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Purpose: This study summarized the previously-published studies regarding the

use of radiomics-based predictive models for the identification of breast cancer-

associated prognostic factors, which can help clinical decision-making and

follow-up strategy.

Materials and methods: This study has been pre-registered on PROSPERO.

PubMed, Embase, Cochrane Library, and Web of Science were searched, from

inception to April 23, 2022, for studies that used radiomics for prognostic

prediction of breast cancer patients. Then the search was updated on July 18,

2023. Quality assessment was conducted using the Radiomics Quality Score, and

meta-analysis was performed using R software.

Results: A total of 975 articles were retrieved, and 13 studies were included,

involving 5014 participants and 35 prognostic models. Among the models, 20

models were radiomics-based and the other 15 were based on clinical or

pathological information. The primary outcome was Disease-free Survival

(DFS). The retrieved studies were screened using LASSO, and Cox Regression

was applied for modeling. The mean RQS was 18. The c-index of radiomics-

based models for DFS prediction was 0.763 (95%CI 0.718-0.810) in the training

set and 0.702 (95%CI 0.637-0.774) in the validation set. The c-index of

combination models was 0.807 (95%CI0.736-0.885) in the training set and

0.840 (95%CI 0.794-0.888) in the validation set. There was no significant

change in the c-index of DFS at 1, 2, 3, and over 5 years of follow-up.

Conclusion: This study has proved that radiomics-based prognostic models are

of great predictive performance for the prognosis of breast cancer patients.

combination model shows significantly enhanced predictive performance.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42022332392.
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1 Introduction

According to the statistical data released by the American

Cancer Society (ACS) in 2022, breast cancer is the most prevalent

malignancy and the fifth leading cause of cancer-related death

among women (1), with a 5-year recurrence rate of 10.4% (2).

The biological feature of breast cancer present high heterogeneity,

which means that the treatment-response and prognosis of patients

with the same type of breast cancer would be very different due to

the molecular variances (3). It has been confirmed currently that

axillary lymph node metastasis (ALNM), vascular invasion,

hormone receptors expression, histological grades, and molecular

subtypes are crucial factors for the recurrence risk and prognosis in

breast cancer patients (4–6). However, these indicators are obtained

only by biopsy and postoperative pathology, which is invasive.

Therefore, studying the molecular heterogeneity of breast cancer is

of significant clinical application value for risk stratification and

long-term survival improvement in patients with breast cancer.

Radiomics refers to an emerging image quantitative analysis

technique. In 2012, Lambin et al (7), defined it as a technology

capable of obtaining high throughput feature from medical images.

They also proposed that the application of radiomics should be

combined with imaging, clinical, and pathological feature to obtain

quantitative feature that could reflect changes in cancer in genetic

and molecular levels, so as to speculate the protein genome and

molecular phenotype and identify the intra-cancer and inter-cancer

heterogeneity. Recent studies have shown that the heterogeneity of

genome expression could be transformed into intra-cancer

heterogeneity, which could be evaluated through imageology (8).

Cancers with greater genome heterogeneity are more likely to

induce drug resistance and early metastasis, and the prognosis of

the patients would be poorer. This makes it feasible to apply

radiomics for predicting the prognosis of cancer patients. The

process of radiomics involves centralized separation of regions-of-

interest (ROI) from imaging data sets and extraction of high-

throughput image feature volume of interest (VOI) via automatic

or semi-automatic software with specific imaging modes. These

features can be roughly divided into morphological, first-level,

second-level, and textural feature (9), and can be analyzed using

multiple methods such as machine learning. Correlations of these

feature with outcomes of clinical significance can be assessed to

provide prediction endpoints of specific cancer. To date, the

primary approaches to obtaining images in radiomics include

Magnetic Resonance Imaging (MRI), Computed Tomography

(CT), Ultrasound (US), Positron Emission Computed

Tomography (PET-CT), and Mammography.

Radiomics, as a non-invasive technic, can reflect the overall

feature of cancer, and can be performed repeatedly at different time

points, which grants it unique advantages. Current radiomic studies

regarding breast cancer mostly focus on benign and malignant

differentiation (10), molecular typing and predicting (11, 12),

preoperative ALNM evaluation (13), neoadjuvant chemotherapy

assessment (14, 15), and recurrence prediction (16). Additionally,

there are some studies combining radiomics with other disciplines

(pathology, biomarkers, genomics, and proteomics) to explore the
Frontiers in Oncology 02
association between the feature of radiomics and the clinical

outcomes such as disease-free survival (DFS) (17)and

progression-free survival (PFS) (18). A machine learning model

constructed based on clinical and pathological information can

efficiently predict the DFS of early and advanced breast cancer. This

has been basically proved by the test results of EndoPredict® (EP)

scores (c-index 0.7535), indicating that clinical features can convey

part of the information expressed by genomic tests (19). In contrast,

radiomics can provide abundant information on tumor phenotype

and tumor microenvironment (20). Some studies have investigated

whether machine learning models constructed based on clinical

information and radiomics can accurately predict the prognosis and

survival of breast cancer. However, the predictive accuracy of

radiomics varies among these studies, and there remains a lack of

evidence to summarize its predictive performance. The aim of this

study is to assess the predictive value of radiomics-based models for

the prognosis of patients with breast cancer.
2 Materials and methods

This study is conducted in strict accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) 2020 statement (21), and has been registered on

PROSPERO (URL: https://www.crd.york.ac.uk/PROSPERO/

#recordDetails registration No. CRD42022332392). See

Supplementary Data Sheet 1 for details of PROSPERO registration.
2.1 Search strategy

PubMed, Embase, Cochrane Library, and Web of Science were

searched, from database inception to April 23, 2022, for studies

regarding radiomics (mammography, CT, US, or MRI) for

predicting DFS in breast cancer patients. To ensure the integrity

and comprehensiveness of data, the search was updated on July 18,

2023. The literature search was conducted by two reviewers

independently. Search items were designed based on the

combination of medical subject headings and free words, which

mainly included “breast cancer”, “breast tumor”, “radiomics”,

“prognosis”, and “DFS”. See Table S1 for details of search strategy.
2.2 Inclusion and exclusion criteria

Inclusion criteria:
·Study subjects were female breast cancer patients

·Feature of radiomics were extracted from mammography, CT,

US, or MRI, and a machine-learning risk model was

constructed for prognostic prediction.

·Contained at least one of the following indicators to assess the

predictive performance of the model: c-index, Receiver

Operator Characteristic curve (ROC), Area Under the
frontiersin.org
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Fron
Curve (AUC), Sensitivity (SEN), Specificity (SPE),

Accuracy, and Confusion Matrix.
Studies meeting the following criteria were excluded:
·Data unavailable.

·Un-published or repeatedly published studies.

·Other types of study: literature review, conference summary,

case-report, comment, and animal study.
2.3 Study selection and data extraction

Endnote X9 was adopted for reference management. All

retrieved articles were imported into Endnote X9. The duplicates

were removed followed by titles and abstracts-reading to exclude

irrelevant articles, and the full texts of the remaining articles were

retrieved and read to identify studies to be included.

The following data were extracted: name of the first author,

publication date, nationality, sample size, data sources, the major

way for image-obtaining, software for extraction of regions of
tiers in Oncology 03
interest, selection of feature, and model construction method (see

Tables 1–3 for the detailed information). For each study, the overall

c-index and c-index of different outcome-measurement time points

in the training set and the validation set were extracted.

Study screening and data extraction were conducted by two

reviewers (LDM and YYK) independently, and the results were

cross-checked by each other. Disagreements were settled by a third

reviewer (ZX).
2.4 Quality assessment

Methodological quality and risk of bias of included studies were

assessed by two reviewers (LDM and YYK) independently using the

Radiomics Quality Score (RQS), and the results were cross-checked

by each other. Disagreements were settled by a third reviewer (ZX).
2.5 Data synthesis and statistical analysis

Statistical analysis was performed using Stata 15.0 software. The

accuracy of the models was assessed using c-statistic, and the 95%
TABLE 1 Feature of participants.

No Author Year Country Dataset Department No Age Stages treatment Follow-
up time

1
Yunfang

Yu
2020 China

development

4 hospitals in China
(randomly divided 7:3)

849
47* (20,
22–35)

I-III surgery and ALND

23.7
(IQR:14.9-

37.1)

validation 365
47* (20,

22–33, 36)

23.9
(IQR:16.4-

39.3)

2
Lang
Xiong

2021 China

training
1 hospital in China
(randomly divided)

372
49.10 ±
10.46

I-III
surgery, adjuvant

therapy

48.99
(IQR:44.42-

62.98)validation 248
50.41 ±
10.76

3
Ling
Zhang

2020 China
training

1 hospital in China
(randomly divided 2:1)

76 NA
NR

surgery, adjuvant
therapy

44.4
(range,5-

93)validation 38 NA

4
Bingqing

Xia
2021 China

training
1 hospital in China

another hospital in China

109
47.3 ±
11.1

II-III surgery, NAC

54(range:1-
101)

validation 41
48.6 ±
13.3

48(range:1-
88)

5
Feihong

Yu
2021 China

training

the First Affiliated Hospital of
Nanjing Medical University

216 NA

I-III
surgery, adjuvant

therapy

53
(range,36–

62)

validation 108 NA
47

(range,32–
59)

validation remaining two institutions 162 NA
56

(range,37–
65)

6
Sungwon
Kim

2020 Korea
training Severance Hospital, Yonsei

University College of
Medicine, Seoul, Korea

169 52.2 ± 12.5
NR

surgery, adjuvant
therapy

48(range,5–
80)validation 59 53.7 ± 11.5

(Continued)
fr
ontiersin.org

https://doi.org/10.3389/fonc.2023.1173090
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2023.1173090
confidence interval (95%CI) was provided. Meta-analysis of c-

statistic was performed using a random-effect model. Subgroup

analysis based on different time points was conducted. A p value less

than 0.05 indicated statistical significance.
3 Results

3.1 Study selection

A total of 987articles were retrieved, and 13 studies were finally

included, involving 35 datasets and 5014 participants (Figure 1, Table 1).
3.2 Feature of included studies

Among the included studies, the dataset of 1 study was from

Switzerland (37), with datasets of 3 studies from Korea (38, 39), and 9
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from China. The age of the participants ranged from 24 to 87 years,

and the follow-up duration ranged from 1 to 101months. Patients with

triple-negative breast cancers (TNBC) accounted for 30.1% (1666), and

those with Her-2 positive accounted for 2.53% (127). Participants in all

the 13 included studies had received surgical treatment but maybe

some differences are present in adjuvant treatments.

All 13 studies extracted radiomic feature from the baseline and

pre-treatment images. Among the included studies, 1 study

constructed the DFS-prediction model using Mammographic

images and extracted tumor texture features in CC and MLO

(40), 3 studies used US and the extracted feature included tumor

size, morphology, peripheral and posterior acoustic feature, first-

order statistical feature, 2D-based shape features, textural features,

and wavelet features (41–43), and 8 studies adopted MRI and the

involved sequences in extracted feature were: T1WI, T2WI, ADC,

T1WI subtraction images and T1WI contrast-enhanced images. All

these 7 studies used enhanced scanning sequences. As for the only 1

CT-based study, it also used contrast-enhanced scanning (44);

There were 4 studies that performed predictive modeling for the
TABLE 1 Continued

No Author Year Country Dataset Department No Age Stages treatment Follow-
up time

7
Hwan-ho

Cho
2022 Switzerland

development Samsung Medical Center 308
51.2 ±
10.5

NR
adjuvant therapy,
breast-conserving

surgery, mastectomy

84.1
(range,5–
108)validation Gil Hospital 147

49.1 ±
10.0

8 Qin Li 2020 China

train Fudan University Shanghai
Cancer Center, Shanghai,

China (randomly divided 7:3)

89
51.57 ±
10.88

NR

trastuzumab-based
NAC conserving breast

surgery or radical
mastectomy

39.31
(range,3–

78)test 38
51.47 ±
9.40

9
Xian
Jiang

2020 China

training West China Hospital, Sichuan
University, Chengdu, China
(randomly divided 2:1)

133
49.22 ±
9.87

I-III
surgery, adjuvant

therapy

54.98 ±
21.72

validation 67
47.79 ±
10.10

54.39 ±
22.63

10
Haoyu
Wang

2022 China

Training Shanghai Jiao Tong
University School of

Medicine, Shanghai, China

449 NA

I-III

surgical treatment,
ALND

NR

IV 113 NA NR

EV 40 NA neoadjuvant therapy NR

11
Hyunjin
Park

2018 Korea

training Samsung Medical Center,
Sungkyunkwan University

School of Medicine,
Gangnam-gu, Korea.

194
50.46 ±
10.46

I-III adjuvant therapy
54.2

(range,5–
64)validation 100

52.34 ±
10.51

12
Xuanyi
Wang

2022 China

training Fudan University Shanghai
Cancer Center (randomly

divided 1:1)

139 NA

II-III adjuvant therapy NR
validation 139 NA

EV
The Cancer Imaging Archive

(TCIA)
91 NA

13
Jeongmin

Lee
2022 Korea

Training
Validation

Seoul Saint Mary’s Hospital
(stratified random sampling)

111
44

34.94 ±
5.25

35.73 ±
3.48

I-IV
Surgery、radiation

therapy、
chemotherapy

55
(range,6–
118)
fr
D, development; EV, external validation; IV, internal validation; IQR, inter quartile range, NAC, neoadjuvant chemotherapy; NR, not report; ALND, axillary lymph node dissection, Follow-up
time unit: months. *: median.
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of
res

Morphologic
fearutes

First order
features Second order textural features

9 Yes Yes Yes

9 Yes Yes Yes

Yes (n=16) Yes (n=19)
Yes (GLCM n=24, GLRLM n=16, GLSZM

n=16, NGTDM n=5, GLDM n=14)

6 Yes (n=14)
Yes

(n=930 + 72)
Yes (GLCM n=24, GLRLM n=16, NGTDM

n=5, GLDM n=14) 75x4

Yes (n=11) Yes(n=17) Yes (textural features n=68)

6 Yes Yes Yes

7 Yes (n=14) NA Yes (textural features n=1023)

NA NA
Yes (textural features n=133)(GLCM,NGLDM,

GLRLM, GLZLM)

NA Yes(n=16)
texture features (73 features) and wavelet

features (356 features)

Yes (n=8) Yes(n=19) Yes (texture features 18)

NR NR NR

Yes Yes
Yes GLCM(24 features), GLRLM (16 features),

GLZLM (16 features), GLDM
(14 features) and NGTDM (5 features)

rest; GLRLM, Grey-Level Run Length Matrix; GLCM, Grey-Level Co-occurrence Matrix; GLSZM, Grey-Level
ray-level Dependence Difference Matrix; NGLDM, neighboring gray level dependence matrix; GLZLM, gray-

Lu
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
3
.1173

0
9
0

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
5

No. Author Year imaging segmentation VOI ROI
software

Feature extrac-
tion software

No.
featu

1
Yunfang

Yu
2020

T1+C, T2WI,
ADC

semi-
automatically

Primary/ALN
3D

Slicer4.10.2
PyRadiomics 25

2
Lang
Xiong

2021 US manually Primary Photoshop PyRadiomics 12

3
Ling
Zhang

2020 CT+C
semi-

automatically
Primary 3D Slicer pyradiomics 11

4
Bingqing

Xia
2021 DCE-MRI manually Primary 3D Slicer pyradiomics 13

5
Feihong

Yu
2021 US manually

Intratumoral +
peritumoral

ITK–SNAP pyradiomics 9

6
Sungwon
Kim

2020
T2WI, T1WI

+C
semi-

automatically
Primary MIPAV PyRadiomics 24

7
Hwan-ho

Cho
2022 DCE manually Primary NR PyRadiomics

8 Qin Li 2020 CE manually Primary 3D-Slicer PyRadiomics 10

9
Xian
Jiang

2020 Mammography manually Primary NR
Local Image Feature

Extraction
13

10
Haoyu
Wang

2022 US manually Primary ITK-SNAP MATLAB 56

11
Hyunjin
Park

2018
T2WI

T1WI+C
SubT1WI

manually Primary NR MATLAB 15

12
Xuanyi
Wang

2022
ADC
cT1WI,
T2WI

manually Primary 3D-Slicer PyRadiomics 85

13
Jeongmin

Lee
2022

Sub DCE T1,
ADC

semiautomatic Primary 3D slicer PyRadiomics 21

US, ultrasound; DCE, dynamic contrast enhanced; C, contrast-enhanced; ADC, apparent diffusion coefficient; CT,c omputed tomography; VOI, volume of int
Size Zone Matrix; NGTDM, Neighbourhood Grey Tone Difference Matrix; GLRLM, grey-level run length matrix; GLSZM, grey-level size zone matrix; GLDM:
level zone length matrix; NA, not applicable; NR, not reported.
8

0

0

1

6

3

3

3

0

6

0

4

e
G
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DFS of TNBC patients, in which the study by Yu et al (42), extracted

both the intra-tumoral and peritumoral radiomic feature.

Among the included studies, 11 studies performed overall

extraction of cancer. The way of ROI extraction involved manual

extraction and semi-automatic extraction. For software applied for

ROI segmentation, 6 studies used 3Dslice and 2 used ITK-SNAP.

For feature extraction of ROI, 10 studies applied PyRadiomics. The
Frontiers in Oncology 06
methods of characteristic-selection varied among the studies,

including Intergroup Correlation Coefficient (ICC) and Lasso.

The number of radiomic feature extracted from images ranged

from 96 to 2589. Textural and morphological feature were the most

common. Many models contained similar feature, including the

Gray level co-occurrence matrix (GLCM) and Neighbouring Gray

Tone Difference Matrix (NGTDM).
TABLE 3 Modeling and selection of radiomics feature.

No. Author Year Dataset No. of
patients Machine Learning Model Model Feature selection methods

1
Yunfang

Yu
2020

development 849 LASSO-logistic regression model radiomics LASSO

development 849 RF-Cox regression model radiomics RF

2
Lang
Xiong

2021 training 372 Cox proportional hazards model radiomics
Spearman correlation coefficients
and Ward linkage, LASSO-COX

3
Ling
Zhang

2020 training 76 Cox proportional hazard model radiomics LASSO Cox regression analysis

4
Bingqing

Xia
2021

training 109 Cox proportional hazard model radiomics Forward stepwise regression

training 109 Cox proportional hazard model clinicoradiological Forward stepwise regression

5
Feihong

Yu
2021 training 216 LASSO-Cox Radiomics MRMR algorithm, LASSO-COX

6
Sungwon
Kim

2020 training 169
Univariate and multivariate Cox
proportional hazards models

Radiomic model LASSO Cox regression analysis

7
Hwan-ho

Cho
2022

training 169
Univariate and multivariate Cox
proportional hazards models

combined
clinicopathologic-radiomic

(CCR) model
(LASSO) Cox regression analysis

development 308 Cox-LASSO model Radiomics DCE-MR

development 308 Cox-LASSO model Radiomics Perfusion

development 308
L1-norm regularized Cox
proportional hazard model

HRS only Cox-LASSO

8 Qin Li 2020

training 89
univariate and multivariate Cox
proportional hazards model

clinicoradiological based Cox regression analysis

training 89
univariate and multivariate Cox
proportional hazards model

Radiomics-
clinicoradiological based

Cox regression analysis

9
Xian
Jiang

2020 training 133
Cox proportional hazards

regression model
Radiomics LASSO

10
Haoyu
Wang

2022 Training 449 Logistic Regression

US only

Logistic Regression

US + CP

US + SMOTEENN

CP + SMOTEENN

US + CP + SMOTEENN

11
Hyunjin
Park

2018 training 194 elastic net Cox regression radiomic elastic net

12
Xuanyi
Wang

2022 training 139 Univariate and multivariate Cox radiomics LASSO

13
Jeongmin

Lee
2022 training 111 LASSO-logistic regression

clinicoradiologic
Radiomics

Univariate and multivariate Cox
LASSO, least absolute shrinkage and selection operator; RF, random forest; HRS=habitat risk score; US, ultrasound; CP, clinicopathological; SMOTEENN, (hybrid sampling method), combined
over sampling technique SMOTE, (Synthetic Minority Oversampling Technique) and under sampling technique ENN, (Edited Nearest Neighbor). Radiomics-based model: the models
constructed based on features extracted from US/CT/MRI/mammography; clinicopathological radiomics-based model: the models constructed based on the combination of radiomics features
and required features such as age, menstrual status, TNM stage, histological grade, ER, PR, HER-2, The Ki67 index, axillary lymph node metastasis and the number of metastases, adjuvant
treatment methods, and surgical methods.
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All 13 retrospective studies applied a machine learning model to

predict the DFS of breast cancer patients. Cox regression was the

most commonly used model. These studies had a different number

of final characteristic parameters of model application, and different

methods had been adopted for characteristic selection, including

feature with significant ICC, Cox regression, or feature with

significant p values in Kaplan-Meier analysis.
3.3 Quality assessment of included studies

The scoring items in RQS included: image capturing, radiomic

feature extraction, data modeling, model validation, and data

sharing. The total score ranged from -8 to 36. A score of -8 was

defined as 0%, whereas 36 was 100% (45). The mean score of the 13

included studies was 18 (ranging from 15 to 26), defined as

approximately 51.6% (Table S2).
3.4 Results of meta-analysis

For the 35 datasets included in this study, the c-index of

radiomics-based models in DFS prediction was 0.763 (95%CI
Frontiers in Oncology 07
0.718-0.810) in the training set and 0.702 (95%CI 0.637-0.774) in

the validation set. The c-index of combination models was 0.807

(95%CI 0.736-0.885) in the training set and 0.840 (95%CI 0.794-

0.888) in the validation set (Figure 2).

On the other hand, we summarized the c-indices of radiomics-

based models at different time points, and the results showed that

there was no difference between the c-index at different time points.

It did not significantly decrease with time (Table 4).
4 Discussion

In this study, we have performed a systematic review and meta-

analysis to assess the performance of radiomics-based prognostic

models for predicting the survival of breast cancer patients receiving

surgery but maybe some differences are present in adjuvant

treatments. The results indicate that according to the summarized

c-index, radiomics-based models would be of appropriate

performance for predicting the DFS of breast cancer patients, and

the performance could be enhanced in combination with patients`

clinical and pathological backgrounds. Furthermore, no significant

difference was observed in the predictive performance as the follow-

up time extended.
FIGURE 1

Structural regression for retrieved articles (from inception to July 18th, 2023) according to the PRISMA2020 guideline. Twelve studies regarding
radiomics for after-treatment DFS prediction in breast cancer patients were finally included.
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DFS is the outcome measure of this meta-analysis, which is

defined as the time from the completion of surgery and adjuvant

therapy to the recurrence of the disease or death from the

progression of the disease. Different treatment methods often

cause different prognosis. For the early stage of breast cancer,

there is no significant difference in the 5- and 10-year DFS

between breast-conserving surgery and radical mastectomy (46).

The local recurrence, distant metastasis, and overall survival are
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found to be improved in patients who received breast-conserving

surgery followed by whole breast radiotherapy compared to those

on radical mastectomy alone (47). Unhealthy lifestyles, such as

drinking (48), postmenopausal obesity (49), family history are well-

known risk factors for breast cancer recurrence. As the research

deepens, demographical feature, clinical pathology, genetics, and

serum tumor markers are applied for the prognostic assessment of

breast cancer (36, 50–55). Therefore, in addition to the inclusion of
A

B

FIGURE 2

Forest plot of c-index in (A) training and (B) validation set prediction model.
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clinical pathological information, the clinical pathological model

constructed in this study also takes into account the treatment

response of the patients. Univariate and multivariate analysis

showed that tumor size, high pathological stage, lymphatic vessel

invasion, high histological grading, non-pathological complete

response (nPCR), young age of onset, and high Ki67 are all

associated with poor DFS. Ki67 is an independent prognostic

factor for breast cancer survival. For younger patients, it may be

related to poor DFS, but for older patients (over 50 years old), it

may have different impacts on their survival. High Ki-67 expression

is associated with a higher risk of recurrence and poorer survival in

patients with early breast cancer (22, 23).

Is it just the clinical pathological feature that determine the

patient’s prognosis? Radiomics feature has been demonstrated to be

an independent biomarker for predicting the prognosis of breast

cancer [38]. As part of radiomics, texture analysis could quantify the

spatial grey distribution features of the pixels and the spatial

relationship between the pixels, so that it could reflect the intra-

tumor heterogeneity (24). In This meta-analysis, the most applied

radiomic model was texture analysis (10/13,83.3%), in which the

most common texture was GLCM and NGTDM. GLCM is one of

the most commonly used texture analysis methods that could

describe information like change amplitude, adjacent interval, and

direction, and it has been proven to evaluate tumor heterogeneity.

GLCM encompasses 14 texture features, and the top five common

features are energy, entropy, contrast, correlation, and inverse

differential moment (IDM). Due to the differences in their

mathematical definitions, these features reflect the texture

heterogeneity of tumors from different aspects [27]. Gatenby et al.

found that high entropy of T2WI (≥6.013, HR=9.84) and low

entropy of T1WI-enhanced subtraction images (< 5.0.57,

HR=4.55) were significantly associated with poor relapse-free

survival [39]. NGTDM reflects the contrast, which is determined

by the intensity of change between the target voxel and the

surrounding adjacent voxels. Given the interaction between

adjacent pixels, it is more suitable for quantifying tumor texture

and heterogeneity [40, 41]. Tumors with poor prognosis tend to

have higher contrast (25).

Rad score refers to a radiomic scoring system established

through weighting the coefficients of each radiomic characteristic

in the ROI and is a comprehensive indicator for the radiographic

feature. In this meta-analysis, the c-index of the model with the

peak performance has reached 0.974 (95%CI 0.954-0.994) (26). The

results of this study showed that the clinical radiology model (MRI

findings and clinical pathological variables) combined with the Rad
Frontiers in Oncology 09
score (c-index =0.974, 95% CI=0.954–0.994) outperformed simple

clinical radiology model (c-index=0.855, 95% CI=0.739–0.971) in

predicting disease-free survival. Xia et al. (27), constructed a

training set Combined Radiomics Nomogram model based on the

radiomic feature of MR contrast enhancement, Rad scores, and

clinical pathological feature of 104 TNBC patients, with the c-index

of 0.834 (95%CI 0.761-0.907), and the Clinicoradiological

nomogram model based on radiomic feature of MR contrast

enhancement yielded a c-index of 0.726 (0.709-0.734). These

studies indicate that the RAD score can not only be used as an

independent predictor for DFS and a biomarker for risk

stratification in breast cancer, but is also helpful for developing

more meticulous follow-up strategies for high-risk patients.

It is worth noting that T1W1-enhanced scanning sequences

were involved in the 7 studies using MR for DFS prediction. The

study by Hui et al. (25) found that with the decline in MRI-

enhanced image texture parameters, the tumor heterogeneity was

more significant, the risk of recurrence was higher, and the

prognosis was worse. Lymphovascular invasion is associated with

poorer prognosis in breast cancer (26). DCE-MRI-based radiomics

feature is an independent risk factor for predicting lymphovascular

invasion in patients with invasive ductal carcinoma (27). Hence,

radiomics based on dynamic contrast-enhanced MR scan could

provide more information and make the prognostic prediction of

breast cancer more accurate, by reflecting the formation of tumor

micro-vessels and the biological feature of the tumor (28). In 10 of

the included studies (4, 20, 26, 27, 37–39, 41–43), the c-index of

radiomics-based models constructed via MR ranged from 0.694 to

0.834, and this was overlapped with that of models constructed only

using US (0.61 to 0.86). It remains to be elucidated whether MR-

based radiomics would be more effective than US-based models.

Habitat analysis is the least explored field in the included

studies, which aims to recognize different tumor sites or cell

subsets. Conventional radiomics could measure to some extent

the intra-tumoral heterogeneity. The measurement depends on a

well-mixture of intra-tumoral heterogeneity but neglects the

regional phenotypic variation (29). The sub-region segmentation

technique focuses more on the intra-tumoral perfusion

heterogeneity. Compared with the other 4 models, such as clinical

models and radiomic models, a recurrence risk assessment model

based on omics feature shows a better predictive performance (37).

In addition, the spatial heterogeneity of each sub-region would be

more important than the number of sub-regions. Perfusion

heterogeneity defined by spatial heterogeneity among perfusion

habitats is an independent predictor for DFS. Therefore, the
TABLE 4 Summarized c-index of radiomic prediction models at different time points.

Follow time
training set validation set

n c-index (95%CI) n c-index (95%CI)

1 year 5 0.818 (0.772~0.866) 5 0.761 (0.625~0.926)

2 years 3 0.850 (0.802~0.900) 5 0.733 (0.633~0.848)

3 years 4 0.795 (0.725~0.873) 4 0.735 (0.636~0.848)

≥5years 8 0.770 (0.710~0.835) 11 0.745 (0.681~0.814)
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quantification of perfusion heterogeneity is a potential method for

prognostic prediction.

This study has some limitations to be improved and addressed

in the future. All 13 included studies were retrospective studies with

limited sample sizes, which could not meet the demands of

radiomics in that the feature of high throughput require a large

amount of data. This might induce selection bias. The lack of a

“golden standard” for cancer segmentation and characteristic-

extraction methods might also affect the reliability and

repeatability. Only 3 of the 13 studies performed external

validation for the model they constructed. External validation is

more reliable than internal validation, and the data it produced is

considered more independent.

On the other hand, the process of this meta-analysis also has

limitations. One of the limitations of this study is the significant

heterogeneity (I²=99%). The sources of heterogeneity might be

associated with variances in imaging modality (such as CT, US,

and MRI), manufacturer and model of the scanner, field intensity

(1.5T, 3.0T), collection and inspection methods, and reconstruction

parameters. Various parameters of scanners from distinct

manufacturers and different image resolutions caused by different

field strengths (1.5T, 3.0T) in scanners may affect the characteristic

parameters of radiomics. Among the included studies, differences

might also be attributed to the variances in operators` experiences

and their understanding of the ROI scope. In addition, the

heterogeneity might also be induced by differences in the

parameters of the software used for extraction; However, this is

an unavoidable limitation of the current systematic review

regarding radiomics, and this study could not be spared. Another

limitation is the different molecular subtypes of breast cancer, which

might lead to a consequence that different radiomic feature are

extracted. Some breast cancers with small volumes and

multicentric/focal cancers have not been included (most of the

studies extract feature from cancers with large volumes), which is

difficult to be characterized by radiomic feature, leading to a

deviation in the selection of radiomic feature. In addition, even

though the incidence of breast cancer in the United States and India

were reported to be relatively high, we did not find any eligible

original studies published in these regions.

Currently, machine learning is increasingly applied in the

medical field. Nonetheless, the interpretation of machine learning

remains challenging. Some mathematical models, like support

vector machines (SVM), random forests, probabilistic graphical

models, reinforcement learning (RL), and deep learning (DL) neural

networks, exhibit high diagnostic or predictive performance, but

their interpretability is poor. However, the diagnostic or predictive

performance of some interpretable machine learning methods is

unsatisfying (30). Modeling variables are crucial for the

performance of machine learning models. In recent years,

modeling variables in clinical practice consist mainly of

interpretable clinical features and some difficult-to-interpret

image features (e.g., radiomics). Interpretability is a serious

challenge in original research on radiomics, especially deep

learning-based methods. Despite the high diagnostic or predictive

performance, it is difficult to be widely used in clinical practice (31).

In addition, it is difficult for radiomics to avoid the “curse of
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dimensionality”. Thus, interpretability should also be considered

in the selection of dimensionality reduction methods. In our study,

the variables of the included studies are screened using the rank sum

test of texture features and LASSO regression, and the models are

mainly based on Cox regression, which shows relatively good

interpretability. Some studies have shown that other interpretable

machine learning methods appear to be more accurate than

traditional Cox regression in predicting the prognosis of breast

cancer (32, 33). However, Cox regression, as one of the few

modeling methods for survival analysis, is one of the first choices

for modeling when the time variable needs to be considered.

Meanwhile, follow-up studies on the prognosis of breast cancer

are desired to explore early alternative outcome events and use

interpretable machine learning methods of non-survival analysis to

improve the predictive performance for the prognosis of

breast cancer.

Given the limitations mentioned above, future studies should

focus on prospective radiomic study design, as well as the

standardization of imaging, stability of high-throughput feature,

characteristic-selection method, and classifier. At the same time, the

feature and models of the collected external prospective datasets

should be validated to better explain the spatial variation and

heterogeneity of voxel intensity in tumors for imaging training set

and validation set, which is particularly important in multicentric

studies (34, 35). In recent years, studies on multimodality and

multi-omics have also achieved preliminary progress. Different

imaging approaches contain different cancer information. The

combination of image feature with different modalities could

improve the predictive performance of the model. In addition to

imaging information, cancer pathology, metabolic pathway, and

gene expression also provide cancer information, which is crucial in

revealing cancer heterogeneity. Future studies can be conducted

based on the combination of radiomics, pathomics, proteomics, and

genomics to develop radiomic feature with a biological basis.

Besides, the study of breast cancer imaging is a deep intersection

of medicine and computer artificial intelligence. Deep learning

learns the feature of cancers from the data itself, which avoids the

errors caused by the subjectivity of manual operation, making it

more effective and reliable.
5 Conclusion

Radiomics is an interdisciplinary field that integrates multiple

disciplines such as imageology, oncology, and machine learning.

Radiomic feature (such as intensity, morphology, texture, or

wavelet) provide information on cancer phenotype and

microenvironment, which is complementary to other relevant

data sources (including clinical, treatment-related, or genetic

data) (29). The results of this study indicate that prognostic

model performance could be enhanced after combining patients`

clinical and pathological results. Therefore, we can try to construct a

prediction model based on radiomics to effectively evaluate the

prognosis of breast cancer patients in combination with the

practical experience of clinicians. However, studies in this field

have indeed a long way to go due to the heterogeneity and imaging
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complexity of breast cancer. More prospective and multi-centric

studies with large cohorts are needed.
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