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Introduction: MicroRNAs may be implicated in the acquisition of drug resistance in
chronic myeloid leukemia as they regulate the expression of not only BCR-ABL1 but
also genes associated with the activation of drug transfer proteins or essential
signaling pathways.

Methods: To understand the impact of specifically expressed miRNAs in chronic
myeloid leukemia and their target genes, we collected peripheral blood
mononuclear cells (PBMC) from patients diagnosed with chronic myeloid
leukemia (CML) and healthy donors to determine whole miRNA expression by
small RNA sequencing and screened out 31 differentially expressed microRNAs
(DE-miRNAs) with high expression. With the utilization of miRNA set enrichment
analysis tools, we present here a comprehensive analysis of the relevance of DE-
miRNAs to disease and biological function. Furthermore, the literature-based
miRNA-target gene database was used to analyze the overall target genes of the
DE-miRNAs and to define their associated biological responses. We further
integrated DE-miRNA target genes to identify CML miRNA targeted gene signature
singscore (CMTGSS) and used gene-set enrichment analysis (GSEA) to analyze the
correlation between CMTGSS and Hallmark gene-sets in PBMC samples from clinical
CML patients. Finally, the association of CMTGSS stratification with multiple CML cell
lineage gene sets was validated in PBMC samples from CML patients using GSEA.

Results: Although individual miRNAs have been reported to have varying degrees of
impact on CML, overall, our results show that abnormally upregulated miRNAs are
associated with apoptosis and aberrantly downregulated miRNAs are associated with
cell cycle. The clinical database shows that our defined DE-miRNAs are associated
with the prognosis of CML patients. CMTGSS-based stratification analysis presented a
tendency for miRNAs to affect cell differentiation in the blood microenvironment.

Conclusion: Collectively, this study defined differentially expressed miRNAs by
miRNA sequencing from clinical samples and comprehensively analyzed the
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biological functions of the differential miRNAs in association with the target
genes. The analysis of the enrichment of specific myeloid differentiated cells and
immune cells also suggests the magnitude and potential targets of differentially
expressed miRNAs in the clinical setting. It helps us to make links between the
different results obtained from the multi-faceted studies to provide more
potential research directions.

KEYWORDS

chronic myeloid leukemia, micro RNA, peripheral blood mononuclear cell, apoptosis,
hematopoietic stem cell differentiation

Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative
hematological cancer involving hematopoietic stem cells with an
incidence of 1-2 cases per 100,000 adults (1). The clinical hallmark
of CML is the uncontrolled production of mature or immature
granulocytes, mainly neutrophils, but also eosinophils and
basophils, with varying patterns of abnormal platelet function
(2). The pathogenesis of CML is based on the fusion of the
Abelson murine leukemia (ABL1) gene on chromosome 9 with
the breakpoint cluster region (BCR) gene on chromosome 22,
resulting in the expression of an oncoprotein known as BCR-
ABL1 (3). BCR-ABLLI is a combinatorically active tyrosine kinase
that promotes proliferation and chromosomal replication through
multiple downstream signaling pathways and affects leukemia
development by creating a cytokine-independent cell cycle with
abnormal apoptotic signals in response to cytokine withdrawal (4-
8). The development of small molecule tyrosine kinase inhibitors
(TKI), which effectively interfere with the interaction between the
BCR-ABLL1 oncoprotein and adenosine triphosphate (ATP) and
thus block the proliferation of malignant granulocytes, has
revolutionized the field of CML therapy. This ‘targeted’

Abbreviations: aDC, activated dendritic cells; cDC, conventional dendritic cells;
BCR-ABL, breakpoint cluster region-Abelson fusion gene; CLP, common
lymphoid progenitors; CML, chronic myeloid leukemia; CMP, common
myeloid progenitors; CMTGSS, CML miRNA targeted gene signature
singscore; DC, dendritic cells; DE-miRNA, differentially expressed micro-RNA;
EO, eosinophil; ER, erythrocytes; ERP, erythrocytes progenitors; GMP,
granulocyte-macrophage progenitors; GRAN, granulocyte progenitors; GSEA,
gene-set enrichment analysis; HSC, hematopoietic stem cells; iDC, immature
dendritic cells; LMPP, lymphoid-primed multipotent progenitors; ly Endothelial
cells, lymphatic endothelial cells; MDP, monocyte/dendritic cell progenitors;
MEP, megakaryocyte—erythroid progenitors; MK, megakaryocyte; MKP,
megakaryocyte progenitors; MPP, multi-potent progenitor; MSC, mesenchymal
stem cells; Multi-Lin, multi-lineage progenitors; mv Endothelial cells,
microvascular endothelial cells; NES, normalized enrichment score; NK, nature
killer cells; NKT, nature killer T cell; PBMC, peripheral blood mononuclear cell;
PC, plasma cells; pDC, plasmacytoid dendritic cells; POS, positive; Tcm, central
memory T-cells; Tem, effector memory T-cells; TKI, tyrosine kinase inhibitor;

Tregs, regulatory T-cells.
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approach has changed the history of CML treatment, raising the
10-year survival rate from around 20% to 80%-90% (9). TKIs for
BCR-ABLI1 become the current standard of care for patients with
chronic phase CML. However, with the widespread use of
commercially available TKI and the increasing prevalence of
CML, an increasing number of patients are suffering from drug
resistance. The direct mechanism of resistance involves point
mutations in the structural domain of the BCR-ABL1 kinase,
which undermines the activity of the available TKI. Although
second-generation TKI have overcome most mutations that were
resistant to imatinib, new mutations have emerged that make
leukemia resistant to them (10). More so, the role of soluble
cytokines, drug transfer proteins, micro vesicles and the impact of
inflammation and immune surveillance on microenvironment-
mediated drug resistance cannot be ignored (11). To increase the
proportion of patients potentially cured by long-term TKI therapy
molecules, combination strategies are being evaluated currently.
However, the development of a combinatorial strategy requires a
more detailed investigation of the molecular mechanisms of CML.
A better understanding of CML and its underlying molecular
mechanisms would increase the accuracy and effectiveness of
the effort.

MicroRNAs (miRNAs) are a group of single non-coding RNAs
(approximately 22 nucleotides in length). They act as target-specific
epigenetic regulators by modulating gene expression through
translational repression or mRNA excision (12). Dysregulation of
the expression pattern of miRNAs may have many effects, including
promoting tumorigenesis (13). MicroRNAs may be implicated in the
acquisition of drug resistance in CML as they regulate the expression
of not only BCR-ABLI but also genes associated with the activation of
drug transfer proteins or essential signaling pathways (14, 15). Our
previous study found that miR-342-5p could target CCNDI1 to affect
imatinib resistance by assessing the differential expression of miRNAs
in peripheral blood mononuclear cell (PBMC) from CML patients
compared to healthy donors (16). Nonetheless, the roles and
functions of many differentially expressed miRNAs (DE-miRNAs)
in our studies remain unexplored.

To understand the impact of specifically expressed miRNAs in
chronic myeloid leukemia and their target genes, we collected
peripheral blood mononuclear cells from patients diagnosed with
CML and healthy donors to determine whole miRNA expression by
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small RNA sequencing and screened out 31 differentially expressed
micro RNAs (DE-miRNAs) with high expression. With the
utilization of miRNA set enrichment analysis tools, we present
here a comprehensive analysis of the relevance of DE-miRNAs to
disease and biological function. Furthermore, the literature-based
miRNA-target gene database was used to analyze the overall target
genes of the DE-miRNAs and to define their associated biological
responses. We further integrated DE-miRNA target genes to
identify CML miRNA targeted gene signature singscore
(CMTGSS) and used gene-set enrichment analysis (GSEA) to
analyze the correlation between CMTGSS and Hallmark
biological response in PBMC samples from clinical CML patients.
Finally, the association of CMTGSS stratification with multiple
CML cell lineage gene sets was validated in PBMC samples from
CML patients using GSEA. It is hoped that the elucidation of the
associated biological functions will narrow the range of options for
combination therapeutic strategies and thereby increase the
success of the clinical application of the associated inhibitors

and treatments.

Materials and methods
PBMC clinical sample collection

Informed consent was obtained from each patient and health
volunteer for the collection of all samples in accordance with the
Helsinki Declaration and institutional guidelines. Ethical approval
was obtained from the Institutional Review Board of the Tri-
Service General Hospital, and all experimental protocols and
methods were performed in accordance with the relevant
protocols and regulations. According to the WHO Classification
of Tumors of Hematopoietic and Lymphoid Tissues, five samples
were collected from newly diagnosed CML patients in chronic
phase without any prior treatment, and five normal samples were
collected from healthy volunteers after passing the medical
examination. Please refer to our previous publications for
sample collection, next generation sequencing and processing
procedures (16).

Identification of differentially
expressed microRNA

Differentially expressed miRNAs between pairs were analyzed
by using the edgeR package in the R software. For each miRNA,
significant p-values and false discovery rates (FDR) were obtained
based on a negative binomial distribution model. The fold change in
gene expression was also estimated by the edgeR package. The
criteria for DE-miRNA have been set as |log, fold change | >1, log,
CPM >4 and FDR < 0.05.
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DE-miRNA-related biological function
and target gene associated functional
pathway analysis

TAM 2.0 is a web-based tool that uses the published literature on
miRNA-related function and pathology as the basis for database
building, with family-sets, cluster-sets, disease, function,
transcriptional factor (TF) and tissue specificity sets analysis.
Regarding the use of the Comparison Wizard function, the 19 up-
regulated and 11 down-regulated miRNA lists were entered into the
Comparison page, and the list was submitted with the default setting,
and the results were filtered with “Leukemia” as the keyword and
presented in Bar plot. For Analysis Wizard, enter the up-regulated and
down-regulated miRNA list into the Analysis page and submit the list
with the default settings. The results were first pre-screened by FDR <
0.25, and the results of Cluster-sets, Cell specificity, and Transcription
factor were further filtered by overlapping 2 miRNAs or more; Disease
ontology was filtered by the keyword “ Leukemia” was used to filter the
results; Function presented only the top 5 results with the smallest FDR.
Using R-studio (2022.12.0 Build 353) based on R 4.2.0, the
chordDiagram() function in the circlize package is used for miRNA
and enriched gene set association plotting (17). Regarding the enriched
functional pathways of target genes, 131 up-regulated DE-miRNA
target genes and 30 down-regulated DE-miRNA target genes were
entered into the Cytoscape (v3.9.1) ClueGo app respectively. The
Database is set to Gene Ontology biological processing and is
visualized with default parameters. Regarding the miRNA target
genes and number of interactions, miRTarBase was set as the
analysis engine in mienturnet to analyze the DE-miRNA target
genes. The results were filtered by number of interactions > 3, and
131 up-regulated DE-miRNA target genes were obtained (FDR<0.05).
The number of down-regulated DE-miRNA target genes was much less
than that of up-regulation, so the standard was widened to FDR<0.25
and 30 down-regulated DE-miRNA target genes were obtained. The
obtained miRNAs and target genes were visualized by importing the
results of mienturnet analysis into the chordDiagram() function in
the circlize package.

Establishment of CML miRNA targeted
gene signhature singscore using single
sample scoring approach

Singscore is a rank-based measure of gene set enrichment in a
single sample (18). By scoring both up- and down-regulated gene sets
based on the same gene expression ranking, the down-regulated gene
set scores are reversed and integrated to obtain a single score. The
integrated scores can therefore provide a comprehensive
characterization of the transcriptomics of individual samples when
both gene expression groups are assessed simultaneously. In this study,
miRNAs theoretically inhibit the mRNA expression or translation of
target genes, so that the expression of target genes with down-regulated
miRNAs increases, while the expression of target genes with up-
regulated miRNAs decreases. To reasonably integrate the difference
between the two into a single score, we set up- and down-regulated
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gene sets as up- and down-regulated miRNA target genes in the
singscore package (v1.18.0) respectively. The lower CMTGSS obtained
represents a decrease in the expression of the up-regulated miRNA
target gene cluster and an increase in the expression of the down-
regulated miRNA target gene cluster. The CMTGSS of all samples in
the individual databases were standardized by Z-score, with a cut-off of
0. Samples greater than or equal to 0 were considered as CMTGSS high
and those less than 0 were considered as CMTGSS low. For differential
expression analysis based on CMTGSS stratification, the Wilcoxon
signed-rank test was used, considering the large sample size of
individual databases (19). Differentially expressed genes and their
fold changes were sorted in descending order as genelist and
submitted to the clusterprofiler for subsequent analysis. Please refer
to the Supplementary Table for the components of the CMTGSS that
contribute to the up- and down-regulated genes.

GEO database access and immune cell
infiltration score assessment

The datasets supporting the results of this paper are available in the
NCBI Gene Expression Omnibus and can be accessed through the
GEOQ series registries GSE144119 and GSE72316. GSE144119 data have
been downloaded and converted from counts to transcripts per million
(TPM) for subsequent analysis. To quantify the abundance of stromal
cells and immune cells in the PBMC of CML patients, the xCell
package in R was used to estimate the scores of 64 infiltrating cell
subtypes from the normalized RNA sequencing data. After calculating
cell scores for each sample, signal-to-noise and similarity matrix test
based on CMTGSS stratification were performed using Morpheus web
tool (https://software.broadinstitute.org/morpheus/).

Gene set enrichment analysis

GSEA analysis was performed according to CMTGSS stratification,
using the GSEA() function of the ClusterProfiler package (v4.6.0) with
default settings. The corresponding NES of each gene set is plotted by
ggbarplot(). Concerning ridgeplot, it is drawn with the ridgeplot()
function of the ClusterProfiler package. The gene sets used in this study
include CML cell division by Graham et al. (20), CML gene set by Diaz
et al. (21), HSC properties by Eppert et al. (22), LSC profiling by Gal
et al. (23), Zheng et al. published Cord blood hematopoietic cell lineage
(24), and bone marrow derived cell population by Hay et al. (25).
Hallmark gene-set was obtained from the MsigDB database
(h.all.v2022.1.Hs.symbols.gmt). Apoptosis and cell cycle associated
gene-set was downloaded from the BioPlanet database (26).

Results

Identifying the DE-miRNAs between CML
patients and healthy donors

In our previous study, we collected total RNA from PBMC
samples from 5 patients with CP-CML and healthy donors for
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miRNA sequencing, and 2,590 miRNAs have been determined
(16). Differentially expressed miRNAs (DE-miRNA_ were analyzed
by EdgeR. We further identified 103 DE-miRNAs (FDR < 0.05), of
which 62 miRNAs were down-regulated and 41 miRNAs were up-
regulated (Figure 1A). Considering the miRNA expression
abundance, we conducted another screening with the criterion of
log, CPM > 4 and obtained 32 up-regulated miRNAs and 18 down-
regulated miRNAs (Figure 1B). There were 30 miRNAs with absolute
log,FC > 1, 19 up-regulated DE-miRNAs (in red) as well as 11 down-
regulated DE-miRNAs (in blue). Pathological association analysis of
DE-miRNAs using the publicly available bioinformatics tool TAM
2.0, with “leukemia” as the keyword for screening, showed that DE-
miRNAs were associated with a variety of leukemias. The upregulated
DE-miRNAs were more associated with “Acute or Myeloid
leukemia”, while the downregulated DE-miRNAs were more
similar to “Lymphoblastic leukemia” (Figure 1C).

Upregulated DE-miRNAs and their target
genes are associated with apoptosis

In order to investigate the potential impact of DE-miRNA
aberrant expression, the trend of miRNA in CML patient PBMC
was divided into up-regulation and down-regulation. The
upregulated miRNAs were analyzed by TAM2.0 (Figure 2A),
showing that the most upregulated miRNAs belonged to the HAS-
miR-181D cluster (Figure 2B). For function, the upregulated miRNAs
were enriched in cell proliferation, cell cycle and cell death
(Figure 2C). Disease ontology, pre-screened by the keyword
“Leukemia”, shows that the most upregulated DE-miRNAs are
associated with “Leukemia, Myeloid, Acute” (Figure 2D). In terms
of cell specificity, most upregulated DE-miRNAs were mostly
associated with “Neutrophils” (Figure 2E). Upstream transcription
factors such as MYC, E2F1, SPI1 and ESR1 dominate the upregulated
expression of most miRNAs (Figure 2F). We used Mienturnet to
analyze the potential target genes of upregulated DE-miRNAs and
showed that genes including MYC, HMGA2, PTEN and MIDN were
the majority of upregulated miRNA targets (Figure 2G). Cytoscape
ClueGO analysis of the functional pathways associated with the target
genes of the upregulated DE-miRNA showed that the Extrinsic
apoptotic signaling pathway was the most relevant (Figure 2H).
This suggests that DE-miRNAs upregulated in PBMC of CML
patients may affect drug resistance in CML cells by interfering with
the expression of apoptosis-related genes.

Down-regulated DE-miRNAs and their
target genes are associated with cell
cycle regulation

Similarly, analysis of the down-regulated DE-miRNAs
(Figure 3A) into TAM2.0 showed that most of the miRNAs
belonged to the HSA-miR-29B and HSA-miR-342 clusters
(Figure 3B). In terms of function, down-regulated DE-miRNAs
were enriched in Cell proliferation, Immune response, and
Inflammation (Figure 3C). Disease ontology shows that the most
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hsa-miR-1268a 514  1.03 005
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hsa-miR-425-5p 756 066 005
hsa-miR-941 605 112 001
hsa-miR-499a-5p 514 074 005
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hsa-let-7d-5p 1376 067 002
hsa-miR-221-5p 1013 058 005
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hsa-miR-146a-5p 591  -2.14 000
hsa-miR-223p 739 -136 000
hsa-miR-28-5p 519 -088 001
hsa-miR-26a-5p 1229 -066 003
hsa-miR-29a-3p 1328 -090 001
hsa-miR-342-5p 679 -217 000
hsa-miR-21-5p 1260 -1.83 0.00
hsa-miR-29b-3p  7.96  -145 000
hsa-miR-150-5p  9.80  -384 0.00
hsa-miR-451a 832 -139 002

| —
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Definition of differentially expressed miRNAs and association with leukemia. (A) Volcano plot showing the distribution of up-regulated and down-
regulated miRNAs (screening criteria: |Log, fold change (FC)| >1, FDR < 0.05). (B) Heatmap presenting the expression of differentially expressed
miRNAs in 5 CML patients and 5 healthy donor PBMC samples (filtering criteria: Log, CPM > 4, FDR < 0.05), red and blue text indicate miRNAs with
log, FC > 1 and < -1 respectively. (C) Analysis of differentially expressed genes and disease similarity using TAM2.0.

upregulated DE-miRNAs are associated with “Leukemia, Myeloid,
Acute”, similar with upregulated DE-miRNAs (Figure 3D).
Regarding cell specificity, the more relevant blood cells are CD4" T
cells (Figure 3E). As for upstream transcription factors, NF-kB is the
regulator of most down-regulated DE-miRNAs (Figure 3F).
Mienturnet analysis of down-regulated DE-miRNA potential target
genes showed that genes including CDK6, SP1, PTEN, RMND5A,
CCNA2 were most affected (Figure 3G). Analysis of the biological
functions of the target genes by Cytoscape ClueGO showed that the
Regulation of G1/S transition of mitotic cell cycle was most associated
with the genes targeted by down-regulated DE-miRNAs (Figure 3H).
This implies that the down-regulated miRNAs in PBMC of CML
patients may have the function of suppressing the expression of cell
cycle-related genes and may indirectly promote the proliferation of
CML cells after aberrant down-regulation.

Assessment of individual miRNA expression
in PBMC of CML patients in relation to
clinical disease progression

We further verified the expression of differential miRNAs in 97
samples from CML patients at diagnosis or remission and from
healthy donors using the GSE144119 database. Heatmap with
Hierarchical clustering was used to visualize the distribution of
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differential miRNAs in the samples, showing that most of the up-
regulated DE-miRNAs were highly expressed in the chronic phase,
while the down-regulated DE-miRNAs were mainly in healthy
control or remission (Figure 4A). Comparing individual miRNAs,
most of the up-regulated DE-miRNAs were significantly increased
in CML samples compared to healthy donors (miR-223, miR-222,
miR-106B, miR-23A, miR-LET-7B, miR-106B, miR-503), and
decreased after treatment reached remission. In contrast, down-
regulated DE-miRNAs were significantly reduced in CML samples
relative to healthy donors (miR-2982C, miR-342, miR-181A2HG),
and increased after treatment to achieve response (Figure 4B).
These results suggest that aberrant expression of DE-miRNA is
associated with the progression of CML and recovers to a state close
to that of a healthy donor after treatment. Using the singscore
method to integrate upregulated and downregulated miRNAs’
expression as a single value, we showed that the CML miRNA
singscore increased significantly in the chronic phase and decreased
in patients who reached remission, suggesting that the overall
miRNA expression we found reflects the disease progression of
clinical CML patients (Figure 4C). We further tested whether the
overall miRNA target gene expression was inversely correlated with
the miRNA singscore. We used the singscore approach to integrate
the DE-miRNA targeted gene from Figures 2G and 3G and showed
that the CML miRNA singscore was negatively correlated with the
CML miRNA targeted gene signature singscore (CMTGSS)

frontiersin.org


https://doi.org/10.3389/fonc.2023.1173970
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wu et al. 10.3389/fonc.2023.1173970

A Upregulated miRNA (Log,FC >1) B miRNA clusters

C Function (Top 5)

F3
microRNA name miRBase accession  microRNA mature sequence ‘)‘;
HSA-LET-7B-5P MIMAT0000063 UGAGGUAGUAGGUUGUGUGGUU E4 '3.
HSA-LET-7C-5P MIMAT0000064 UGAGGUAGUAGGUUGUAUGGUU ’Stg\ ji g/\
HSA-MIR-106B-3P MIMAT0004672 CCGCACUGUGGGUACUUGCUGC %, %’ Ied
HSAMIR 12688 MIM CG6GCUGGUGGUGGGGG %, 8 & &
“84 > 1= &
HSA-MIR-1268B MIMAT0018925 CGGGCGUGGUGGUGGGGGUG g Q f\ \QO’
HSA-MIR-145-5P MIMAT0000437 GUCCAGUUUUCCCAGGAAUCCCU \‘79‘, ‘% g X
HSA-MIR-17-3P MIMAT0000071 ACUGCAGUGAAGGCACUUGUAG q[/ 4/”“\\ ‘ﬁ;': O\_\)S‘@
HSA-MIR-17-5P MIMAT0000070 CAAAGUGCUUACAGUGCAGGUAG HSA‘MIR\S /P ‘“\g—\w
HSA-MIR-181C-5P MIMAT0000258 AACAUUCAACCUGUCGGUGAGU QACLUS'IEHI \\
HSA-MIR-181D-5P MIMAT0002821 AACAUUCAUUGUUGUCGGUGGGU />
HSA-MIR-222-3P MIMAT0000279 AGCUACAUCUGGCUACUGGGU LETTC \ ’HSA‘MIR-Q
HSA-MIR-223-5P MIMAT0004570 CGUGUAUUUGACAAGCUGAGUU HSA \ 2A~1
HSA-MIR-23A-5P MIMAT0004496 GGGGUUCCUGGGGAUGGGAUUU s M )‘i‘
A e %, o0
HSA-MIR-25-5P MIMAT0004498 AGGCGGAGACUUGGGCAAUUG \)9 )qﬁ’ |\ % ).@’ 1 “ ’Y% 1y,
HSA-MIR-424-3P  MIMAT0004749 CAAAACGUGAGGCGCUGCUAU & >§/ © o B %;, ‘S"/\L % & o E 7‘%\ %‘?\;‘7‘?
HSA-MIR-503.5P  MIMAT0002874 UAGCAGCGGGAACAGUUCUGCAG T? 2 %% S M (\c}' § 25 % ‘é% LN
HSA-MIR-92A-1-5P  MIMAT0004507 AGGUUGGGAUCGGUUGCAAUGCU ‘{; F\ i’: El R o F §é i'@ s %
HSA-MIR-92B-3P MIMAT0003218 UAUUGCACUCGUCCCGGCCUCC 3 VE ',{\’, ﬁy < ‘gV ? N %
HSA-MIR-941 MIMAT0004984 CACCCGGCUGUGUGCACAUGUGC & :% b I § ~
D Disease ontology g E Cell Specificity F Transcription factor (Upstream)
¢ ¢
s 3 3
< g £ 4 5 &
% = 3
%’A@ § 58 & & E3
5 gd S o
Z ES o —
3 g5 & ¥
s 3£ ¢ &
s 35 A

FIGURE 2

p2p-HIN-YSH

H Functional pathways
Negative regulation ‘
of biological

process.
positive regulation of gellular g

biosynthetic prGEESN

sitive requlation of intracellular

ciein s y
PG N n of protein

bility

neg:

regUlation of *e've expressior]

Extrinsic apoptotic

brammed cell death

signaling pathway

tuth

Gene expression

Positive regulation
of miRNA metabolic
process

cellular response to oxygen levels
respons els

I esponse to oxygen levels
sicioar negative regulation of biological process 5.26% **
woa

s regulation of MIRNA metabolic process 5.26% **
neoms i §
n of protein stabilty 5.26% **

posilive regulation of‘nucleocywplasmic transport 10.53% **

gene expression 15.79% **

extrinsic apoptotic si
G 3 i 6 &

Number of nteractions.
% terms per group

Comprehensive analysis of upregulated differentially expressed miRNAs. (A) List of miRNAs defined as significantly upregulated in PBMC of CML
patients. Chord plots present (B) miRNAs belonging to cluster family; (C) related functions; (D) Disease ontology; (E) Cell specificity; and (F)
upstream regulatory transcription factors, as defined by TAM2.0. (G) Chord diagram presenting miRNA target genes defined by Mienturnet based on
mirTarBase, bar chart presenting genes interfered by more than 5 miRNAs. (H) Significantly correlated Gene Ontology biological processing gene

sets of up-regulated miRNA target genes analyzed by Cytoscape ClueGO.

(Pearson correlation coefficient r

-0.2911, p-value = 0.0038),
suggesting that miRNA expression is negatively correlated with its
target gene in clinical samples (Figure 4D).

Low CMTGSS is associated with
disease progression, cell proliferation,
and immunosuppression

Aiming to resolve the association of CML miRNA targeted gene

with clinical progression, we evaluated the overall expression of
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CMTGSS in different disease progressions in the GSE144119 and
GSE76312 databases (Figure 5A). GSE144119 has 97 PBMC samples
from clinical CML patients and GSE76312 contains 2,195 CD34"
cells from PBMC of patients with differing clinical stages of CML. In
GSE144119, CMTGSS was significantly lower in the chronic phase,
which was consistent with the elevated expression of the overall CML
miRNA singscore (Figure 4C). Singscore evaluation of 2,195 cells in
GSE76312 showed a significant decrease in CMTGSS in cells from
both the Pre blast crisis and Blast crisis clinical phases. This was
followed by a rebound at 1 month of TKI treatment and at the
Remission clinical stage, suggesting a potential association between
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Comprehensive analysis of downregulated differentially expressed miRNAs.
patients. Chord plots present (B) miRNAs belonging to cluster family; (C) related functions; (D) Disease ontology; (E) Cell specificity; and (F) upstream
regulatory transcription factors, as defined by TAM2.0. (G) Chord diagram presenting miRNA target genes defined by Mienturnet based on mirTarBase,
bar chart presenting genes interfered by more than 3 miRNAs. (H) Significantly correlated Gene Ontology biological processing gene sets of down-

regulated miRNA target genes analyzed by Cytoscape ClueGO.

BCR-ABL activity and miRNA expression (Figure 5B). To assess the
association of CMTGSS with various cancer biological functions, we
used the Hallmark gene-set integrated by the MSigDB team to
analyze the 50 biological response enrichment of all samples in
GSE144119 and GSE76312 by GSEA (Figure 5C). We standardized
the CMTGSS to a Z score for the grouping (Z score > 0: CMTGSS
high, Z score < 0: CMTGSS low). The results showed that E2F
TARGETS, G2M CHECKPOINT, MYC TARGETS V1 and
MTORCI1 SIGNALING were significantly positively enriched in
both databases in CML patients with low CMTGSS, while IL6
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JAK STAT3 SIGNALING, TNFA SIGNALING VIA NFKB,
INTERFERON GAMMA RESPONSE and INTERFERON ALPHA
RESPONSE were significantly negatively enriched, suggesting that
low CMTGSS is associated with enhanced CML cell proliferation and
suppression of immune responses.

Several cell cycle-related gene sets were significantly positively
associated with CML patients with low CMTGSS populations,
echoing our previous results, but apoptosis did not reach
significant enrichment in either database, suggesting that the
association with apoptosis inhibition may be restricted to
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specific mechanisms. We further analyzed the association of
CMTGSS stratification with apoptosis and cell cycle regulation
in GSE144119 using the more inclusive BioPlanet gene set (26).
The results showed that low CMTGSS patients were only
negatively enriched with the set of genes associated with
apoptosis induced by immune cells and remained positively
enriched with a variety of cell cycle gene sets, particularly G1 to
S cell cycle control (Supplementary Figure).
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Low CMTGSS is associated with positive
enrichment of erythroid and granulocyte
macrophage progenitor gene sets

To better delineate the relationship between CMTGSS and the
various blood cells involved in the development of CML, we first
performed a GSEA (Figure 6A) using the CML division-associated
gene set from Graham et al. CML dividing vs. normal quiescent up
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Assessment of the relevance of CMTGSS to the clinical stage of CML and 50 Hallmark gene sets. Violin plot presents the relative expression
distribution of CMTGSS in (A) GSE144119 for CML patients from clinical stages of healthy control, chronic phase, and remission and (B) GSE76312 for
CML patients from normal HSC, diagnosis, pre blast crisis, blast crisis, blast crisis with 1 month TKI treatment, and remission. (C) GSEA presents
CMTGSS stratification and enrichment of 50 Hallmark gene-set, CMTGSS is divided into low CMTGSS and high CMTGSS with z-score = 0. NES is
displayed at the end of the bar plot, FDR is highlighted in the center, and the red text represents FDR < 0.25. One-way ANOVA was used to assess
the statistical significance of betweengroup differences. Students’ t-test was conducted to assess the significance of the difference between each
stage and healthy control. *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001

was significantly enriched in the low CMTGSS group (FDR < 0.001,
NES = 2.753 in GSE144119; FDR = 0.232, NES = 1.535 in
GSE76312), suggesting that PBMC in patients with low CMTGSS
is associated with higher CML division. Analysis with multiple
hematopoietic stem cell-associated gene sets showed a significant
positive enrichment of the low CMTGSS group with CML up (FDR
< 0.001, NES =1.378 in GSE144119; FDR < 0.001, NES = 1.773 in
GSE76312) as well as progenitor (FDR < 0.001, NES = 2.003 in
GSE144119; FDR = 0.106, NES = 1.395 in GSE76312) (Figure 6B).
In view of the positive progenitor enrichment, it is suggested that
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the degree of CMTGSS may reflect the progenitor differentiation
tendency of a specific group of blood cells. GSEA analysis of the ten
blood cell gene sets provided by Zheng et al. showed that C4
putative early erythroid commitment, C3 megakaryocyte erythroid
progenitor, C9 Granulocyte macrophage progenitor, and
C2 putative basophil eosinophil mast cell progenitor were
positively enriched in the low CMTGSS group, suggesting that
aberrant expression of miRNAs may affect the distribution of
related progenitors in the blood by regulating their target
genes (Figure 6C).
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discovery rate (FDR) is highlighted in the center, and the red text represents FDR < 0.25. Radar plots present gene sets with the same enrichment

tendency in both databases.

Assessment of the association of CMTGSS
expression with bone marrow
differentiating cell population

For the purpose of assessing the linkage between miRNA
targeted gene and blood cell distribution, we performed GSEA
using the bone marrow cell lineage composition gene set published
by Hay et al. to assess the association between the enrichment of
blood cells and the CMTGSS stratification (25). The results showed
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that cell populations of CD34" granulocyte (NES = 2.402, FDR <
0.001), pro B cell (NES = 2.239, FDR <0.001), CD34" HSC (NES =
2.055, FDR < 0.001), and erythroblast (NES = 1.962, FDR < 0.001)
were positively enriched in CML patients with low CMTGSS. We
also found that naive T cell (NES = -1.144, FDR = 0.019), immature
neutrophil (NES = -2.099, FDR < 0.001), monocyte (NES = -2.511,
FDR < 0.001), and platelet (NES = -3.196, FDR < 0.001) were
negatively enriched in patients with low CMTGSS (Figure 7A).
Ridgeplot showed the overall gene distribution of each bone
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FIGURE 7

Evaluation of gene-set enrichment of low CMTGSS stratification in bone marrow-derived cell lineage by GSEA. (A) GSEA presents the enrichment of
23 blood cell lineages related to bone marrow differentiation. NES is displayed at the end of the bar plot, FDR is highlighted in the center, and the
dark red text represents FDR < 0.25, red text stands for FDR < 0.05. (B) Ridge plot shows the fold change distribution of genes in each bone marrow
gene set. Please refer to the section "Abbreviation” for the cell lineage represented by the individual gene sets.

marrow differentiated cell population (Figure 7B), suggesting that
the expression of CML miRNAs may be potentially associated with
the distribution of the above cell populations.

Evaluation of the association of the
CMTGSS stratification with various immune
components using a simulated immune
infiltration strategy

Given the negative enrichment of naive T cells in patients
with low CMTGSS, we were curious whether the overall
expression of CML miRNA targeted gene was associated
with the infiltration of other immune cells. We analyzed the
GSE144119 database using the xCell method, and the CMTGSS-
stratified heatmap showed that the 64 immune cell scores were
broadly divided into two regions (Figure 8A). According to the
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similarity matrix, the upper left region includes CMP lineage
innate immune cells such as neutrophil and eosinophils, which
are significantly higher in the low CMTGSS, while the lower
right region is dominated by CLP lineage adaptive immune cells,
including CD4, CD8 and B cells, which are significantly higher in
the low CMTGSS (Figure 8B). The xCell score was then used to
plot a violin plot to assess the distribution and differences
between groups, showing that the stromal score was
significantly lower in the Low CMTGSS, while there was no
significant difference in the Immune score or microenvironment
score (Figure 8C). With regard to blood cell differentiation
lineage, HSC was higher in low CMTGSS group, while CMP
and CLP scores were significantly diverged, that is, low CMTGSS
group had higher CMP and lower CLP, suggesting that miRNA-
targeted gene expression was associated with CMP enrichment.
Platelets belonging to the CMP lineage had lower scores in the
Low CMTGSS group, indicating that miRNA target genes may
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Assessment of the correlation between CMTGSS and multiple cell infiltration levels by xCell method. (A) Heatmap presentation of the distribution of
CMTGSS classification and blood cellular heterogeneity landscape of CML patients in the GSE144119 database, sorted by hierarchical clustering (One
minus Pearson correlation). (B) Similarity matrix of xCell immune cell type gene features of CML patients in the GSE144119 database. The 64 immune
cell type gene features were paired with each other. Similarity was calculated by the Pearson correlation test to calculate the degree of overlap of
each pair of xCell scores. Colors represent Pearson correlation coefficient, red indicates high similarity, blue indicates negative similarity. White
indicates no correlation. (C) Violin plots demonstrate differences in Z-score across simulated immune and stromal cell infiltration of CMTGSS
classification; Students’ t-test was used to assess the significance of the differences; *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. Please
refer to the section “Abbreviation” for the cell lineage represented by the individual cell types.

influence platelet differentiation and maturation. In contrast, the
CD4" and CD8" T cell families belonging to the CLP lineage
were significantly lower in the low CMTGSS, implying that the
specific expression of miRNAs in CML may have an inhibitory
effect on CLP differentiation.
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Discussions

The individual miRNA variations and effects on PBMC in CML
patients have been investigated in detail in many studies, as well as
the abnormal reduction of miR-342-5p in PMBC of CML patients
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and its effect on imatinib resistance, which we previously
investigated. Several integrative studies have also demonstrated
the potential of miRNAs to predict the progression of CML (27,
28). However, there is still a lack of assessment of the hematological
microenvironment and prognosis of CML patients in terms of
interference with their target genes by aberrantly expressed
miRNAs. In this study, 19 up-regulated miRNAs and 11 down-
regulated miRNAs were defined in CML patients using previous
miRNA sequencing results collected from PBMC of CML patients
and healthy donors. As far as the published literature is concerned,
the effect of upregulated miRNAs on CML is not always consistent.
For example, Let-7, miR-23A, and miR-223 have been reported to
act as tumor suppressors in CML (29-31). miR-145 and miR-181
promote apoptosis of leukemia stem cells through regulation of
ABCE1 and MCL-1 respectively (32, 33), and miR-424 inhibits
BCR-ABL activity (34). Comparatively, the miR-126 is associated
with leukemia stem cell maintenance (35), miR-17 promotes
leukemia proliferation by targeting p21 (36), over-expression of
miR-106 and miR-222 will promote CML proliferation (37), and
miR-92a-1-5p inhibits TKI-induced necroptosis by targeting MLKL
(38). However, in general, the genes targeted by up-regulated
miRNAs are mostly associated with Extrinsic apoptotic signaling
pathways, suggesting that when these genes are interfered by up-
regulated DE-miRNAs, they could potentially affect the apoptosis of
cells. In terms of downregulated miRNAs, decreased miR-146A and
miR-150 have been reported to be associated with CML (39, 40),
with the former possibly being associated with regulation of NF-xB-
driven inflammation and leukemia progression (41). miR-152-3p
promotes CML development by inhibiting p27 (42), miR-342-5p
inhibits proliferation caused by BCR-ABL and resistance to
imatinib by targeting CCNDI1 (16), and miR-584 has been
reported to have a possible role as a tumor suppressor in lung
cancer (43). Most of the genes targeted by down-regulated DE-
miRNA are associated with the regulation of G1/S transition of
mitotic cell cycle, and when these genes are not inhibited by down-
regulated miRNAs, they may rise abnormally and promote cell cycle
and proliferation.

Confirmation of the individual and overall miRNA expression
profiles by the GSE144119 database showed an increasing trend in
miRNA expression during the chronic phase, in contrast to its target
genes, and a decrease to a similar level to healthy control when the
patient was in remission (Figure 4). In line with this observation, a
significant decrease in target gene singscore was detected in cells
within pre-blast crisis and blast crisis phases in the single cell database
of GSE76312. Furthermore, the CMTGSS of blast crisis CML patients
increased after one month of TKI administration, suggesting that
BCR-ABLI activity may be responsible for the aberrant expression of
miRNAs and that TKI administration may correct the expression of
miRNAs. Even TKI intervention may reverse the aberrant miRNA
expression, the proliferative and anti-apoptotic effects of aberrantly
expressed miRNAs in the hematological microenvironment may
still deliver CML cells with resistance to TKI before significant
remission is achieved. This suggests that the synergistic use of TKI
and anti-apoptotic inhibitors may be effective in relieving the
microenvironmental interference caused by miRNAs, with a
number of encouraging reports of success (44-47).
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Analysis of the Hallmark gene-set showed that the majority of
positively enriched gene sets were associated with cell proliferation
and revealed a potential response to immunosuppression. Further
analysis of the association of CMTGSS expression with various
blood cell types from the clinical database suggests that the
enrichment of progenitor may be a relevant effect of these DE-
miRNAs and may explain the occurrence of granulocyte
macrophage progenitor and megakaryocyte erythroid progenitor
(48, 49). Validation of the bone marrow-derived cell gene set
published by Hay et al. indicates that the overall low expression
of miRNA target genes is associated with granulocyte macrophage
progenitor, and also suggests a potential association with platelet
dysfunction (2). In terms of the association of miRNAs with cells in
the blood lineage, aberrantly expressed miRNAs originating from
CML cells may further affect other CML or immune cells through
the exosome (50, 51). For example, as one of the most upregulated
DE-miRNA targets, altered expression of myc may affect the
expansion of pro-B cells (52) or the differentiation of HSC or
CML to erythroid cells (53-55). It has also been shown that
miRNA containing exosomes may affect T cell function and
distribution (56).

Studies have evaluated the use of miRNAs in the blood
system of CML patients as biomarkers of disease prognosis.
Litwinska et al. reviewed recent studies on the important role of
miRNAs in the pathogenesis of CML and their relevance as
biomarkers for diagnosis, monitoring disease progression and
therapeutic response (14). Nevertheless, most of the studies only
focus on the differential expression of one to a few miRNAs. The
strategy of predicting the occurrence or prognosis of an
individual’s disease through bioinformatics with integrative
analysis is increasingly employed (57). Zhong et al. combined
machine learning with multiple CML databases to screen for four
CML diagnostic genes, demonstrating high predictive power and
immunosuppressive correlation in a clinical cohort (58). Hue
et al. evaluated the differential miRNA expression by small B-cell
lymphoma formalin-fixed, paraffin-embedded tissue samples
and revealed the correctness of 14 miRNAs for predicting
different types of lymphoma (59). Ruiz et al. analyzed the
miRNome of the LSC-enriched CD34"CD38 CD26" fraction in
CML-CP patients and found a more than 9-fold increase in miR-
196a-5p in the CD26" (BCR-ABL1") versus CD26™ (BCR-ABLI")
CD34"CD38’ fraction at diagnosis (60). In this study, a series of
analyses based on highly and differentially expressed miRNA
populations were performed and validated using samples from
clinical databases to obtain an overall DE-miRNA potential
association with biological response. For clinical applications,
the design of multiple miRNA detection platforms will allow
multiple miRNA expression measurements in PBMC cells
isolated from the blood of CML patients. If the assessment
shows an abnormal increase or decrease in most miRNAs, it
may be possible to consider synergistic therapy with Venetoclax
and TKIs or to assess the possibility of immunosuppression to
increase the success of treatment.

There are several limitations to our study. First, we only
collected PBMC from 5 donors each with CML and healthy
donor for miRNA sequencing, which may not be a large sample
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size. However, we selected targets with higher expression and
greater fold changes as targets for analysis to increase confidence,
and in a previous study we have performed qPCR on some of the
miRNAs in additional PBMC samples from 13 healthy donors and
20 CML patients to confirm the existence of differences (16). In
terms of validation of the biological function of DE-miRNAs, it is
undeniable that integrative analysis of transcriptomics usually lacks
solid validation. In contrast, confirming the role of a single miRNA
requires repeated validation of multiple aspects to be convincing, as
in our previous study of miR-342-5p in CML. If multiple miRNA
expressions were to be validated for their effects on biological
responses, it would not only be difficult to present a large amount
of analytical data, but would also obscure the focus of our goal to
assess the association between the overall expression of DE-
miRNAs and biological responses. Further, if multiple miRNAs
are expressed simultaneously in CML cell lines, in addition to the
difficulties in validation, it may be challenging to realistically
represent similar responses to miRNA expression in human
PBMC using only CML cell lines as a platform. Integrative
transcriptional analysis can be used to assess the biofunctional
relevance of clinical samples that are closest to the real state, directly
presenting the effects of differential gene expression on cancer cells
and the surrounding environment, allowing clinicians and
researchers to design further studies based on the reported
relevance to elucidate the true cause of the disease.

Collectively, this study defined differentially expressed
miRNAs by miRNA sequencing from clinical samples and
comprehensively analyzed the biological functions of the
differential miRNAs in association with the target genes. The
analysis of the enrichment of specific myeloid differentiated cells
and immune cells also suggests the magnitude and potential
targets of differentially expressed miRNAs in the clinical setting.
It helps us to make links between the different results obtained
from the multi-faceted studies to provide more potential
research directions.
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