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Background: Colon cancer (CC) is a highly heterogeneous malignancy

associated with high morbidity and mortality. Pyroptosis is a type of

programmed cell death characterized by an inflammatory response that can

affect the tumor immune microenvironment and has potential prognostic and

therapeutic value. The aim of this study was to evaluate the association between

pyroptosis-related gene (PRG) expression and CC.

Methods: Based on the expression profiles of PRGs, we classified CC samples

from The Cancer Gene Atlas and Gene Expression Omnibus databases into

different clusters by unsupervised clustering analysis. The best prognostic

signature was screened and established using least absolute shrinkage and

selection operator (LASSO) and multivariate COX regression analyses.

Subsequently, a nomogram was established based on multivariate COX

regression analysis. Next, gene set enrichment analysis (GSEA) and gene set

variation analysis (GSVA) were performed to explore the potential molecular

mechanisms between the high- and low-risk groups and to explore the

differences in clinicopathological characteristics, gene mutation characteristics,

abundance of infiltrating immune cells, and immunemicroenvironment between

the two groups. We also evaluated the association between common immune

checkpoints and drug sensitivity using risk scores. The immunohistochemistry

staining was utilized to confirm the expression of the selected genes in the

prognostic model in CC.

Results: The 1163 CC samples were divided into two clusters (clusters A and B)

based on the expression profiles of the 33 PRGs. Genes with prognostic value

were screened from the DEGs between the two clusters, and an eight PRGs

prognostic model was constructed. GSEA and GSVA of the high- and low-risk

groups revealed that they were mainly enriched in inflammatory response-

related pathways. Compared to those in the low-risk group, patients in the

high-risk group had worse overall survival, an immunosuppressive

microenvironment, and worse sensitivity to immunotherapy and drug treatment.
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Conclusion: Our findings provide a foundation for future research targeting

pyroptosis and new insights into prognosis and immunotherapy from the

perspective of pyroptosis in CC.
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1 Introduction

Colon cancer (CC) has become one of the most common

gastrointestinal malignancies worldwide, with approximately 1.15

million new cases in 2020, and is the fifth most common cause of

cancer-related deaths (1). Despite the availability of comprehensive

drugs, outcomes remain unsatisfactory, with a 40–60% five-year

survival rate, which is a serious threat to human health (2).

Therefore, an in-depth understanding of the mechanisms of CC

development and effective assessment of prognostic differences

among individuals are essential to achieve individualized and

precise treatment and improve patient survival.

The most widely used prognostic staging system is the TNM

staging system (3, 4), which also serves as a benchmark for

establishing clinical treatment protocols for patients with CC. In

addition, the assessment of microsatellite instability (MSI) status

and KRAS or BRAF mutation status, also has prognostic value for

patients with CC (5). With the advancement of genetic testing

technology, it has been realized that tumors belong to a class of

highly heterogeneous and complex diseases, and personalized

prognostic analysis needs to be performed for different patients’

genomic characteristics. Because single-gene/factor prediction

models have low accuracy, more studies have explored the value

of polygene-based models in identifying novel immunotherapy

targets and predicting cancer prognosis (6, 7).

Pyroptosis, also known as inflammatory cell necrosis, was first

described in 2001 when it was recognized as a completely different

mode of cell death than traditional apoptosis (8). Pyroptosis is a

programmed cell death mediated by the gasdermin family of

proteins (9), which manifests as continuous cell swelling until the

cell membrane ruptures, leading to the release of cellular contents,

which in turn activates an intense inflammatory response. In recent

years, the role of pyroptosis in tumor pathogenesis has become

increasingly prominent, and molecules of the pyroptosis signaling

pathway and various inflammatory mediators released during

pyroptosis have been found to be closely related to tumorigenesis,

tumor development, and antitumor immunity (10). Although

several studies have reported the relationship between pyroptosis

and CC (11, 12), the mechanism by which pyroptosis affects the

immune microenvironment through pro-inflammatory factors,

thus influencing the prognosis and treatment response of patients

with CC, requires further investigation.

Using The Cancer Genome Atlas (TCGA) and the Gene

Expression Omnibus (GEO) databases, we aimed to explore the
02
function of pyroptosis in CC and hoped to develop a pyroptosis-

related gene signature to predict the prognosis and guide therapy

for patients with CC that can provide more information for clinical

treatment. Immune infiltration analysis was also performed to

examine the influence of pyroptosis-related genes (PRGs) on

regulation of the immune microenvironment. Finally, we explored

the association between the risk scores and immunotherapy

sensitivity, which could help identify new therapeutic targets.
2 Materials and methods

2.1 Data collection and processing

The CC dataset TCGA-COAD (n = 521) was downloaded from

TCGA database (https://portal.gdc.cancer.gov) using the

TCGAbiolinks package (13) of R software (version 4.1.1, http://r-

project.org/), selecting the data type in TPM format. The clinical

information of TCGA-COAD matched patients (n = 454),

including age, survival status, follow-up time, and stage, was also

downloaded and obtained using the GDC software. Data with no

survival information or incomplete TNM staging information were

excluded. In addition, “Masked Somatic Mutation” data in the

TCGA database were selected using the TCGAbiolinks package as

the somatic mutation data of patients with CC and were visualized

using the maftools package (14).

To analyze the copy number variation (CNV) of key genes in

the TCGA-COAD dataset, we downloaded the “Masked Copy

Number Segment” data of patients (n = 976) using the

TCGAbiolinks package and performed genomic identification of

significant targets in cancer (GISTIC) 2.0 (15) analysis on the

downloaded CNV fragment data using GenePattern (https://

cloud.genepattern.org) to investigate the CNV of COAD,

including the chromosomal arm level CNVs and the least

common region between samples.

The sample-sourced reliable CC expression profiling datasets

GSE17536 (16) and GSE39582 (17) were downloaded from the

GEO (https://www.ncbi.nlm.nih.gov/geo/) database using the R

package GEOquery (18). All samples in the datasets were derived

from Homo sapiens, and the platforms were based on the GPL570

[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0

Array. The GSE17536 dataset included 177 CC samples, and the

GSE39582 dataset included 566 patients with CC and 19 healthy

individuals’ colon tissue samples, among which 10 CC samples were
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excluded owing to the lack of survival information. Thus, a total of

733 CC samples from the GEO database were included in this study.

The raw data of the GSE17536 and GSE39582 datasets were read

using the GEOquery package, background corrected, and data

normalized to obtain gene expression matrices. Batch effects were

removed using the sva package (19) to obtain combined TCGA and

GEO gene expression matrices, and the correction effect was

demonstrated by plotting a boxplot (Figure S1).
2.2 Consensus clustering of pyroptosis-
related genes

In this study, a set of PRGs was obtained from previously

published literature (20), with a total of 33 genes, and pyroptosis

genes that were significant for the TCGA+GEO dataset were

selected. Unsupervised cluster analysis of these genes and the

TCGA+GEO dataset was performed using the R package

ConsensusClusterPlus (21). The number of clusters was set

between 2 and 10, and 80% of the total sample was drawn in

1000 repetitions with the parameters clusterAlg = “km” and

distance = “euclidean”.
2.3 Identification and analysis of
differentially expressed genes

CC samples from the TCGA+GEO dataset were classified into

two subtypes, clusters A and B, based on PRG clustering, and the

differentially expressed genes (DEGs) in the gene expression matrix

were screened using the limma package (22). DEGs were shown as

volcano plots and heatmaps using the ggplot2 (23) and pheatmap

(https://cran.r-project.org/web/packages/pheatmap/index.html/)

packages, respectively. Log fold-change (logFC) absolute values > 1

and a P-value < 0.05 were set as the thresholds for DEGs.

Upregulated DEGs in cluster B generally had values of logFC > 1

and a P-value < 0.05, whereas downregulated DEGs in cluster B

typically had values of logFC < -1 and a P-value < 0.05.
2.4 Enrichment analysis of differentially
expressed genes

Gene Ontology (GO) (24) analysis is a common approach for

large-scale functional enrichment analysis, including biological

process, molecular function, and cellular component. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) (25) is a widely used

database that stores information on genomes, biological pathways,

diseases, and drugs. Using the clusterProfiler package (26) for GO

annotation and KEGG pathway enrichment analyses of pyroptosis

gene regulators, a critical value of false discovery rate (FDR) < 0.05

was considered statistically significant.

To investigate the differences in biological processes between

the different subgroups, we performed gene set enrichment analysis

(GSEA) (27) based on the expression profiles of the high- and low-
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GSEA is a computational method used to analyze whether a

particular gene set is statistically different between two biological

states and is commonly used to estimate changes in pathway and

biological process activity. The gene set “c2.cp.kegg.v7.5.1.

entrez.gmt” was downloaded from the MsigDB database (28) for

GSEA analysis, and a FDR < 0.25 and P < 0.05 was considered

significantly enriched. The gene set “c6.all.v7.5.1. symbols.gmt” was

also downloaded from the MsigDB database, and gene set variation

analysis (GSVA) was performed on the gene expression matrix

using the GSVA package (29), with P < 0.05 indicating a

significantly enriched oncogenic-related pathway.
2.5 Prognostic gene clustering and
model construction

We used the TCGA+GEO dataset as a basis for evaluating the

association between each DEG and overall survival (OS) using

univariate COX proportional regression analysis and retained genes

with P-values < 0.05, that is, PRGs. Unsupervised clustering analysis

was performed on these genes and the TCGA+GEO dataset using

the ConsensusClusterPlus package (21). The number of clusters was

set between 2 and 10, and 80% of the total sample was drawn in

1000 repetitions with the parameters clusterAlg = “km” and

distance = “euclidean”.

Least absolute shrinkage and selection operator (LASSO)

regression (30) is a machine learning algorithm commonly used

to construct diagnostic models that performs regularization to

prevent overfitting and improve the accuracy of the model.

Therefore, using the glmnet package (31), we applied the LASSO

algorithm to eliminate multicollinearity and screen for meaningful

variables in the univariate COX regression analysis, with parameters

set.seed (2), family = “ COX”. To obtain more accurate independent

prognostic factors (prognostic trait genes), we utilized multivariate

COX regression analysis and performed final screening by stepwise

regression. Finally, by considering the expression of the optimized

genes and the associated estimated COX regression coefficients, the

risk score was calculated using the “predict” function.

h0(t,X) = h0(t)*exp(b1  X1 + b2X2 +… + bnXn)

The regression coefficient, b, was utilized to obtain the hazard

ratio by taking natural logarithm of exp(-b). h0 (t) is the baseline

risk function; h(t,X) is the risk function associated with X

(covariate) at time t. The value of the risk score calculated by the

predict function is h(t,X). And the patients were divided into high

risk and low risk groups according to the given risk scores. Patients

were divided into high- and low-risk groups according to their risk

scores. Kaplan–Meier analysis and log-rank test were applied to

analyze the OS using the survival package. In addition, a nomogram

was constructed using COX regression, and time-dependent subject

operating characteristic (ROC) curves were used to assess survival

prediction. The area under the ROC curve (AUC) values were

calculated using the timeROC package (32) to measure prediction

accuracy and correct curves to assess stability.
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2.6 Gene mutation and CNV analysis

Themaftools package (14) showedmutations in high- and low-risk

groups and allowed the estimation of the tumor mutation burden

(TMB) using the total number of non-synonymous mutations per

megabase. GISTIC 2.03 (https://cloud.genepattern.org) was used to

determine copy number changes to classify amplified or deleted genes.
2.7 Immune infiltration analysis

CIBERSORT (33) is based on the principle of linear support

vector regression to deconvolute the transcriptome expression matrix

and estimate the composition and abundance of immune cells in a

mixture of cells. We uploaded the TCGA+GEO gene expression

matrix data to CIBERSORTx (https://cibersortx.stanford.edu),

combined with the LM22 signature matrix, and filtered the output

for samples with P < 0.05 to derive the immune cell infiltration

matrix. Histograms were plotted using the ggplot2 package to show

the distribution of the 22 immune cell infiltrates in each sample. Heat

maps were plotted to visualize the correlation between 22 immune

cell infiltrates using the corrplot package (https://github.com/taiyun/

corrplot). Correlation plots between immune cells and different

subgroups were generated using the ggpubr package.
2.8 Immunotherapy and drug
sensitivity analysis

Cellular features of immune infi ltration determine

immunophenotype and tumor escape mechanisms; we used the

immunophenoscore (IPS) from The Cancer Immunome Atlas (34)

(TCIA, https://tcia.at/home) to predict CTLA-4 and anti-PD-1

antibody responses. Based on the results of TCIA analysis, we

compared the differences in CTLA4 and PD-1 expression between

the high- and low-risk groups.

The Genomics of Drug Sensitivity in Cancer (GDSC) database

(www.cancerrxgene.org/) (35) can be used to search oncology drug

response data and genomic sensitivity markers. We used the pRRophetic

algorithm (36) to construct ridge regression models based on gene

expression profiles to predict the sensitivity of high- versus low-risk

groups to common anticancer drugs based on IC50 values.

The tumor immune dysfunction and exclusion (TIDE) (37)

score (http://tide.dfci.harvard.edu) can predict potential tumor

treatment response to ICB, a computational algorithm based on

gene expression profiles. Based on the results of the TIDE analysis,

we compared the high- and low-risk groups with differences in

various indicators of tumor immunotherapy.
2.9 Patients tissue specimens and
immunohistochemistry (IHC) staining

A total of 25 patients fulfilling the inclusion criteria

(Histologically confirmed stage II or III or IV colon cancer) at

Panyu Maternal and Child Care Service Centre of Guangzhou (He
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Xian Memorial Affiliated Hospital of Southern Medical University)

between 2020 and 2022, were included in the present study.

The detailed of IHC procedure and histologic scoring and analysis

were performed as described (38). Briefly, specimens were incubated

with individual primary antibodies (MMP3, Abcam; CXCL2, SAB

Signalway Antibody; MMP12, SAB Signalway Antibody; KRT23, SAB

Signalway Antibody; TNFAIP6, SAB Signalway Antibody; CCL8,

Solarbio) and then washed and incubated with HRP–conjugated

secondary antibody (goat anti-rabbit, 1:500, Cell Signaling

Technology). Colorimetric reaction was with DAB.
2.10 Statistical analysis

All data calculations and statistical analyses were performed

using R software (https://www.r-project.org/, v4.1.1). For

comparisons of continuous variables between the two groups, an

independent t-test was used to estimate normally distributed

variables, and the Mann–Whitney U test was used to analyze

non-normally distributed variables. All P-values were two-sided,

and statistical significance was set at P < 0.05.
3 Results

3.1 Data pre-processing

Figure 1 shows an overview of the study flowchart. The gene

expression matrices from TCGA-COAD, GSE17536, and GSE39582

datasets underwent standardization, preprocessing, and batch effect

removal. Figures S1A, B presents the boxplot graph of the dataset

before and after batch effect removal. Principal component analysis

(PCA) was then conducted on the merged dataset to evaluate the impact

of batch effect removal (Figures S1C, D). The result showed that before

batch effect removal, the distance between GSE17536, GSE39582, and

TCGA-COAD datasets were relatively far apart. However, after batch

effect removal, the three datasets were evenly distributed together,

indicating that the batch effect in the merged dataset samples was

significantly reduced and the dataset can be used for subsequent analysis.
3.2 Characterization of pyroptosis
subgroups in colon cancer

Based on the expression of pyroptosis genes, unsupervised

clustering analysis was used, and the clustering results are shown

in Figure 2A. We chose the clustering results at k = 2 (Figure 2B),

which were divided into two pyroptosis subgroups: cluster A (n =

637) and cluster B (n = 526). Based on sample expression profiles,

we distinguished the distribution characteristics of the different

subgroups using principal component analysis (PCA) and found a

clear distinction (Figure 2C). We then compared the expression of

PRGs between the two subgroups and found significant differences

in PRG expression (Figure 2D).

To assess the transcriptomic differences between pyroptosis

regulatory patterns, we performed differential analysis of different
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subgroups (clusters A and B) and obtained 59 DEGs as pyroptosis-

related signature genes, of which 56 were upregulated and 3 were

downregulated in cluster B (Figure 2E, F). We performed GO/KEGG

analysis on the differential genes with a P-value cutoff of 0.05 and

obtained the results shown in Figures 2G–J, S2, and Table 1. GO analysis

shows that pyroptosis gene regulators were closely related to biological

processes such as receptor ligand activity, neutrophil chemotaxis,

neutrophil migration, granulocyte chemotaxis, and cytokine receptor

binding. KEGG analysis shows that pyroptosis gene regulators affected

viral protein interactions with cytokines and cytokine receptors,

rheumatoid arthritis, IL-17 signaling pathway, cytokine-cytokine

receptor interaction, and chemokine signaling pathway.
3.3 Characterization of differential gene
subgroups in colon cancer

From 59DEGs, we selected 16DEGs (P-value < 0.05) using univariate

COX proportional regression analysis (Figure 3A) and then used

unsupervised clustering to identify different DEG subgroups. We

concluded that the differences between these subgroups better reflected

the characteristics of the pyroptosis subgroup. When k = 2, the best

grouping was found (Figures 3B, C), and the distribution characteristics of

different DEG subgroups were evaluated using PCA and a clear distinction

was found between the two subgroups (Figure 3E). We then performed

differential analysis andmapped the differential expression of PRGs and 16

DEGs between the different DEG subgroups (Figures 3D, F).
3.4 Construction of prognostic models

Using the LASSO algorithm, we analyzed the feasibility of

constructing a CC model based on pyroptosis-related regulators.

After 10-fold cross-validation, we obtained the best l of 0.007903871
Frontiers in Oncology 05
and 15 DEGs and their corresponding coefficients (Figures 4A, B). A

prognostic model was constructed based on these eight genes

(CXCL10, MMP12, CXCL13, MMP3, TNFAIP6, IDO1, CCL8, and

KRT23), and the risk score was calculated. The samples were divided

into high-risk and low-risk groups according to the median risk score

values of 1163 CC samples, and their survival differences were

compared. As shown in Figure 4C, the prognosis in the low-risk

group was significantly better than that in the high-risk group.

Subsequently, we identified independent prognostic factors of CC by

univariable and multivariate COX regression analyses, as shown in

Figure 4D; age, sex, stage, and high- and low-risk groups were all

independent prognostic factors. Meanwhile, a risk factor plot shows

that the higher the risk score, the worse the prognosis (Figure 4E).

Combined with the results of the previous analyses, we plotted the

relationship between risk score and pyroptosis regulatory subgroups,

pyroptosis DEG subgroups, and survival status using a Sankey plot

(Figure 4F). Based on the findings presented in Figure 4F, it is apparent

that subjects from the disease group were initially categorized into two

clusters (Cluster A (n=637); Cluster B (n=526)) based on pyroptosis-

related gene expression, with subsequent differential gene analysis

causing a decrease in the portion of subjects classified as Cluster B.

The samples were then separated into high- and low-risk groups based

on the median risk score. Notably, a higher proportion of patients who

succumbed to the disease were found to be in the high-risk group,

suggesting a link between the risk score and patient survival rates.

We plotted a nomogram based on the results of multivariate

COX regression, as shown in Figure 5A, and calculated a C-index of

0.738, which was evaluated by time-dependent ROC curves

(Figure 5B) and correction curves at 1, 3, and 5 years (Figures 5C–

E), which had a good prognostic assessment value. Subsequently, we

analyzed the distribution of different clinical characteristics in the

high- and low-risk groups and found no significant differences in the

age or sex distribution in the high- and low-risk groups (Figures 5F,

G). Significant differences in risk scores were observed amongst
FIGURE 1

Overview of the study flowchart.
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tumor stages. Specifically, stage 1 patients showed significantly lower

risk scores compared to patients in stages 2, 3, and 4. Notably,

patients in stages 2 and 3 exhibited lower risk scores than those in

stage 4. These findings are illustrated in Figure 5H. Moreover,

patients who succumbed to the disease had significantly higher risk

scores than those who survived, as represented in Figure 5I.
3.5 Analysis of gene mutations and copy
number variants

The role of somatic mutations in cancer development and

progression has been confirmed with the innovation of genetic testing
Frontiers in Oncology 06
technology, we analyzed the mutation characteristics of the high- and

low-risk groups. First, we mapped the top 30 mutated genes in both

groups (Figures 6A, B) using the maftools package. Subsequently, we

analyzed the TMBof both groups and found that themedian TMBof the

high- and low-risk groups was 2.02/MB and 1.89/MB, respectively

(Figures 6C, D). We then analyzed CNV in the high- and low-risk

groups and found that CNV alterations occurred at multiple locations in

both groups, but the overall differences between the two groups were not

significant (Figures 6E, F). The term TMB refers to the number of non-

synonymous genomic mutations observed in somatic cells within a

specific genomic region. Typically, TMB is measured as the number of

mutations per megabase (mut/Mb). Notably, TMB serves as an indirect

marker for a tumor’s ability to generate novel antigens. This makes it a
A B

D E F

G

I

H

J

C

FIGURE 2

Characterization of pyroptosis subgroups in colon cancer and screening of subtype-associated genes. (A) CDF plot when k takes different values. (B)
Heat map of sample clustering at k = 2. (C) Principal component analysis (PCA) of two pyroptosis subgroups. (D) Expression of pyroptosis genes in
different subgroups. (E) Volcano plot of differentially expressed genes; red and green indicate upregulated and downregulated genes, respectively, in
the cluster 2 group. (F) Differentially expressed genes in heat map; red and green indicate high and low expression, respectively. (G, H) Gene
Ontology (GO) analysis of bubble and heat maps. (I, J) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of bubble and heat maps.
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TABLE 1 GO/KEGG enrichment analysis.

ONTOLOGY ID Description pvalue p.adjust qvalue

BP GO:0030593 neutrophil chemotaxis 1.23E-23 2.15E-20 1.28E-20

MF GO:0008009 chemokine activity 1.80E-22 3.93E-20 1.80E-20

BP GO:1990266 neutrophil migration 2.48E-22 1.66E-19 9.91E-20

BP GO:0071621 granulocyte chemotaxis 2.84E-22 1.66E-19 9.91E-20

BP GO:0019730 antimicrobial humoral response 2.73E-21 1.20E-18 7.15E-19

BP GO:0097530 granulocyte migration 5.43E-21 1.90E-18 1.14E-18

MF GO:0042379 chemokine receptor binding 2.53E-20 2.76E-18 1.27E-18

BP GO:1990868 response to chemokine 2.87E-20 7.19E-18 4.30E-18

BP GO:1990869 cellular response to chemokine 2.87E-20 7.19E-18 4.30E-18

BP GO:0097529 myeloid leukocyte migration 8.11E-20 1.78E-17 1.06E-17

MF GO:0005125 cytokine activity 1.57E-17 1.14E-15 5.24E-16

MF GO:0005126 cytokine receptor binding 1.44E-16 7.84E-15 3.60E-15

MF GO:0045236 CXCR chemokine receptor binding 2.59E-16 1.13E-14 5.17E-15

MF GO:0048018 receptor ligand activity 8.64E-14 3.14E-12 1.44E-12

MF GO:0030546 signaling receptor activator activity 1.05E-13 3.28E-12 1.51E-12

MF GO:0001664 G protein-coupled receptor binding 4.73E-12 1.29E-10 5.92E-11

CC GO:0042613 MHC class II protein complex 1.43E-05 0.001756791 0.000992282

CC GO:0042611 MHC protein complex 5.75E-05 0.003538542 0.001998663

CC GO:0097169 AIM2 inflammasome complex 0.000133675 0.004203185 0.002374071

CC GO:0070820 tertiary granule 0.000136689 0.004203185 0.002374071

CC GO:0001772 immunological synapse 0.000257665 0.006338555 0.003580185

CC GO:1904724 tertiary granule lumen 0.000615378 0.012048803 0.006805486

KEGG hsa04061 Viral protein interaction with cytokine and cytokine receptor 1.19E-16 1.51E-14 8.28E-15

KEGG hsa05323 Rheumatoid arthritis 1.75E-15 8.58E-14 4.69E-14

KEGG hsa04657 IL-17 signaling pathway 2.03E-15 8.58E-14 4.69E-14

KEGG hsa04060 Cytokine-cytokine receptor interaction 1.35E-13 4.28E-12 2.34E-12

KEGG hsa04668 TNF signaling pathway 1.79E-11 4.54E-10 2.49E-10

KEGG hsa04062 Chemokine signaling pathway 2.36E-11 5.00E-10 2.74E-10

KEGG hsa05417 Lipid and atherosclerosis 1.48E-09 2.68E-08 1.47E-08

KEGG hsa04621 NOD-like receptor signaling pathway 3.86E-09 5.98E-08 3.27E-08

KEGG hsa04064 NF-kappa B signaling pathway 4.71E-09 5.98E-08 3.27E-08

KEGG hsa04620 Toll-like receptor signaling pathway 4.71E-09 5.98E-08 3.27E-08

KEGG hsa05164 Influenza A 2.70E-08 3.12E-07 1.70E-07

KEGG hsa04623 Cytosolic DNA-sensing pathway 4.95E-08 5.24E-07 2.87E-07

KEGG hsa05140 Leishmaniasis 2.03E-07 1.98E-06 1.08E-06

KEGG hsa05134 Legionellosis 6.75E-07 6.12E-06 3.35E-06

KEGG hsa05332 Graft-versus-host disease 3.34E-06 2.82E-05 1.54E-05

KEGG hsa05133 Pertussis 3.75E-06 2.98E-05 1.63E-05
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valuable predictor of the effectiveness of immunotherapeutic

interventions, particularly for various cancer types. Tumors with

higher TMB tend to harbor a significantly larger quantity of new

antigens and, therefore, are more amenable to treatment with

immunotherapy checkpoint inhibitors (ICIs). On the other hand,

CNV, which stands for Copy Number Variation, is a genomic

rearrangement event that generally results in the copy number increase

or decrease of larger genome segments with a length exceeding 1 kb.

CNV is primarily characterized by sub-microscopic deletions and

duplications. It is crucial to note that both TMB and CNV serve as

molecular indicators of genomic mutations. In cases where the TMB and

CNV values of two groups exhibit no significant differences, it follows

that there is little discrepancy between the groups concerning

genomic mutations.
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3.6 GSEA and GSVA for high- and
low-risk groups

Next, we performed GSEA and GSVA for the high- and low-

risk groups of CC. As shown in Figure 7A–F, the high-risk group

was mainly enriched in ECM receptor interaction, focal

adhesion, dilated cardiomyopathy, and other pathways. The

low-risk group functions were mainly enriched in the cell

cycle, chemokine signaling pathway, and autoimmune thyroid

disease pathways; detailed GSEA results are shown in Table 2.

GSVA results show that the pathways were mainly enriched in

48 related oncogenic pathways, including the KRAS dependency

signature, AKT up MTOR dn.v1 up, and ERBB2 up.v1

up (Figure 7G).
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FIGURE 3

Characterization of differentially expressed gene subgroups in colon cancer. (A) Forest plot of univariate COX proportional regression analysis.
(B) CDF plot when k takes different values. (C) Heat map of samples clustering at k = 2. (D) Box plot of differential expression of pyroptosis-related
genes among different subgroups. *P<0.05, **P<0.01, ***P<0.001. (E) Principal component analysis (PCA) of two differentially expressed gene
subgroups. (F) Heat map of differential expression of 16 genes between different subgroups.
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3.7 Differences in immune infiltration in the
high- and low-risk groups

Based on previous results, in which the prognosis of the low-

risk group was significantly better than that of the high-risk

group, we speculate that there may be differences in immune

infiltration between both groups. We determined changes in the

level of immune cell infiltration in CC using the CIBERSORT

algorithm, in which macrophage subpopulations account for a

large proportion of infiltrating immune cells (Figure 8A).

Correlation analysis shows correlations between the levels of

infiltration of multiple immune cells, where red and green

represent positive and negative correlations, respectively, with

no significant differences between the high- and low-risk groups

(Figures 8B, C). Immune cells were analyzed in both groups, and

activated memory CD4+ T cells, follicular helper T cells, M1

macrophages, M2 macrophages, activated mast cells, and

neutrophils were found to be different between the high- and

low-risk groups (Figures 8D–O).
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3.8 Immunotherapy and drug
sensitivity analysis

First, we assessed the differences in IPS of patients in high- and

low-risk groups based on TCIA database, as shown in Figures 9A–

D. CTLA4 (–) PD1(+), CTLA4(+) PD1 (–), and CTLA4(+) PD1(+)

were significantly different between high- and low-risk groups (P <

0.05). We then assessed the differences in sensitivity to common

antitumor drugs between the high- and low-risk groups using the

GDSC database. After analysis, we plotted the top 12 drugs with the

most significant differences, such as bortezomib, erlotinib,

cyclopamine, and bicalutamide (Figures 9E–P).

Given the important role that immunotherapy currently plays in

tumors, we first assessed the sensitivity of patients in the high- and

low-risk groups to immunotherapy using the TIDE algorithm. As

shown in Figures 9Q, R, the TIDE scores were higher in the high-risk

group than in the low-risk group, suggesting that immunotherapy

responsiveness was better in the low-risk group than in the high-risk

group. As shown in Figures 9S, T, the immune checkpoints CD8 and
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C

FIGURE 4

Clinical characteristics of colon cancer. (A) Number and coefficients of enrolled characteristics at different l states during least absolute shrinkage
and selection operator (LASSO) model building. (B) Optimal l values for LASSO model. (C) Survival curves for patients in the high- and low-risk
groups. (D) Forest plot of multivariate COX regression analysis combining clinical characteristics. (E) Risk factor triplot with risk score in the upper
panel and survival outcome in the middle panel. The lower panel shows the molecular expression in the prognostic model. (F) Sankey plots between
high- and low-risk groups with pyroptosis regulatory subgroups, pyroptosis differentially expressed gene subgroups, and survival status. *p < 0.05,
**p < 0.01, and ***p < 0.001.
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CD274 were scored for the tumors. The CD8 and CD274 scores were

lower in the high-risk group than in the low-risk group, suggesting

that they could be used as biomarkers, Undoubtedly, more

mechanistic studies are needed to confirm this inference.
3.9 Validation analysis of GSE17537 dataset

In this study, we utilized multivariate Cox regression analysis of the

merged dataset to calculate the risk scores of GSE17537 dataset using

the same approach. We then separated the samples into high and low

risk groups based on the median value of the risk scores, and

constructed a prognostic model. After combining the Risk Score of

the prognostic model with the prognosis survival information

(OS.event) of GSE17537 dataset patients, we performed a prognostic

KM curve analysis based on the Risk Score median value grouping (see

Figure 10A). The results showed a significant statistical difference

between the prognostic model risk score and GSE17537 dataset

patients’ survival information (OS.event) (P < 0.001).

To further assess the accuracy of the prognostic model in predicting

survival outcome (OS) of GSE17537 dataset patients, we plotted a time-

dependent ROC curve which showed that the Risk Score of the prognostic
Frontiers in Oncology 10
model was moderately accurate in predicting survival outcome

(AUC1 = 0.753, AUC3 = 0.767, AUC5 = 0.771, see Figure 10B).

Moreover, we performed a 1-year (Figure 10C), 3-year (Figure 10D),

and 5-year (Figure 10E) prognostic calibration analysis on the prognostic

model combined with patient clinical information (age, gender, clinical

stage), and plotted calibration curve graphs. The horizontal axis of the

calibration curve graph represents the predicted survival probability of the

model, and the vertical axis represents the actual data displayed survival

probability. The lines and points of different colors represent the situation

ofmodel prediction at different time points. The closer the lines of different

colors are to the gray ideal line, the better the prediction effect at that time

point. From the graph, it can be seen that the calibration analysis of the

prognostic model indicated that the 5-year and 3-year predictions were

more reliable than the 1-year prediction.
3.10 Validation of protein expression levels
of risk PRGs using IHC

We next evaluated MMP3,CXCL2, MMP12, KRT23, TNFAIP6

and CCL8 in CC tissues. The IHC staining results showed that all

molecules were high expression (Figure 11).
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FIGURE 5

Prognostic models and evaluation of colon cancer. (A) Nomogram constructed based on multivariate COX regression results. (B) Time-dependent
ROC curves for prognostic models. (C-E) Calibration curves for prognostic models at 1, 3, and 5 years. (F) Comparison of age in high- and low-risk
groups. (G) Comparison of sex in high- and low-risk groups. (H) Comparison of clinical stage in high- and low-risk groups. (I) Comparison of high-
and low-risk groups in survival status. *p < 0.05, **p < 0.01, and ***p < 0.001. ns means no significance.
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4 Discussion

CC is one of the most common malignancies worldwide and the

fifth-leading cause of cancer-related deaths in humans, posing a

serious threat to human health (1). CC is occurring more frequently

in younger patients and, despite improvements in early screening

and treatment, the overall prognosis remains poor. Therefore, it is

necessary to further investigate its pathogenesis and identify early

prognostic factors and potential therapeutic targets (39). Recent

innovations in genetic testing technology have provided conclusive

evidence that mRNA levels and somatic mutations play key roles in

cancer formation and progression, opening new opportunities for

identifying novel biomarkers and developing therapeutic targets.

Traditional predictive markers for CC prognosis, such as clinical

parameters, MSI status, KRAS, and BRAF mutation status, have

certain limitations. The construction of a polygene model is

important for improving the accuracy of prognostic prediction

and exploring new therapeutic targets.

Inflammation is closely associated with the development and

progression of malignancies (40). Recently, a novel form of

programmed cell death, pyroptosis, which is regulated by the

GSDM protein family with a predominant inflammatory
Frontiers in Oncology 11
response, has been identified and is attracting increasing attention

(9). Studies have shown that pyroptosis plays a dual role in

inhibiting or promoting tumor development and is emerging as

an attractive target in malignancy because of its significant role in

the tumor immune microenvironment (TIME) and antitumor

immunity (41, 42). Although several studies have explored the

value of PRG signatures in predicting the prognosis and drug

sensitivity of CC (12, 43), there is still a need for in-depth

research to determine whether this new mode of pyroptosis gene

signature can provide clinicians with therapeutic insights.

In this study, we selected 33 PRGs reported in the literature (20)

and divided patients with CC into two subgroups (clusters A and B)

through unsupervised cluster analysis based on the expression of

these genes. PRG expression differed significantly between the two

subgroups. To assess the differences between the modes of

pyroptosis regulation, we first performed a differential analysis of

the two subgroups and screened 59 DEGs. Further pathway

enrichment analysis was performed to identify the biological

functions of the PRGs. GO analysis shows that PRGs are closely

related to biological processes such as receptor ligand activity,

neutrophil chemotaxis, neutrophil migration, granulocyte

chemotaxis, and cytokine receptor binding. KEGG analysis shows
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FIGURE 6

Mutation characteristics and copy number variation (CNV) analysis of high- and low-risk groups. (A) Waterfall plot of the top 30 mutated genes in
the high-risk group. (B) Waterfall plot of the top 30 mutated genes in the low-risk group. (C) Tumor mutation burden (TMB) distribution
characteristics of patients in the high-risk group. (D) TMB distribution characteristics of patients in the low-risk group. (E) CNV distribution
characteristics of patients in the high-risk group. (F) CNV distribution characteristics of patients in the low-risk group.
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that PRGs affect pathways such as viral protein interaction with

cytokines and cytokine receptors, rheumatoid arthritis, IL-17

signaling pathway, cytokine-cytokine receptor interaction, and

chemokine signaling pathway. The above results corroborate the

biological characteristics of pyroptosis, which influences the release

of inflammatory factors, thus altering the TIME and regulating

tumor progression (44).

To further clarify the impact of pyroptosis on the prognosis of

patients with CC, we first selected 16 genes from the 59 PRGs that

correlated with prognosis using univariate COX regression analysis.
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Finally, eight genes were screened using the LASSO regression and

multivariate COX regression analyses. A prognostic model was

constructed and risk scores were calculated based on these eight

genes (CXCL10, MMP12, CXCL13, MMP3, TNFAIP6, IDO1,

CCL8, and KRT23), and the samples were divided into high-risk

and low-risk groups according to the median risk score values of

1163 CC samples.

TNFAIP6, a member of the hyaluronan-binding protein family,

is a secretory protein containing a hyaluronan-binding domain. It is

possibly involved in cell-cell and cell-matrix interactions during
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FIGURE 7

Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) for high- and low-risk groups. GSEA pathways were significantly
enriched in high- and low-risk groups, including (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) ECM receptor interaction. (B) KEGG focal
adhesion. (C) KEGG cell cycle analysis. (D) KEGG chemokine signaling pathway. (E) KEGG autoimmune thyroid disease. (F) KEGG dilated
cardiomyopathy. ES and NES > 0 indicate that the pathway was enriched in the high-risk group, whereas ES and NES < 0 indicate that the pathway
was enriched in the low-risk group. (G) Heat map of 48 pathways obtained from GSVA analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1173181
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1173181
TABLE 2 GSEA enrichment analysis.

ID enrichmentScore NES pvalue p.adjust qvalues

KEGG_ECM_RECEPTOR_INTERACTION 0.777053 2.637892 1.000E-10 9.300E-09 6.53E-09

KEGG_FOCAL_ADHESION 0.635028 2.444653 1.000E-10 9.300E-09 6.53E-09

KEGG_CELL_CYCLE -0.62085 -2.26245 1.510E-10 9.362E-09 6.57E-09

KEGG_CHEMOKINE_SIGNALING_PATHWAY -0.53368 -2.04398 3.590E-09 1.669E-07 1.17E-07

KEGG_AUTOIMMUNE_THYROID_DISEASE -0.7459 -2.31859 6.557E-09 2.439E-07 1.71E-07

KEGG_DILATED_CARDIOMYOPATHY 0.629195 2.174141 8.211E-09 2.545E-07 1.79E-07

KEGG_ALLOGRAFT_REJECTION -0.77253 -2.2584 2.066E-07 5.489E-06 3.85E-06

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 0.615885 2.090769 2.552E-07 5.933E-06 4.16E-06

KEGG_DNA_REPLICATION -0.74691 -2.2332 5.762E-07 1.191E-05 8.36E-06

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION -0.44139 -1.73063 1.346E-06 2.504E-05 1.76E-05

KEGG_PRIMARY_IMMUNODEFICIENCY -0.72868 -2.15276 4.913E-06 7.808E-05 5.48E-05

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE 0.796482 2.082043 5.038E-06 7.808E-05 5.48E-05

KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC 0.582708 1.939575 8.733E-06 1.249E-04 8.77E-05

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION -0.6727 -2.08469 1.248E-05 1.659E-04 0.000116

KEGG_GRAFT_VERSUS_HOST_DISEASE -0.71646 -2.09447 1.750E-05 2.170E-04 0.000152

KEGG_SPLICEOSOME -0.49945 -1.81931 1.899E-05 2.208E-04 0.000155

KEGG_AXON_GUIDANCE 0.488584 1.777662 2.758E-05 3.017E-04 0.000212

KEGG_ASTHMA -0.75614 -2.10676 3.252E-05 3.271E-04 0.00023

KEGG_TYPE_I_DIABETES_MELLITUS -0.6705 -2.02195 3.342E-05 3.271E-04 0.00023

KEGG_PROTEASOME -0.65492 -2.02253 4.062E-05 3.778E-04 0.000265

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY -0.48859 -1.74726 1.340E-04 1.187E-03 0.000833

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 0.421614 1.629255 1.878E-04 1.588E-03 0.001114

KEGG_MISMATCH_REPAIR -0.71249 -1.92015 2.335E-04 1.888E-03 0.001325

KEGG_CITRATE_CYCLE_TCA_CYCLE -0.65747 -1.87918 3.351E-04 2.496E-03 0.001751

KEGG_HOMOLOGOUS_RECOMBINATION -0.69362 -1.97812 3.354E-04 2.496E-03 0.001751

KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY -0.5857 -1.86538 4.172E-04 2.985E-03 0.002094

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 0.53016 1.726545 6.237E-04 4.296E-03 0.003015

KEGG_BASE_EXCISION_REPAIR -0.64981 -1.89185 8.153E-04 5.416E-03 0.0038

KEGG_GAP_JUNCTION 0.478775 1.649082 8.678E-04 5.566E-03 0.003906

KEGG_PEROXISOME -0.49368 -1.68601 1.634E-03 1.013E-02 0.007109

KEGG_NUCLEOTIDE_EXCISION_REPAIR -0.5695 -1.76488 1.749E-03 1.032E-02 0.007239

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION -0.50206 -1.68462 1.775E-03 1.032E-02 0.007239

KEGG_RNA_DEGRADATION -0.5208 -1.6751 2.357E-03 1.328E-02 0.00932

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS -0.43817 -1.5541 2.428E-03 1.328E-02 0.00932

KEGG_MAPK_SIGNALING_PATHWAY 0.350998 1.396499 3.562E-03 1.893E-02 0.013286

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS -0.54948 -1.68754 4.128E-03 2.122E-02 0.014892

KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 0.664154 1.718671 4.221E-03 2.122E-02 0.014892

KEGG_HEMATOPOIETIC_CELL_LINEAGE -0.45256 -1.54789 4.697E-03 2.299E-02 0.016135

KEGG_TIGHT_JUNCTION 0.40758 1.484808 5.760E-03 2.747E-02 0.019279

(Continued)
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TABLE 2 Continued

ID enrichmentScore NES pvalue p.adjust qvalues

KEGG_ABC_TRANSPORTERS -0.51438 -1.59405 8.211E-03 3.748E-02 0.026303

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS -0.39057 -1.4285 8.262E-03 3.748E-02 0.026303

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 0.409911 1.455422 8.555E-03 3.789E-02 0.026587

KEGG_PYRIMIDINE_METABOLISM -0.42422 -1.47995 8.917E-03 3.857E-02 0.027067

KEGG_OOCYTE_MEIOSIS -0.40633 -1.45508 9.666E-03 4.023E-02 0.028231

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY -0.40669 -1.48447 9.733E-03 4.023E-02 0.028231

KEGG_CALCIUM_SIGNALING_PATHWAY 0.356277 1.348768 1.117E-02 4.518E-02 0.031702
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FIGURE 8

Differences in immune infiltration in high- and low-risk groups. (A) Panorama of 22 immune cell infiltrations calculated using the CIBERSORTX
algorithm. (B, C) Heat map of association between 22 immune cells in the high- and low-risk groups. (D-O) Violin plot of differential numbers of 12
immune cells between high- and low-risk groups. *P<0.05, **P<0.01, ***P<0.001.
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inflammation and tumorigenesis (45). Zhang et al. (46) and Cui

et al. (47) found that TNFAIP6 promotes invasion and metastasis

and indicates poor prognosis in patients with gastric cancer.

Similarly, in our study, high TNFAIP6 expression was associated

with a poor prognosis in CC.

MMP3 andMMP12 are both archetypal matrix metalloproteinases

(MMPs), a group of protein hydrolases containing active Zn2+ that are

involved in many functions related to self-stabilization, such as tissue

repair and immune and pathological processes, including tumor,

fibrosis, and infection (48). MMP3 is associated with tumor growth
Frontiers in Oncology 15
andmetastasis in breast cancer (49) and CC (50). Similarly, Klupp et al.

found that the level of MMP-12 protein expression in patients with

CRC was significantly higher than that in healthy subjects and

correlated with advanced CRC disease and vascular invasion (51).

However, in our study, MMP3 andMMP13 were prognostic protective

factors in patients with CC, and further studies are needed to explore

the underlying mechanisms.

CXCL10 is a protein with a molecular weight of 8.7 kDa that

belongs to the CXC chemokine family. The protein, one of the ligands

of CXCR3, is important for stimulating T cell responses by inducing
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FIGURE 9

Immunotherapy and drug sensitivity analysis. Differences in (A) CTLA4 neg PD1 neg, (B) CTLA4 neg PD1 pos, (C) CTLA4 pos PD1 neg, and (D) CTLA4
pos PD1 pos between the high- and low-risk groups. Based on the GDSC database, differences in drug sensitivity of common antineoplastic drugs
between the high- and low-risk groups were determined: (E) RDEA119, (F) BMS.536924, (G) Z.LLNle.CHO, (H) WZ.1.84, (I) bicalutamide, (J)
PD.0325901, (K) OSI.906, (L) BMS.754807, (M) bortezomib, (N) cyclopamine, (O) erlotinib, and (P) WH.4.023. Differences in (Q) TIDE, (R) exclusive,
(S) CD8, and (T) CD274 scores were calculated using the TIDE algorithm in the high- and low-risk groups.
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FIGURE 10

Validation analysis of the GSE17537 dataset. (A) Plot of survival curves for patients in the high and low risk groups of the GSE17537 dataset. (B) Time-
dependent ROC curves for the prognostic model of the GSE17537 dataset. (C-E) Plots of 1-year (C), 3-year (D), and 5-year (E) calibration curves for
the prognostic model.
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FIGURE 11

Validation of the selected genes in the prognostic model at the protein level. IHC staining identified the gene expression in clinical specimens. High
expressions of MMP3 (A), CXCL10 (B), MMP12 (C), KRT23 (D), TNFAIP6 (E) and CCL8 (F) were presented in colon cancer tissues (n=25) by IHC
staining. IHC: Immunohistochemistry. IHC: Immunohistochemistry. IHC stain, DAB, original magnification x 100 (inset, IHC stain, DAB, original
magnification x 400).
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the expansion of CD4+ and CD8+ T cells and Th1 polarization, in

addition to inducing chemotactic migration of immune cells. The

CXCL10/CXCR3 axis has therapeutic potential by regulating

angiogenesis, recruiting activated immune cells, and influencing the

development of tumor cells, which in turn affects the TME (52). Thus,

CXCL10 attracts effector lymphocytes to tumors and can be used as a

therapeutic agent in CRC as well as in many cancer models (53). In

contrast, another family member, CXCL13, is normally expressed in

lymphoid organs and regulates the recruitment of B and antigen-

presenting cells. CXCR5 is the primary receptor of CXCL13 and

mediates chemokine function through specific downstream

interactions (54). The CXCL13/CXCR5 axis is associated with tumor

development, proliferation, and invasion. Aberrantly active CXCL13/

CXCR5 signaling promotes cancer cell growth through complex

molecular mechanisms in breast (55), intestinal (56), and lung (57)

cancers. CCL8, also known as monocyte chemotactic protein 2 (MCP-

2), is a small cytokine that belongs to the C-C chemokine family. CCL8

activates different immune cells, including mast cells, eosinophils,

basophils involved in allergic reactions, monocytes, T cells, and NK

cells associated with inflammatory responses (58). Several studies have

confirmed that CCL8 not only promotes proliferation (59) and

migration (60) but also enhances EMT and stemness of malignant

tumors (61), which is consistent with our findings that CCL8 is a gene

associated with poor prognosis in patients with CC.

IDO1 is a metabolic enzyme that regulates the levels of tryptophan

and its metabolites in vivo by catalyzing the oxidative cleavage reaction

of tryptophan and plays important biological functions in antibacterial,

antitumor, immunomodulatory, and antioxidant activities (62). Many

studies have shown that IDO1 is highly expressed in various cancers

and is associated with tumor aggressiveness and poor prognosis (63,

64). IDO1 promotes an immunosuppressive environment by inhibiting

T cell proliferation and stimulating Treg development. Inhibition of

IDO1 reduces the number of immunosuppressive Tregs and restores

cytotoxic T cell function. This may partly explain the difference in

prognosis between the high- and low-risk groups.

The risk model constructed based on the expression of the above

eight PRGs independently predicted the prognosis of patients with CC.

Patients in the high-risk group had worse prognosis than those in the

low-risk group. Next, we incorporated clinicopathological characteristics

and risk scores into a multivariate COX regression model and

constructed a nomogram. The best AUC was observed in the

combined nomogram, in which the risk score had a promising

prognostic signature. Further validation of this prediction model in

ROC curves and calibration plots revealed that the risk score had equally

good efficiency in predicting longer survival in patients with CC.

Subsequently, we analyzed the distribution of different clinical

characteristics in the high- and low-risk groups and found that there

was no significant difference in the distribution of age or sex, whereas in

the tumor stage, the later the TNM stage, the higher the risk. In the death

group, the proportion of high-risk patients was significantly higher than

that in the low-risk group.

To explore the underlying molecular mechanisms of the risk

signature, we performed GSEA and GSVA. The results show that

the high-risk group was mainly involved in ECM receptor

interaction and focal adhesion, whereas the low-risk group was

mainly involved in the cell cycle, chemokine signaling pathway, and
Frontiers in Oncology 17
cytokine receptor interaction. These enrichment results indicate

that the risk signature was strongly related to inflammation-related

pathways, which is consistent with the biological role of pyroptosis.

Tumors exist in a complex immune microenvironment (65). As a

type of inflammatory cell death, pyroptosis significantly affects the

TIME and thus regulates tumorigenesis and progression (66). By

analyzing the differences in immune cells between the high- and

low-risk groups, we found that the low-risk group had high levels of

naïve B cells, follicular helper T cells, M1 macrophages, memory

activated CD4+ T cells, plasma cells, resting NK cells, and CD8+ T

cells, whereas the high-risk group had more activated mast cells, M2

macrophages, neutrophils, regulatory T cells (Tregs), and activated NK

cell. This may explain the prognostic differences between the high- and

low-risk groups related to the effect of prognostic models being

constructed with PRGs in the immune microenvironment. The

TIME plays a key role in the immunosuppression of cancer, which

leads to tumorigenesis, progression, and insensitivity to

immunotherapy and chemotherapy. We further explored whether a

predictive model constructed based on PRGs could distinguish patient

sensitivity to immunotherapy or chemotherapy. First, we found that

the TIDE scores were significantly higher in the high-risk group than in

the low-risk group, suggesting that immunotherapy responsiveness was

better in the low-risk group than in the high-risk group. In addition, the

exclusive score, which usually reflects the strength of immune escape,

was higher in the high-risk group than that in the low-risk group,

suggesting that immunotherapy may be less effective in the high-risk

group. Further analysis of the immune checkpoint CD8 and CD274

scores of tumors revealed that CD8 and CD274 scores were

significantly lower in the high-risk group than in the low-risk group,

suggesting that they could act as biomarkers. Similarly, we assessed the

difference in IPS of patients in the high- and low-risk groups using the

TCIA database and found that CTLA4(+) PD1(+) was significantly

higher in the low-risk group than in the high-risk group (P < 0.05).

Pyroptosis, a type of programmed cell death characterized by an

inflammatory response, can significantly influence the TIME and thus

regulate the development and prognosis of malignancy (67).

Although some relevant studies have been reported (12, 43, 68), the

exploration of prognostic models based on PRGs in CC remains

necessary and valuable. Among them, Chen et al. (68) performed the

analysis based on the samples in TCGA, and the GEO data set was the

validation set. Compared to this study, our research differs

significantly in three main aspects. Firstly, our selection of data sets

is broader. While the study solely focused on colon adenocarcinoma

(COAD) and relied on the TCGA database as the only data source,

potentially introducing sample bias, we expanded our scope to

include datasets from both the TCGA and GEO databases to

ensure a more representative sample. Secondly, we used a different

analysis workflow. While the prior study employed supervised

clustering as their primary analysis method, we began with

unsupervised clustering analyses on the combined dataset (TCGA

+GEO) of colon cancer samples, thereby identifying two subtypes.We

subsequently conducted additional analyses based on these subtypes

and validated our results using a supplementary GSE17537 dataset.

Thirdly, we conducted different wet experiments to validate our

findings. In contrast to the previous study, which validated

pyroptosis-related genes through the HPA database and qPCR, we
frontiersin.org

https://doi.org/10.3389/fonc.2023.1173181
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1173181
performed immunohistochemistry experiments on clinical samples to

evaluate the expression of pyroptosis-related genes. In contrast to the

reported studies, we performed the first combined analysis of multiple

datasets from TCGA and GEO databases (a total of 1163 CC

samples), which has better innovation and value (Table S1). Unlike

the above-mentioned studies, we not only performed immune

infiltration analysis for different risk groups but also compared the

mutation characteristics and susceptibility to common antitumor

drugs in both groups and finally screened and identified eight novel

pyroptosis-related prognostic genes. Based on the risk score, the

samples were effectively divided into high-risk and low-risk groups,

and high-risk patients were found to have a significant

immunosuppressive microenvironment and a poorer effect on

immunotherapy, which partly explains the poorer prognosis of

high-risk patients. Previous studies have confirmed that the

immunosuppressive microenvironment is a key factor for worse

prognosis in patients with CC (69); therefore, the construction and

comprehensive analysis of this prognostic model provides a new

marker for the treatment and prognosis of patients with CC.

However, our study has some limitations. First, this prognostic

model is based on retrospective datasets, so more prospective

evaluation is needed to validate the accuracy of the model.

Second, although IHC has been performed to validate the

different protein expression levels of risk DRGs, the role and

mechanism of pyroptosis in the immune microenvironment of

CC requires further investigation.
5 Conclusion

In summary, we comprehensively analyzed the landscape of PRGs

in patients with CC and constructed an 8-gene prognostic model based

on pyroptosis-related prognostic genes, which effectively classified

patients into high-risk and low-risk groups. Pathway enrichment

analysis of the high- and low-risk groups revealed that they were

mainly enriched in inflammatory response-related pathways.

Compared to the low-risk group, patients in the high-risk group had

worse OS, an immunosuppressive microenvironment, and lower

sensitivity to immunotherapy and drug treatment. In conclusion, the

comprehensive analysis of PRGs in this study helps to predict prognosis

and guide individualized and precise treatment for patients with CC.
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SUPPLEMENTARY FIGURE 1

Boxplot graphs of TCGA+GEO merged dataset before and after batch
effect removal. (A) Boxplot graph of TCGA+GEO dataset before batch

effect removal. (B) Boxplot graph of TCGA+GEO dataset after batch effect

removal. (C, D) PCA graphs of merged dataset before (C) and after (D) batch
effect removal.
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SUPPLEMENTARY FIGURE 2

Signal pathway diagram. (A) Cytokine-cytokine receptor interaction pathway.
(B) Viral protein interaction with cytokine and cytokine receptor pathway.

SUPPLEMENTARY TABLE 1

Patient demographic.
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