right: APC-CD326) (B) PE Mouse Anti-Human CD163(BD Pharmingen™) to
sort the macrophage cells in the responders and non-responders (Left: PE-

Black; Right: PE-CD163).

SUPPLEMENTARY FIGURE 3

Correlation between L-R score mutation characteristics and immune-related

characteristics. (A, B) Heatmap showing the top 20 gene mutation
frequencies in the high- and low-risk groups in LUAD. (C) Analysis of the

immune cell scores between the different L-R score groups using the
CIBERSORT algorithm, distribution, and expression of the 22 types of

immune cells in the TCGA-LUAD cohort.
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