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Objective: Lung cancer is one of the most commonmalignant tumors in humans.

Adenocarcinoma of the lung is another of themost common types of lung cancer.

In clinical medicine, physicians rely on the information provided by pathology tests

as an important reference for the fifinal diagnosis of many diseases. Thus,

pathological diagnosis is known as the gold standard for disease diagnosis.

However, the complexity of the information contained in pathology images and

the increase in the number of patients far exceeds the number of pathologists,

especially in the treatment of lung cancer in less-developed countries.

Methods: This paper proposes a multilayer perceptron model for lung cancer

histopathology image detection, which enables the automatic detection of the

degree of lung adenocarcinoma infifiltration. For the large amount of local

information present in lung cancer histopathology images, MLP IN MLP (MIM)

uses a dual data stream input method to achieve a modeling approach that

combines global and local information to improve the classifification

performance of the model. In our experiments, we collected 780 lung cancer

histopathological images and prepared a lung histopathology image dataset to

verify the effectiveness of MIM.

Results: The MIM achieves a diagnostic accuracy of 95.31% and has a precision,

sensitivity, specificity and F1-score of 95.31%, 93.09%, 93.10%, 96.43% and

93.10% respectively, outperforming the diagnostic results of the common

network model. In addition, a number of series of extension experiments

demonstrated the scalability and stability of the MIM.

Conclusions: In summary, MIM has high classifification performance and

substantial potential in lung cancer detection tasks.

KEYWORDS

histopathology image, lung cancer, deep learning, multilayer perceptron,
image classification
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1 Introduction

Lung cancer has become one of the major cancer diseases in the

world (1). Breast cancer and prostate cancer are more common

among women and men, respectively, but the incidence and

mortality rates of both cancers are much lower than those of lung

cancer. Lung adenocarcinoma is the most common type of lung

cancer, accounting for about 50% of lung cancers (2). Microinvasive

lung adenocarcinoma is an early type of lung cancer that is detected

in a timely manner whose tumor cells can be completely removed

through radical surgery (3). Invasive lung adenocarcinoma is

relatively more malignant and more complicated to treat than

noninvasive ones. Timely and accurate determination of the type

of lung cancer can greatly improve the cure rate of patients.

The most reliable scientific basis for physicians to diagnose lung

cancer is through pathology (4). Morphological observation of tumor

cells under a microscope revealed that different types of tumor cells

have different nuclei, cell size, and morphology (5). However,

sometimes the microscope cannot clearly identify tumor type;

hence, tumor type has to be further determined by the indexes

obtained by immunohistochemistry. If the tumor is small, then

immunohistochemistry cannot also give a good judgment. Current

treatment methods for lung cancer are limited, irreversible, and

harmful to the human body. Therefore, accurate diagnosis prior to

lung cancer treatment is necessary to avoid unnecessary harm

to patients.

Deep learning has become widely used in different fields with the

rapid development of artificial intelligence (6). and increasing studies

are showing the reliability of deep learning algorithms in medical

image analysis (7). Some examples are as follows: Hua et al. (8)

applied the DBN to classify lung nodules as malignant or benign with

a sensitivity rate of 73.40% and a specificity rate of 82.20%.Roy et al.

(9) studied a system based on fuzzy inference system for the image

classification of cancerous and non-cancerous lung tumors. In a

paper published in 2018 at New York University School of Medicine

(10), a deep learning-based triple classification task for non-small cell

lung cancer histopathology slices was explored, and verified the

reliability of CNNs applied to pathology tasks. In 2019, X. Wang

et al. (11) proposed a new method based on weakly supervised

learning to solve the classification problem of pathological sections of

lung cancer. W. Shen et al. (12) designed an end-to-end deep learning

architecture, the multi-crop CNN, for low- and high-malignancy

lung nodule classification. Kriegsmann et al. (13) used a CNN-based

model for the classification of common lung cancer subtypes. The

study highlights the potential of CNN image classification models for
Frontiers in Oncology 02
tumor differentiation. Taken together, this demonstrates that deep

learning tools are feasible for some aspects of renal pathology

classification. Khademi et al. (14) proposed a novel spatio-temporal

fusion model using convolutional autoencoder to extract features

from CT scans and Swin Transformer to process the time series

features of clinical data. The model shows high accuracy and stability

in the malignancy prediction of lung cancer.

Convolutional neural networks (CNNs) (15) and vision

transformers (VTs) (16) have emerged as popular deep learning

models for various computer vision tasks, including image

segmentation and classification (17). While CNNs and VTs have

shown promising results, they often require complex network

architectures and high computational costs. To address these

challenges, a new model called MLP-Mixer (18) has been proposed

by the Google team. Unlike CNNs and VTs, MLP-Mixer relies

entirely on multilayer perceptron (MLP) and does not use any

convolutional operations or self-attentive mechanisms, resulting in

a simpler network architecture and lower computational

requirements. Therefore, MLP-Mixer offers a promising alternative

for efficient and effective image processing tasks. MLP-Mixer only

applies MLP to process the global information between patch

sequences to achieve classification tasks, which can obtain a

performance comparable to those of CNN and VT. The

morphology and volume of cell nuclei in histopathological images

are different; therefore, these images have a large amount of local

information. Moreover, MLP-Mixer destroys the local structure of

patches and cannot capture local information; hence, the application

of MLP-Mixer model to histopathological images has a shortage.

The MLP IN MLP (MIM) proposed in this study is also

architected as a MLP, but it notices the information features

between patches and the local information within each patch. In

particular, we regarded the local patches (e.g., 16×16) as “visual

sentences” and further divided them into smaller patches (e.g., 4×4)

as “visual words.” A combination of the global feature information

of “visual sentences” and the local feature information of “visual

words” was used for modeling. In comparison to CNN and VT,

MIM’s network is considered lightweight and less computationally

intensive, while still being able to effectively extract both global and

local information. The proposed model was applied to a private

lung cancer histopathology dataset. The workflow of MIM is shown

in Figure 1:
(a) We use the lung cancer histopathology dataset provided by

the First Hospital of Jilin University as the training set, and

the details of this dataset are described in Section2.
DA B EC

FIGURE 1

Workflow of the proposed MLP IN MLP model: (A) train date, (B) date process, (C) train process, (D) output classification results, (E) Assessing performance.
frontiersin.org

https://scholar.google.com/citations?user=tCYlO6oAAAAJ&amp;hl=zh-CN&amp;oi=sra
https://doi.org/10.3389/fonc.2023.1172234
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1172234

Fron
(b) During the data processing, we expanded the dataset by

performing data enhancement operation, and then finally

did image normalization.

(c) In this stage, the pre-processed data are input into MIM

Layer, and the global information features and local

information features in it are extracted using a multilayer

perceptron.

(d) In this stage of classification, the output feature maps are

classified using the standard classification head.

(e) Finally, our proposed MLP IN MLP is evaluated and the

model is evaluated using four metrics: accuracy, precision,

specificity, sensitivity and F1-score.
The main contributions of this paper are as follows. (1) A new

deep learning based model (i.e., MIM) is proposed, which only uses

multi-layer perceptron to do feature extraction for visual sentences

and visual words respectively, which can extract local features and

global features sufficiently to improve the overall classification

performance. (2) A triple classification task was performed to

identify the degree of lung adenocarcinoma infiltration, and a

digital pathology image dataset for lung adenocarcinoma

infiltration detection was prepared in collaboration with

pathologists. The experimental results proved that the MIM model

can effectively determine the degree of lung cancer infiltration and

achieved a good performance of 95.31%. (3) The MIM model has

good performance in detecting the degree of lung adenocarcinoma

infiltration and shows good generalization performance in other

cancer histopathology image classification tasks.

2 Materials and methods

2.1 Dataset

A unique dataset of lung cancer histopathological images

provided by the First Hospital of Jilin University was used. The

histopathological images were derived from 780 cases. Each case

was given a clear diagnosis by a joint consultation of doctors from
tiers in Oncology 03
different departments, and the diagnosis was collated and labeled by

four experienced doctors over a period of 3 months to ensure that

each sample had considerable clinical features. Based on this

approach, we cropped and cut the histopathological images and

gave specific labels for each cut. The dataset includes two parts:

training set and test set. Each part contains three categories

(Normal, Infiltration, and Micro_infiltration). In the training set

there are 7842 data, Infiltration and Micro_Infiltration include

2,614 and 2,614 digital pathology images respectively, and the

remaining 2,614 pathology data are Normal. A total of 870 digital

pathological images are included the test set. Among which, each

category contains 290 lung pathological images. This dataset

contains 8712 lung pathology images of size 2048×1500. Among

the invasive and microinvasive lung adenocarcinomas, the tumors

were predominantly of the adnexal type of growth, whereas

microinvasive adenocarcinomas had infiltration foci of ≤0.5 cm in

maximum diameter and were of the follicular, papillary,

micropapillary, or solid type. Infiltrating adenocarcinomas had

infiltration foci with a minimum diameter of >0.5 cm. Normal

represented a benign area of lung tissue. Some samples of the

specific data are shown in Figure 2.
2.2 Data preprocessing

Dataset pre-processing was performed, and images were

subjected to resizing, data enhancement, and data normalization

operations. All images were resized to 256×256 pixels. Five types of

enhancement techniques (horizontal flip, rotation, scaling, height

shift, and width shift) were then applied on the dataset, where the

rotation was set to 15° and the height shift and width shift were set

to 5% of the image size. These enhancement methods alter the

relative position of cancer in histopathological images; therefore,

the training set was expanded for training the MIM and no data

enhancement operation was taken for the test set. The tumor tissues

were extracted and sent to the pathology department; thus, each

doctor may use different stains in the process of making tumor

sections because of different personal habits. An image
A B C

FIGURE 2

Some representative examples of lung adenocarcinoma data: (A) microinvasive lung adenocarcinoma, (B) invasive lung adenocarcinoma, and (C)
images of normal lung tissue.
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normalization operation was performed to turn the pathological

images into black and white to avoid the color of the stain as a

feature during model learning.
2.3 MLP-mixer

The MLP-Mixer does not use convolution operations or self-

attentive mechanisms. Its architecture is based entirely on repeated

application of multilayer perceptrons (MLPs) on spatial locations or

feature channels, relying only on basic matrix multiplication

routines, changes in data layout (reshaping and transposition),

and scalar nonlinearities. Therefore, the model has a simple

network and low computational effort. A simple MLP-based

model that can compete with the best CNN and VT models

available today was constructed.

The overall structure of MLP-Mixer consists of three main parts

as follows:
Fron
1. Per-patch Fully-connected: Linearly map the input image

into a number of p×p×3-sized image patches, flatten each

patch and linearly map it into a two-dimensional vector.

The input image is thus converted into a two-dimensional

(S,D) tensor, where S represents the number of patches and

D represents the flattened dimensions of each patch.

Specifically, S = HW
P2 (where H and W represent the height

and width of the input image, respectively, and p represents

the size of each patch), and D=3×p2 (where 3 represents the

number of channels in the input image).

2. Mixer Layer: This layer consists of N identical layers. Figure 3

shows the internal structure of the layers. Each layer consists

of two types of MLPs: channel-mixing MLP and token-

mixing MLP. Token-mixing MLP acts on the columns of a

2D table and learns the feature information between different

spatial locations; it operates independently on each channel.

Channel-mixing MLP acts on the rows of a 2D table and

learns the feature information between different channels; it

runs independently on the same spatial location. The output

dimensions of both MLPs always remain the same as the

input dimensions. The idea is to explicitly distinguish

between per-position (channel-mixing) operations and

cross-position (token-mixing) operations. In addition,

other standard components are introduced, such as the

residual structure (skip-connections) (19), which improves

the ability of information interaction and avoids network
tiers in Oncology 04
degradation over deep gradients and the accuracy

degradation of the training set. Layer normalization (20) is

a key part of the model for stable training and faster

convergence.

3. Finally, MLP-Mixer uses a standard classification head with

the global average pooling layer followed by a linear

classifier.
MLP-Mixer implements the convolutional and pooling layers of

CNNs and the self-attentive layer of Transformer architecture using

the two MLP types and demonstrates a simple MLP-based model

that achieves competitiveness with current CNN or VT models,

because MLPs require only simple mathematical operations.
2.4 Methods

What makes the MLP-Mixer model effective is that it can fully

handle the relationship between several input patches to achieve

global information extraction. However, this method also has an

obvious drawback, that is, after the input image is split into several

patches, it spreads each patch into a 1D vector and thus destroys the

local information inside each patch. Therefore, we believe that

MLP-Mixer modeling does not take into account the information

inside each input patch.

By analyzing the lung histopathology dataset, we found that the

histological features of lung cancer can be broadly classified as

adnexal, alveolar, papillary, micropapillary, and solid (21). The cells

that are likely to be presented in high magnification view are mostly

tubular, columnar oval, and peg-shaped. Pathologists rely on

information about these complex shape features to diagnose the

type of cancer and the degree of infiltration.

Digital pathological images are more highly complex than

natural images with rich details and local information; therefore,

the application of MLP-Mixer to medical pathology will be

somewhat limited. It will fail to tap the cell and tissue features in

different locations if the granularity of patch segmentation is not

good enough. This paper proposes an MIM architecture to address

the shortcomings of MLP-Mixer. The proposed model considers the

global and local information between patches and the internal

information of each patch, improving the performance of the

model. The specific network structure is shown in Figure 4.

We partitioned the input 2D image into n patches uniformly and

without overlapping. Let (p, p) be the resolution of each patch and

X = [X1, X2, …, Xn] ∈ Rn×p×p×3. Each patch was spread into a 1D
FIGURE 3

Detailed structure of Mixer Layer.
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vector with a length of 3 × p². Finally, linear mapping was performed

to obtain a 2D tensor table about patches (n, c) i.e. X∈Rn×c. MLP-

Mixer just designs a mixer layer to handle the relationship between n

image patch sequences, unlikeMIM, where two standardmixer layers

extract the global and local information in the image. In MIM, we

consider each patch as a visual sentence representing an image. Each

patch will be further divided into m sub-patch visual words, that is, a

visual sentence consists of a series of visual words: Xi ! [Xi1, Xi2,…,

Xim] ∈ Rn×P×P×3, where Xij ∈ Rs×s×3 is the j-th visual word of the i-th

visual sentence, and (s, s) is the resolution size of the subpatch, j=1, 2,

…, m. Each subpatch was also spanned into a 1D vector during the

segmentation of the subpatch, and the 2D tensor table (n’, c’) about

the subpatch was obtained after linear mapping. For example, the size

of the visual sentence is 16×16×3. Here, p=16; therefore, the size of

the visual word is 8×8×3. Each visual sentence was divided into four

visual words, that is Xij ∈ R8×8×12.

In MIM, we have two data flows in which one flow operates

across the visual sentences, and the other processes the visual words

inside each sentence. For the visual words, we utilize a small mixer

layer as follows to explore the relation between visual words:

Zl
ij =  Xl

ij  +  (W2s (W1(LN( Xl
ij))

T ))T (1)

Yl
ij =  Zl

ij  +  (W4s (W3(LN( Zl
ij))

T ))T (2)

where l = 1, 2,…, L is the index of the l-th block, L is the total number

of stacked blocks, T stands for transpose, s is an element-wise

nonlinearity (GELU) (22), W is a fully connected layer process, Z

is the output after token-mixing MLP, and Y is the output after

channel-mixing MLP. This process builds the relationship among

visual words by computing the interactions between any two visual
Frontiers in Oncology 05
words. For example, in a patch of human face, a word corresponding

to the eye is more related to other words of eyes and interacts less

with forehead part. For the sentence level, the sequence of visual

words are transformed into the domain of visual sentence by linear

projection and added into the visual sentence as follows:

Ul
i = Xl

i + FC(LN(Yl
ij)) (3)

With the above addition operation, the representation of

sentence sequences is augmented by word-level features. We used

the standard mixer layer for transforming the visual sentences as

follows:

Sli = Ul
i   +  (W2s (W1(LN( Ul

i ))
T ))T (4)

Ql
i =  Sli  +  (W4s (W3(LN( Sli))

T ))T (5)

This big mixer layer is used for modeling the relationships

among sentence sequences. In summary, the inputs and outputs of

the MIM layer include the sequence of visual word and sequence of

visual sentences as shown in Figure 4; hence, MIM can be

formulated as:

Y  ,  Q = MIM(X ,  U) (6)

In our MIM layer, the small mixer layer is used to model the

relationship between visual words for local feature extraction, and

the big mixer layer captures the intrinsic information from the

sequence of visual sentences. We built the MIM network by stacking

the MIM layer for N times. Finally, MIM uses a standard

classification head with the global average pooling layer, followed

by a linear classifier.
FIGURE 4

Internal structure of MLP IN MLP.
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2.5 Hyperparameter settings

Finding the optimal values of hyperparameters is one of the

crucial tasks for building a robust model. Besides fully extracting

image information, the hyperparameters values have a great

influence on the fast convergence of the model. MIM was used to

train the image of the lung cancer pathological tissue dataset for 200

epochs. In each epoch, batch size is set to 256. It uses a method to

train the lung adenocarcinoma infiltration level recognition task

from scratch. AdamW (23) was used as the optimizer, and its

parameters were set as 3×10−5 learning rate. In addition, the

dropout ratio (24) was set to 0.1 in the training process.
2.6 Experimental environment

The experiments were carried out on a local workstation with 32

GB RAM and Windows 10 operating system. The GPU of the

workstation consists of NVIDIA RTX 3090 and CPU Intel Core i9-

10875H 2.30 GHz. We used the Python 3.7 programming language

and PyTorch 1.8.0.
2.7 Performance metrics

Accuracy, precision, sensitivity, specificity and F1-score were

calculated to evaluate the performance of MIM. Here, accuracy

indicates the proportion of the number of samples correctly

predicted by the model to the total number of samples. Precision

indicates the proportion of samples correctly predicted by the

model as a percentage of all samples predicted by the model to be

positive. Sensitivity indicates the proportion of the number of

samples correctly predicted by the model as a percentage of the

total number of positive samples; the specific value indicates the

proportion of the number of samples correctly predicted by

the model as a percentage of the total number of negative

samples. F1-score combines the results of precision and

sensitivity. True positive, true negative, false positive, and false

negative were used in the definition of these five criteria in Table 1.
3 Result

3.1 Experimental results and analysis

In the test phases, accuracy, precision, sensitivity, specificity and

F1-score were calculated to evaluate the performance of the
Frontiers in Oncology 06
proposed MIM and other networks. The results are shown in

Table 2. The accuracy, precision, sensitivity, specificity and F1-

score of MIM on the test set were 95.31%, 93.09%, 93.10%, 96.43%

and 93.10%, respectively. The accuracy, precision, sensitivity,

specificity and F1-score of MLP-Mixer on the test set were

92.43%, 88.97%, 88.96%, 94.24% and 88.97%, respectively. The

five evaluation metrics of the proposed MIM were on average

nearly 3% higher than those of MLP-Mixer. In addition, MIM

had higher evaluation metrics than ResNet50 and Swin

Transformer (25). The effectiveness of modeling using a

combination of global and local information in the MIM model

was demonstrated for the large amount of local information present

in lung adenocarcinoma.

The superior performance of MIM can be further demonstrated

by the correlation model confusion matrix shown in Figure 5. In the

test confusion matrix, the classifications of normal lung

pathological data are very accurate. The classification errors of

ResNet and Swin Transformer are shown in Figures 5B and C,

respectively. Both methods misclassified Infiltration as

Micro_infiltration. In Figure 5D, the misclassification of MLP-

Mixer is due to the confusion caused between Infiltration and

Micro_infiltration. The main reason for these phenomena are that

the Infiltration and Micro_infiltration samples contain tumors, but

the only difference is whether the infiltrated area is more than

5 mm. Moreover, the model gave wrong judgments for some

samples near the threshold. As shown in Figure 5A, MIM

effectively alleviated these problems. Using MIM, only 21

Infitration data were incorrectly predicted as Micro_infiltration

data, and 13 Micro_Infitration data were incorrectly predicted as

Infitration data. The effectiveness of the MIM modeling approach

using local and global information was further demonstrated in

terms of the degree of infiltration of lung adenocarcinoma, allowing

the effective identification of differences in infiltrative and

microinfiltrative pathological features.
3.2 Extended experiments

3.2.1 Extended experiment on combined dataset:
private and public data on stomach cancer

A hybrid dataset consisting of the publicly available

pathological dataset of gastric cancer from Northeastern

University (26) and our private dataset was used to come up with

extended experiments to explore the performance of the model on

lung tissue and other histopathological data. The experimental

setup was the same as the main experimental setup. The gastric
TABLE 1 Criteria and corresponding definitions for image global detection evaluation.

Criterion Definition Criterion Definition

Accuracy TP + TN
TP + TN + FP + FN

Precision TP
TP + FP

Sensitivity
   

TP
TP + FN

Specificity TN
 TN + FP

F1-score 2� Precision� Sensitivity
Precision + Sensitivity
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histopathology database from Northeastern University has three

sizes (160×160, 120×120, and 80×80 pixels), and two data types

(normal and abnormal). Some examples are shown in Figure 6. In

this experiment, 160×160 size data were used and resized to the

same size (256×256) as our private dataset during data processing.

We use 10080 normal data images and 6670 abnormal data images.

Considering the number of training and test sets in our private

dataset, we randomly partitioned the training and test sets in a 9:1

ratio for the histopathological data of gastric cancer. The mixed data
Frontiers in Oncology 07
set is a five-category task. The combined dataset’s data settings are

shown in Table 3.

Six representative models were selected for the comparative

experiments with MIM, including two CNN models [VGG16 (27)

and ResNet50] two VT models [ViT and XCiT (28)], and two MLP

models [ResMLP (29) and MLP-Mixer]. The experimental settings

were the same as the previoussetting. Table 4 shows the results of

the models on the test set of the combined dataset. ViT obtained the

highest accuracy rate of 95.50% among the six models, and MLP-
D

A B

C

FIGURE 5

The confusion matrix obtained by the model on a private dataset: (A) MLP IN MLP, (B) Swin Transformer, (C) ResNet50, (D) MLP-Mixer.
TABLE 2 Results of MLP IN MLP and other networks on private datasets (In %).

Model Accuracy Precision Sensitivity Specificity F1-score

MLP IN MLP 95.31 93.09 93.10 96.43 93.10

MLP-Mixer (18) 92.43 88.97 88.96 94.24 88.97

ResNet50 (19) 93.95 91.46 91.14 95.36 91.30

Swin (25) 94.60 92.48 92.06 95.85 92.27
fro
ntiersin.org

https://doi.org/10.3389/fonc.2023.1172234
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1172234
Mixer had the lowest accuracy rate of 91.45%. Among the models,

the proposed MIM model achieved the highest test accuracy of

96.50%, which was nearly 1% higher than the accuracy of ViT and

nearly 5% more accurate than MLP-Mixer. In addition, the

precision, sensitivity, specificity and F1-score of MIM were also

the highest at 93.95%, 93.89%, 98.91% and 93.92%, respectively. The

results show the effectiveness of the proposed MIM model.

3.2.2 Extended experiment on combined dataset:
private data and public data

In addition to exploring the sensitivity between different

histopathologies, we also incorporated other lung cancer subtypes

to further increase the complexity of the experiment. The public
Frontiers in Oncology 08
dataset, LC25000 (30), was incorporated to the private dataset, and

extended experiments were performed on the hybrid dataset to

validate the generalization ability of MIM on other lung cancer

subtype pathology datasets. The experimental setup was the same as

the main experimental setup. The LC25000 dataset has five different

data types about lung and colon histopathology: normal lung

histopathology image (Lung_n), lung squamous carcinoma

histopathology image (Lung_scc), lung adenocarcinoma

histopathology image (Lung_aca), normal colon histopathology

image (Colon_n), and colon adenocarcinoma histopathology

image (Colon_aca). Some examples are shown in Figure 7. The

dataset has 4500 images in the training set and 500 images in the

test set for each type, for a total of 25000 images for the five data
A B

FIGURE 6

Some examples in the gastric cancer dataset: (A) normal stomach tissue data, (B) abnormal stomach tissue data.
TABLE 3 Data setting for training and test sets.

Class/Dataset Train Test Sum

Micro_infiltration 2614 290 2904

Infiltration 2614 290 2904

Normal 2614 290 2904

Stomach_Abnormal 6013 657 6670

Stomach_Normal 9072 1008 10080

Sum 22927 2535 25462
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types. Both datasets contain normal lung histopathology data;

hence, we set all normal lung tissue data as one category, forming

a seven-category hybrid dataset. Table 5 shows the data settings.

The results of the comparison tests betweenMIM and six classical

deep learning models in the lung cancer and colon cancer detection

task are shown in Table 6. Obviously, among the six classical models,

ConViT (33) performed the best in the test set with accuracy,

precision, sensitivity, specificity and F1-score values of 97.83%,

96.70%, 96.43%, 99.59% and 96.52%, respectively. The accuracy,

precision, sensitivity, specificity and F1-score values of MIM on the

test set were 98.09%, 97.17%, 97.04%, 99.67% and 97.11%,

respectively. The specific detection results of MIM are shown in

Table 7. For the five types of lung pathological images, 2309 images

were correctly detected by the MIM model, and only 61 images were
Frontiers in Oncology 09
not detected; therefore, the accuracy of MIM in this set was 97.42%.

For colon adenocarcinoma histopathological images, 996 images

were detected by the MIM model, and only four images were not

detected; therefore, the accuracy of the model for colorectal images

was 99.60%. The LC2500 dataset contains lung cancer subtypes

different from invasive lung cancer in addition to the colon

histopathological data that are also present. The findings indicate

that MIM has good classification performance between different lung

cancer subtypes and performs well for colon histopathological data.

4 Discussion

First, in our experiments, we found that the performance is better

when the number of MIM blocks is set to 8, when the parameter size
TABLE 4 Comparison results of models on the test set of the combined dataset (In %).

Model Accuracy Precision Sensitivity Specificity F1-score

MLP IN MLP 96.50 93.95 93.89 98.91 93.92

ResNet50 (19)
Vgg16 (27)
XCiT (28)
ViT (16)
ResMLP (29)
MLP-Mixer (18)

94.90
93.68
95.05
95.50
94.87
91.45

92.44
93.70
87.40
92.49
92.43
87.12

92.34
93.53
89.66
92.37
92.10
87.19

98.46
98.12
97.85
98.53
98.39
97.62

92.39
93.62
88.53
92.43
92.27
87.16
fro
A B C D E

FIGURE 7

Some examples in the LC25000 dataset: (A) lung squamous carcinoma histopathology picture, (B) normal lung histopathology image, (C) lung
adenocarcinoma histopathology image, (D) normal colon histopathology image, (E) colon adenocarcinoma histopathology image.
TABLE 5 Data setting for training and test sets.

Class/Dataset Train Test Sum

Micro_infiltration 2614 290 2904

Infiltration 2614 290 2904

Lung_aca 4500 500 5000

Lung_scc 4500 500 5000

Lung_n 7114 790 7904

Colon_aca 4500 500 5000

Colon_n 4500 500 5000

Sum 30342 3370 33712
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of MIM is about 165 MB. We had 7842 training data and used 200

epochs to train MIM, and the total time was about 230 minutes. We

lightened the model according to the actual needs of clinical work

(35). First, we used a quantization technique to reduce the number of

bits required to store each weight from 32 bits to 16 bits. Then, the

size of the model parameters was reduced to 83 MB. Consequently,

the classification performance was almost unchanged, and the total

training time was reduced by about 55 minutes.

Second, the segmentation granularity of patches varies in terms of

the feature richness that can be extracted from the image. By contrast,

the feature extraction layer of MIM has two different data streams,

namely, visual sentences and visual words, and MIM was designed to

capture the global feature information between patches and mine the

local feature information within patches. In the pre-experiments, we

set different resolutions for the visual sentences and visual words. For

the fairness of the experiments, the number of feature extraction

layers in the experiments was set to 8. The rest of the experimental

settings and the datasets used were the same as those in the main

experiments. The specific experimental details and results are shown

in Table 8. The highest accuracy rate of 95.31% was achieved with a

visual sentence resolution of 16 and a visual word resolution of 4. The

finer the granularity of patch segmentation, the more the number of

patches. Additionally, the amount of model computation was
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positively correlated with the number of patches. The fullest

possible exploitation of the internal local information of patches

should also be considered. Therefore, the resolutions of vision

sentences and vision words were set to 16×16 and 4×4, respectively,

considering the computational power and training time of the model.

Third, the optimizer and activation function should be chosen

carefully. Although various optimizers (e.g., stochastic gradient

descent (36) and Lagrangian optimizer) and activation functions

(e.g., CroReLU) (37, 38) are implemented with deep networks to

solve different classification problems, we applied AdamWand GELU

because of their efficiency in the proposed architecture with our

datasets. AdamW solves the problem of parameter over-fitting with

Adam optimizer (39) by introducing the L2 regularization terms of

parameters in the loss function. It is the fastest optimizer for gradient

descent speed and training neural networks that is used in all models.

GELU has been widely used in the recent Transformer model.

Randomness is introduced to make the model training process

more robust and avoid the problem of gradient disappearance well.

Loss functions have an important role in a deep network architecture.

Hybrid loss functions have been proposed in several works to

improve the performance of model. We used the default loss

function [i.e., cross-entropy (40)] because of its low computational

cost and efficiency with our pathological images.
TABLE 6 A comparison of image classification results on the mixed test set.

Model Accuracy Precision Sensitivity Specificity F1-score

MLP IN MLP 98.09 97.17 97.04 99.67 97.11

EfficientNet (31) 96.96 95.22 95.45 99.32 95.34

InceptionV2 (32) 96.76 95.29 95.31 99.43 95.30

Swin (24) 97.51 96.09 95.97 99.53 96.03

ConViT (33) 97.83 96.70 96.43 99.59 96.52

gMLP (34) 96.41 96.09 95.16 99.35 95.63

MLP Mixer (17) 95.54 92.71 92.07 99.00 92.39
fro
(In %).
TABLE 7 The result of MLP IN MLP in classification task.

Data Type Correct Incorrect Accuracy

Lung histopathology image 2039 61 97.42

Colon histopathology image 996 4 99.60

Sum 3305 65 98.09
(In %).
TABLE 8 Comparison test of different patch sizes.

Model Visual Sentences Visual word Accuracy

MIM 32 8 93.24

32 4 94.12

16 8 94.78

16 4 95.31
(In %).
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Finally, although the proposed model showed a prominent

performance in the classifying degree of lung cancer infiltration,

this study encountered some challenges. Our work was limited to two

types of lung cancer data, namely, infiltration and microinfiltration,

because of data inadequacy. Moreover, we only considered digital

pathological images. Other medical imaging techniques, such as

computed tomography and magnetic resonance imaging, can also

be taken under consideration in future work. In addition, this work

can be extended to patients’ medical history (age, gender, physical

condition, etc.) with image datasets for more accurate predictions.
5 Conclusion

In the experiments, MIM was tested on a lung cancer pathology

dataset with 95.31% accuracy, showing the model’s potential in lung

cancer determination tasks. The lung pathological images have a

large amount of information on histological shapes, such as pegs

and papillae. The local structure of patches was destroyed in the

MLP-Mixer model. Compared with the conventional MLP-Mixer,

MIM can better preserve and model local information for lung

histopathology identification tasks. In the extended experiments,

MIM is more efficient and performs better than CNN, MLP and VT

models proving its powerful generalization ability.
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