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Growing evidence supports the critical role of tumour microenvironment (TME)

in tumour progression, metastases, and treatment response. However, the in-

situ interplay among various TME components, particularly between immune

and tumour cells, are largely unknown, hindering our understanding of how

tumour progresses and responds to treatment. While mainstream single-cell

omics techniques allow deep, single-cell phenotyping, they lack crucial spatial

information for in-situ cell-cell interaction analysis. On the other hand, tissue-

based approaches such as hematoxylin and eosin and chromogenic

immunohistochemistry staining can preserve the spatial information of TME

components but are limited by their low-content staining. High-content

spatial profiling technologies, termed spatial omics, have greatly advanced in

the past decades to overcome these limitations. These technologies continue to

emerge to include more molecular features (RNAs and/or proteins) and to

enhance spatial resolution, opening new opportunities for discovering novel

biological knowledge, biomarkers, and therapeutic targets. These advancements

also spur the need for novel computational methods to mine useful TME insights

from the increasing data complexity confounded by high molecular features and

spatial resolution. In this review, we present state-of-the-art spatial omics

technologies, their applications, major strengths, and limitations as well as the

role of artificial intelligence (AI) in TME studies.
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Introduction

Tumour microenvironment (TME) plays an important role in

disease progression and clinical outcomes. TME is made up of

multiple components including fibroblasts, immunosuppressive

cells, immune effector cells, and cytokines (1). Specific T-cell

subsets, including CD4+ helper and CD8+ T-cells offer protective

immunity (2). On the other hand, tumour-associated macrophages

(TAM) which is the most prevalent infiltrating immune cells in the

TME can promote tumour growth when accompanied by the

activation of fibroblasts. Localization of TAM near invasive

borders correlates with unfavorable prognoses in tumors such as

colorectal cancer (CRC) (3). Similarly, tumour-associated

neutrophils (TANs) can transition from anticancer to pro-

tumorigenic phenotypes due to unclear mechanisms (4, 5). TME

influences treatment outcomes through multiple mechanisms. In

ovarian and lung malignancies, TAM-associated exosomes, which

are small membrane-bound vesicles that contain proteins, lipids,

and nucleic acids which can be transferred to neighboring cells to

influence their physiological behavior, thereby increasing tumour

proliferation, apoptosis inhibition and drug resistance (6, 7). TANs

were found to have tumour-promoting effects in the lung TME,

leading to unfavorable immunotherapy (IO) outcomes (8). Higher

mast cell levels in TME were associated with higher PD-L1

expression (9) indicating potential impact on immune checkpoint

inhibitor (ICI) efficacy. Increased CD4+ helper T-cells have been

postulated to improve IO outcomes through enhancing cytotoxic T-

cell response (10). A previous study has shown that phenotypically

defined T-cell subsets, rather than overall T-cells, may be useful in

predicting therapy outcomes (11).

While traditional immunohistochemistry (IHC) and

hematoxylin and eosin (H&E) tissue staining have been used

routinely for tumour diagnosis, their low-content limits

usefulness in TME analysis. On the other hand, high-throughput

technologies such as single-cell RNA-sequencing (scRNAseq) and

flow cytometry, despite allowing for high-content molecular

profiling, they lose spatial information during tissue dissociation.

Additionally, experimental tissue dissociation may result in

unexpected cell phenotypic alterations unrepresentative of the

actual TME. To address these issues, novel tissue-based spatial

omics approaches have recently been developed (12). These

advanced spatial techniques enable deep phenotyping, such as

distinguishing M1- from M2-polarized macrophages (13) and

mature from immature myeloid cells (14), which cannot be

achieved with IHC and H&E alone. Additionally, by conserving

the spatial information, these techniques allows identification of

unique spatial patterns of immune cells in TME with novel

biological significance, such as TAM-associated cellular

neighborhoods with different antitumor characteristics (15),

TMEs with various TAN subtypes linked to prognosis and

survival (16), differing states of T cell dysfunction contributing to

tumour propagation (17), and ligand-receptor cell interactions (18)

associated with various prognoses and treatment outcomes (19). In

this review, we will introduce and discuss how state-of-the-art

spatial proteomics (SP), spatial transcriptomics (ST) and the

utilization of artificial intelligence (AI) approaches that can
Frontiers in Oncology 02
benefit TME analysis (Figure 1). We will also provide our

perspectives on the challenges and future development needed to

advance the field of spatial omics.
SP techniques

In this section, we discuss the two major groups of SP

techniques, namely fluorescent-labelling and metal isotope-

labelling assays (Table 1), which differ in the number of plexing,

throughput, resolution, and cost (39).
Fluorescence-labelling techniques

OPAL-based multiplex IHC (mIHC)/immunofluorescence (IF)

technique allows staining up to 9 markers on a single formalin-

fixed, paraffin-embedded (FFPE) tissue section through tyramide

signal amplification (TSA). It represents one of the most popular SP

techniques for (i) its widely validated consistency against

conventional IHC (40, 41); (ii) autostainer availability,

particularly BondMax (Leica Biosystems, Germany) for staining

consistency (39, 42–45); and (iii) clinical feasibility and usefulness

(46–48). The technique has been widely applied for investigating

the complex TME through enabling accurate and deep cell

phenotyping (e.g., macrophage polarization states, myeloid cell

maturity and immunosuppressivity, and T cell phenotypes) (13),

revealing the spatial heterogeneity of immune cells (49–51), and

characterizing immune localization patterns associated with patient

survivals or treatment outcomes (20). Using proximity analysis,

Feng et al. showed that hampered survival outcomes of oral

squamous cell cancers (SCC) was associated with CD8+ T-cells

surrounded by immunosuppressive FoxP3+ or PD-L1+ cells (52);

Väyrynen et al. showed that CRC patients with mature monocytic

cell (CD14+HLADR+) closer to tumour cells harbored better

survival (14). One disadvantage of OPAL-based mIHC/IF

technique is the possibility of physical steric hindrance caused by

multiple antibodies at a single site, resulting in noisy signals (53).

To enable comprehensive immune profiling, hyper-plex cyclic

mIHC/IF techniques have been developed, including COMET

(Lunaphore, Switzerland) and PhenoCycler (Akoya Biosciences,

USA). COMET provides an automated workflow cycling through

staining, imaging, and elution of 3 markers each time, up to 40

markers in the same tissue section, whereby fluorophores are

directly attached to secondary antibodies without TSA. This

approach not only reduces steric hindrance with lesser markers

per cycle, but also enhances signal stability through reducing

incubation time (i.e., tissue exposure time to harsh reagents).

Using a 40-plex COMET assay, Almeida et al. found that myeloid

and T regulatory cells were spatially restricted in primary lung

cancers (21). Using machine learning (ML), the authors also

identified distinct subsets of myeloid cells within the same TME.

To further reduce the steric hindrance effect, PhenoCylcer

(formerly CODEX) replaces the large molecular secondary

antibodies in the OPAL approach with DNA-conjugated

antibodies tagged to fluorescent reporters, allowing staining of up
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to 50 markers (3 per cycle). Applying tensor decomposition, cell-

type differential enrichment and canonical correlation analysis on

PhenoCycler data, Schürch et al. found 9 distinct cellular

neighborhoods associated with survival outcomes which were

conserved across 35 CRC samples (22).
Metal isotope-labelling techniques

Metal-based methods employ stable metal isotopes to replace

the fluorophores (54), where protein expression is measured by

detecting isotope signals using laser scanning or ion beams.

Autofluorescence and background noise can be considerably

reduced with endogenous metals (55). Imaging mass cytometry

(IMC) (Standard BioTools, USA) uses high-resolution scanning

laser ablation (a fixed lateral resolution of 1,000nm) followed by

mass cytometry to quantify up to 50 markers at subcellular

resolution using fresh frozen (FF)/FFPE tissues (56–58). Using

37-plex IMC, Ali et al. identified heterotypic neighborhoods of a

specific myofibroblast phenotype which was associated with poor

outcomes in breast cancer (BC) (23).

Another metal-based method, multiplexed ion beam imaging

(MIBI) (Ionpath, USA) uses a tuneable ion beam voltage and mass

spectrometry to detect molecules of interest (24), analyzing up to

100 markers at subcellular resolution using FF/FFPE tissues (25, 59,

60). Ptacek et al. validated the robustness, sensitivity, and

reproducibility of MIBI against individual IHC stains (24), while

Angelo et al. and Rost et al. tested the consistency of MIBI against

IHC procedures for estrogen receptor alpha, progesterone receptor
Frontiers in Oncology 03
and human epidermal growth factor receptor 2 using FFPE BC

samples (60, 61). ML techniques have been extensively used in these

MIBI studies for rapid exploration and analysis of data for novel

discoveries. For examples, Keren et al. developed a computational

pipeline to chart the immune landscape in triple-negative breast

cancer. In their pipeline, they employed multiple ML techniques

such as DeepCell for cell segmentation, k-nearest neighbor

algorithm for noise filtering, quantile normalization for batch

effects correction, and hierarchical clustering to identify unique

and shared spatial interactions among patients (25). Padmanabhan

et al. built multiple DL models for segmentation of cells and regions,

and for cell classification. A containerized cluster platform that can

run a workflow comprising of pre-trained DL models as directed

acyclic graph has been used to accelerate the discovery of

associations and spatial patters in TME (26). Authors in (23, 60)

used CellProfiler, an image analysis tool encompassing number of

ML algorithms such as random forest, principal component

analysis, and neural networks (NN) to understand phenotypic

impact of genomic alterations and to gain new insights from the

combination of tissue microarchitecture with multiplexed protein

expression patterns, respectively.
ST techniques

ST methods can be broadly categorized into next-generation

sequencing (NGS)-based and imaging-based methods, measuring

either near whole-transcriptome at multi-cell (10s to hundreds)

resolution or selected genes at subcellular spatial resolution. NGS-
A B C

FIGURE 1

Simplified graphical representations of the three key spatial omics technologies, namely (A) spatial proteomics assays for in-situ single-cell
phenotyping using surface marker; (B) H&E staining for histomorphological assessment, and (C) spatial transcriptomics for in-situ transcriptomics
characterization, and representative TME analyses enabled by AI bioinformatics.
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TABLE 1 Summary of SP and ST techniques as well as their associated applications in TME analysis.

Technique Detection Vendor Profiling
technology

Plexing Tissue
Type

Companion
analytical
software

Key TME applications

Opal-based
multiplex

IHC

Proteins Akoya
Biosciences

Fluorescence-
labelling
reagent kits

9 FFPE InForm Deep phenotyping of macrophage polarization
state, myeloids, T-cell subsets (15) in CRC (14)
and pancreatic cancers (20).

COMET Proteins Lunaphore Cyclic
fluorescence
labelling
platform

40 FF/
FFPE

Phenoplex Identification of spatially restricted myeloid and T
regulatory cells in primary lung cancers (21)

PhenoCylcer Proteins Akoya
Biosciences

Cyclic
fluorescence
labelling
platform

50 FF/
FFPE

PhenoCycler
MAV software

Identification of distinct cellular neighbourhoods
with survival association in CRC (22)

IMC Proteins Standard
BioTools

Metal-based
labelling

50 FF/
FFPE

Phenoplex Study of heterotypic neighbourhoods of a specific
myofibroblast phenotype in breast cancer (23)

MIBI Proteins Ionpath Metal isotope-
labelling

100 FF/
FFPE

MIBItracker
Software

Study of the spatial organization and immuno
profile of 15 tumor types, revealing infiltration of
CD8+ cytotoxic T cells and CD68+ macrophages
in ovarian serous carcinoma TME (24); spatial
enrichment analysis revealed that tumors were
immune mixed and compartmentalized with
varying expression of PD1, PD-L1, and IDO on a
cell-type and location-specific basis, where highly
ordered structures with PD-L1 and IDO along the
tumor-immune border served as a hallmark of
tumor compartmentalization in a triple-negative
breast cancer patients (25).

Visium RNA 10X
Genomics

NGS 18000 FF/
FFPE

Spaceranger,
Loupe browser

Identification of enrichment of B-cell maturation
and anti-tumorigenic antibody production within
TLS+ compartment and positive association with
clinical outcomes of renal cell carcinoma (26);
study of long-term effects of SARS-CoV-2 in
hepatocellular carcinoma and CRC, revealing
persistent B-cell immune responses and improved
in-silico IO-response scores in SARS-CoV-2-rich
tissue regions (27).

GeoMx DSP Proteins/
RNA

nanoString NGS 100+
(proteins)/
18000+ (RNA)

FF/
FFPE

GeoMx DSP
online suite,
GeoMx tools (R
package)

Study of the association between CD66b
expression within the CD45+CD68 compartment
and ICI resistance, which however, not observed
in ICI-untreated lung cancer patients (28);
characterization of 4 molecularly unique
compartments: tumor, leukocyte, macrophage, and
immune stroma where different biomarkers in
specific compartments show improved survivals in
heck and neck SCC (29)

Slide-Seq/
Seeker

RNA Curio
Bioscience

NGS whole-
transcriptome

FF – Identification of cellular neighbourhood
archetypes associated with tumour progression
and malignancy (30); spatial TCR clonotypic effect
of IO treatment in metastatic lung cancer (31)

Stereo-seq RNA Beijing
Genomic
Institute

NGS whole
transcriptome

FF/
FFPE

Stereo-seq
Analysis
Workflow
(SAW) software
suite

Study of hepatocellular carcinoma shows that
elevated expressions of Serum Amyloid A
observed in hepatocytes located near invasive
fronts of the tumor were linked to increased
macrophage recruitment, and were associated with
a negative prognosis in intrahepatic
cholangiocarcinoma (32); study of CRC tissue
identified locoregional “warmed-up” immune
response in predefined “cold” tumor where the
"warmed-up" signature genes were found to be
indicative of improved overall survival in patients
with CRC (33).

(Continued)
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based methods acquire spatial transcriptomic data by attaching and

sequencing unique barcodes to cell subsets in designated tissue

areas such as a lattice of evenly spaced spots, user-marked regions,

or marker-stained regions. This untargeted nature of NGS based

methods make them suitable for exploratory studies (62). Imaging-

based methods quantify transcripts in-situ through direct imaging

of fluorescence dyes of the nucleic acid bases (termed in-situ

sequencing) or the target-specific/bound fluorophore (termed in-

situ hybridization (ISH)).
NGS-based ST techniques

Visium Spatial Gene Expression (10x Genomics, USA) enables

genome-wide ST profiling of FF/FFPE tissues. The slide capture

area (6.5mm2) contains ~5,000 spots, each with a 55 mm diameter.

Using Visium, Meylan et al. examined the B-cell response within

intratumoral tertiary lymphoid structures (TLS) in renal cell

carcinoma, and found positive clinical outcomes associated with

intratumoral TLS+ regions enriched with B-cell maturation and

anti-tumorigenic antibody production (26); Lau et al. examined the

long-term effects of SARS-CoV-2 in hepatocellular carcinoma and

CRC, revealing persistent B-cell immune responses and improved

in-silico IO-response scores in SARS-CoV-2-rich tissue regions

(27). Another genome-wide ST method, Slide-seq (Applied

Biotechnology Laboratory, UK), offers higher resolution (10 µm)

read-outs with a comparable capture area (in mm-range), but is

limited to FF tissues (30, 63, 64). Using Slide-seq, Avraham-Davidi
Frontiers in Oncology 05
et al. revealed three distinct cellular neighborhood archetypes

associated with tumour progression and malignancy (30). Liu

et al. further developed Slide-T cell receptor (TCR)-seq and

identified 1,132 unique clonotypes, some localized in restricted

tissue compartments in metastatic lung cancer post anti-PD-1

therapy, revealing spatial clonotypic effect of IO treatment (31).

GeoMx digital spatial profiler (DSP) (Nanostring, USA) is

capable of simultaneous ST (thousands to tens of thousands of

genes) and SP (1 nuclear and 3 surface markers) profiling of FF/

FFPE tissues of up to 36.2mm x 14.6mm in size (65). RNAs and

proteins are quantified through oligonucleotide tagging (with RNA

probes or antibodies, respectively), photocleaving, and sequencing.

DSP studies showed that higher lymphoid infiltrates and T-cell

clonality in the TME were associated with improved IC efficacy (66,

67); CD66b expression in the CD45+CD68 molecular compartment

was linked to IO therapy resistance in lung cancers (28); B2M and

CD25 levels in tumour and CD11c in stroma were correlated with

prolonged survival in head and neck SCC (29).

To address key shortfalls of the abovementioned ST methods

(i.e., the lack of single-cell resolution read-outs), Stereo-seq (BGI,

China) offers unbiased whole-transcriptomic profiling at subcellular

resolution with a maximum 1 cm2 capture area on FF/FFPE tissues.

Using Stereo-seq, Wu et al. showed that poorer prognoses of

intrahepatic cholangiocarcinoma and hepatocellular carcinoma

were associated with tumour boundaries enriched with damaged

hepatocytes, or serum amyloid A overexpression in invasive fronts

(32); Zhang et al. found a locoregional immune “warmed-up”

phenotype with enhanced cytokine secretion and upregulated

MHC-II expression in a predefined “cold” tumour of colorectal
TABLE 1 Continued

Technique Detection Vendor Profiling
technology

Plexing Tissue
Type

Companion
analytical
software

Key TME applications

MERFISH/
MERSCOPE

RNA Vizgen Imaging ~10,000 FF/
FFPE

– Identification of a shift in immune spatial
organization between tumour subtypes, namely
human mismatch repair deficient and proficient
tumours (34)

CosMx Proteins/
RNA

nanoString Imaging 100/
1000+

FF/
FFPE

AtoMx Spatial
Informatics
Platform

Quantification of proteins in NSCLC and BC
tissues down to subcellular resolution for the
identification of different cell types, unique TMEs,
and ligand-receptor pairs (35); Study of
relationships between high-dimensional cellular
heterogeneity and spatial organization of cells
within renal cell carcinoma tissues (36)

Xenium RNA 10X
Genomics

Imaging 280 and
100 more
customizable
targets; the
non-destructive
nature allows
post-Xenium
H&E and IF
staining on the
same section
rendering
additional SP
and histological
information

FF/
FFPE

Xenium
Explorer

Identification of novel markers at subcellular level
responsible for the transition between ductal
carcinoma in situ (DCIS) and invasive cancer of
human breast tissues where the myoepthelial layer
is broken (37); identification and interrogation of
the cellular composition and differentially
expressed genes among the 3 molecular subtypes
of BC (low, high-grade DCIS, and invasive cancer)
through integrating Xenium with H&E and IF
data (38).
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adenocarcinoma (33). A major challenge with Stereo-seq analysis

lies with assigning pixel-level signals to individual cells (32).
Imaging-based techniques

Multiplex error robust fluorescence in situ hybridization

(MERFISH) (Vizgen, UK) uses a combinatorial barcoding

approach and sequential rounds of imaging to decode the barcode

and its associated gene expression. The barcoding system confers

error robustness through assigning the erroneous readout to the

nearest correct barcode. MERFISH allows profiling of up to tens of

thousands of RNA species at subcellular resolution, with a

maximum 1 cm2 capture area of FF/FFPE tissues. Using a 450-

gene MERFISH panel, Price et al. reported a shift in immune spatial

organization between the two tumour subtypes i.e., human

mismatch repair deficient and proficient tumors, opening new

avenues for tumour subtype-specific treatment strategies (34).

Two other multi-spatial omics methods, namely CosMx spatial

molecular imaging (SMI) technique and Xenium (higher-resolution

advancement from DSP and Visium, respectively), enable

simultaneous ST and SP profiling of FF/FFPE tissues at

subcellular resolution. CosMx SMI allows up to 1000-plex and

offers 64 validated protein analytes (35, 36). Using CosMx, He et al.

(35) evaluated 980 RNAs and 108 proteins in lung cancer and BC

tissues, identifying over 18 different cell-types, 10 unique TMEs,

and 100 ligand-receptor pairs. While Xenium offers a 280-plex

human breast panel and 248-plex mouse brain panel, with

additional 100 customizable targets. Due to its non-destructive

nature, Xenium allows post-ST H&E staining and IF on the same

section, offering additional SP and histological data. Using Xenium,

Henley et at. revealed that invasive fronts of ductal carcinoma in

situ (DCIS) BC were characterized by disrupted myoepithelial

layers, and low KRT14 expression which were also positive for

progesterone receptor (37); Janesick et al. predicted the hormone

receptor status of three BC subtypes (low-grade and high-grade

DCIS, and invasive carcinoma) whose molecular signatures were

also characterized using whole-transcriptomics Visium on adjacent

tissue sections (38).
AI-enabled TME analysis

Digital pathology

With recent advancements in imaging techniques and

computer vision, DP has greatly emerged as a useful diagnosis

assisting and prediction tool (68), alleviating the high labor cost and

interobserver variability issues faced by conventional microscope-

based approach (69–73). While H&E-stained histomorphology

images remain the main imaging modality in DP, the use of

mIHC/IF to enable subcellular molecular profiling has become

popular (74).

Numerous studies use deep learning (DL) models to augment

DP, greatly advancing TME analysis. DL-based cell segmentation

algorithms, such as Cellpose (75) and Stardist (76), enable
Frontiers in Oncology 06
identification of individual nuclei, facilitating downstream cell

phenotyping. Supervised DL algorithms have been developed to

differentiate benign from malignant cells, and immune from

stromal cells (71, 77–79). These approaches are limited by the

availability of training labels, resulting in the development of

unsupervised approaches (80). Novel AI approaches, such as

Ronteix (81), for investigating cell-to-cell interaction have also

attracted increasing attention. Besides, as image quality and stain

consistency impact the performance of DP studies, several AI

algorithms have been developed for stain normalization through

color deconvolution (82), clustering in the hue-saturation-value

color space for color separation (72) or DL-empowered stain-to-

stain translation (83).
SP analytic methods

SP analysis involves image pre-processing to remove

background or technical noise, cell segmentation, feature

extraction (such as signal intensity, cellular area, and shape), cell

phenotyping and spatial analysis (Supplementary Table 1). While

image pre-processing steps differ across fluorescence-based and

metal-based assays, downstream spatial analysis using extracted

cell-level data are largely similar.

Composite multi-spectral images generated with fluorescence-

based techniques are firstly unmixed whereby the pixel values are

decomposed into the constituent pure spectrum (i.e., protein

markers). Spectral unmixing can be done using software like

inForm (Akoya Biosciences). Similarly, background subtraction

and noise removal are critical steps in pre-processing the multi-

channel images acquired from metal-based techniques; each

channel portraying the abundance of a protein. Moreover,

technique-specific filtering may also be needed – specifically,

aggregate removal in MIBI data to eliminate unwanted effects

from antibody aggregation, and hot pixels filtering to remove

IMC-specific noise (25, 84)

Various cell (or object) segmentation algorithms are deployed

in different image analysis tools. To this end, CellProfiler (85) offers

several classical image processing approaches; whilst Ilastik (86)

offers pixel-based random forest and NN approaches accounting for

texture and context that can better identify cells, where both

methods require user-input labels such as nuclei and background.

Segmentation masks generated by Illastik can serve as the training

labels in CellProfiler. These cell segmentation algorithms have been

integrated into end-to-end SP analysis pipelines, including IMC

Segmentation (87) and its dockerized counterpart, Steinbock (84),

adding on to the built-in DL-based Mesmer method (88). More

generic image analysis tools including QuPath (89) and ImageJ (90)

provides built-in cell segmentation algorithm and allows

customized algorithms such as Stardist (91, 92).

There are currently two main cell phenotyping approaches,

namely user-input thresholding or rule-based approach, and ML-

based supervised approach which require cell label training (93).

Using Halo (Indica Labs), Ozbek et al. (94) built a T-cell classifier

and computed the densities of 8 different T-cell phenotypes in the

tumour epithelial and stromal regions in prostate cancer.
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Furthermore, dedicated tools for proximity analysis, such as SPIAT

(95), HistoCAT (56), imcRtools (84) and Cytomapper (96), have

also been developed. These tools enable inter-cellular distance

computation, touching-cell counts, cel l neighborhood

identification, cell-type mixing score, spatial point pattern

measures (such as K-cross function), spatial heterogeneity (such

as entropy), and immune gradients across tumour margins. Like

many methodology studies, these works largely focused on

demonstrating evident spatial immunological scenarios in

individual cases. For instance, in the SPIAT work, it showed that

tumour cells were closely interacting with CD3+CD4+ and

CD3+CD8+ cells in one prostate cancer sample, while showing

the high levels of SOX10+ tumour cells did not co-exist with the

CD4+ immune cells in another prostate cancer sample. Nonetheless,

HistoCAT study demonstrated a real oncology case wherein it

revealed the enrichment and depletion of cell-cell interactions was

associated with breast cancer development.
ST analytic methods

Several open-source R tools, such as Seurat (97), standR (98),

GeoMxTools (99) and Giotto (100), enable end-to-end ST analysis,

from data preprocessing (read mapping and quality checking),

spatial clustering, spatially variable gene (SVG) identification,

cell-type deconvolution to cell-cell communication. Besides these

tools, various algorithms to enhance the performance of individual

steps have emerged (Supplementary Table 2).

Spatial clustering groups spots (neighboring cells) with similar

transcriptional profile and characterizes unique transcriptomics

niche of the TME (101). These include autoencoder-based

methods [such as STAGATE (102), SEDR (103), MAPLE (104),

and conST (105)], deep convolution neural network (CNN)

methods [such as coSTA (106), RESEPT (107), spaGCN (108),

stLearn (109) and spaCell (110), and probabilistic methods

(BayesSpace (111) and PRECAST (112)]. SVGs are genes with

expression patterns significantly dependent on their spatial

locations in the tissues. These include a neural network (NN)

method called SOMDE (113); regression modelling methods such

as SPARK (114) that uses a generalized linear regression to model

the mean-variance relation of NGS-based or imaging-based ST

data; SpatialDE (115) uses Gaussian process regression model to

decompose gene expression variability into spatial and non-spatial

components, tested on SeqFISH and MERFISH data; scGCO (116)

addresses the key challenge in SVG analysis, i.e., scalability, by

employing a hidden markov random field-based probabilistic graph

model, tested on SeqFISH, MERFISH and, 3D ST data

(STARmap) (117).

Cell-type deconvolution infers cell composition of the multi-cell

ST data, facilitating cell-type specific analysis. These include a

Bayesian modelling method called DestVI (118); methods that

infer spatial cell composition from scRNAseq data such as

CellDART (119) and Tangram (120); a graph-based CNN

method called DSTG (121) which was used to uncover cell states

of pancreatic tumor tissues. On the other hand, the ability of ST to

localize gene expression to specific cell phenotypes in the TME
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allows effective characterization of cellular communication, which is

either through cell-cell direct contact or cell signaling of

neighboring cells (122). Analytic tools developed for cellular

communication include a scalable random forest-based method

called MISTy (123), tested on human BC Visium data; a graph NN

method called NCEM (124), tested onMERFISH, PhenoCylcer, and

MIBI; a graph CNN model based on a curated list of interacting

ligands and receptors, called GCNG (125), tested on SeqFISH

and MERFISH.

Aforementioned methods have been mainly focused on

showcasing specific ST analytic methods. Studies that involve real

oncology use cases are given in (103, 111, 112). In the work of

SEDR, the authors analyzed the role of immune microenvironments

on tumor invasiveness by clustering the TME into pro-

inflammatory and anti-inflammatory regions (103); the authors of

PRECAST revealed distinguished tumor/normal epithelial regions

in hepatocellular cancers that associated with different signaling

pathways, providing higher resolution analysis of the dynamics of

tumorigenesis (112); using BayesSpace, Zhao et al. found that a

higher level of chemokine activity at the tumor border and an

elevated level of metastatic activities at the tumor center that could

aid in clinical analysis of cancer metastasis (111).
Discussion and future perspectives

Significant advancements in spatial omics and computational

techniques have unraveled many previously underappreciated roles

of immune contexture in cancer progression, immune evasion, and

treatment effect, enhancing our understanding of cancer

immunology and helping to pave the way towards precision

medicine through developing novel therapeutic targets and spatial

biomarkers. Increasing evidence show that the phenotypic and

functional states of cells, and thus their anti-tumorigenicity, are

determined collectively by the DNA, RNA, and protein expression

(126–129). Nonetheless, alternative computational solutions for

integrating multiple single-spatial omics data represent a valuable

resource given tremendous data have been generated separately and

available in the public domain. It is also worth to note that recent

development of computational methods for cohort analysis reveals

important clinical implications by associating immune spatial

patterns with treatment response (130, 131).

In our perspective, several challenges in spatial omics need to be

addressed. Firstly, advancement in antibody development,

automated workflow, image scanning quality and speed, and

multi-omics integrative algorithms are needed to enhance

robustness, dimensionality, and spatial resolution. Secondly,

consistent and quality data is a prerequisite for clinical

translation. Several taskforces, such as the Society for

Immunotherapy of Cancer (132) and the Joint Effort to Develop

Multiplex Immunofluorescence Standards (133), gather

international efforts to standardize the workflow of OPAL-based

assays, with similar efforts needed for other spatial omics

techniques. Thirdly, existing computational tools often require

extensive user inputs, such as number of clusters or neighbors,

and distance threshold, which hinders adoption. Finally, effective
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cross-spatial-modality data integration and results interpretation

for comprehensive understanding of the biological system remains

challenging, largely due to the variations in image format, scanning

techniques, sample handling as well as the demanding

requirement of computing power and data storage. When these

challenges are addressed, robust, affordable, and insightful spatial

TME studies may then be possible in helping advancing precision

cancer immunology.
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