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Backgrounds: Bladder cancer (BLCA) is one of the most prevalent cancers of the

genitourinary system, the clinical outcomes of patients with BLCA are bad, and

the morbidity rate is high. One of the key components of the tumor

microenvironment (TME) is cancer-associated fibroblasts (CAFs) which are

critically involved in BLCA tumorigenesis. Previous studies have shown the

involvement of CAFs in tumor growth, cancer progression, immune evasion,

angiogenesis, and chemoresistance in several cancers such as breast, colon,

pancreatic, ovarian, and prostate cancers. However, only a few studies have

shown the role of CAFs in the occurrence and development of BLCA.

Methods: We have retrieved and merged the data on RNA-sequencing of patients

with BLCA from databases including “the Cancer Genome Atlas” and “Gene

Expression Omnibus.” Next, we compared the differences in CAFs-related genes

(CRGs) expression between normal and BLCA tissues. Based on CRGs expression,

we randomly divided patients into two groups. Next, we determined the correlation

between CAFs subtypes and differentially expressed CRGs (DECRGs) between the

two subtypes. Furthermore, the “GeneOntology” and “Kyoto Encyclopedia of Genes

and Genomes pathway” enrichment analyses were conducted to determine the

functional characteristics between the DECRGs and clinicopathology.

Results: We identified five genes (POF1B, ARMCX1, ALDOC, C19orf33, and

KRT13) using multivariate COX regression and “Least Absolute Shrinkage and

Selection Operator (LASSO) COX regression analysis” for developing a prognostic

model and calculating the CRGs-risk score. The TME, mutation, CSC index, and

drug sensitivity were also analyzed.

Conclusion: We constructed a novel five- CRGs prognostic model, which sheds

light on the roles of CAFs in BLCA.

KEYWORDS

cancer-associated fibroblasts (CAF), prognosis, immune microenvironment, bladder
cancer, tumor microenvironment
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1 Introduction

Bladder Cancer (BLCA) is the most prevalent cancer of the

genitourinary system (1). In 2020, approximately 81,400 new

incidences and 17,980 new BLCA-related mortalities were reported

in the USA (2). BLCA can be further divided into non-muscle-invasive

(NMIBC) and muscle-invasive bladder cancer (MIBC) (3). Various

therapeutic strategies like surgery, intravesical chemo, radiotherapy,

and immunotherapies have helped significantly improve the prognosis

of patients with BLCA. However, the survival outcomes of patients

with BLCA are unsatisfactory due to high genomic instability and

heterogeneity in BLCA (4). Unfortunately, the 5-year overall survival

(OS) rate of patients with high-grade MIBC and metastatic BLCA is

only 15%. This poses a huge burden on public health and the economy

globally (5). Hence, it is essential to identify the underlying mechanism

for preventing BLCA and treating patients with this disease. Therefore,

identifying and establishing a prognostic gene signature model for

predicting the prognosis of patients with BLCA is crucial.

Along with cancer cells, the tumor microenvironment (TME)

regulates and influence tumorigenesis and cancer progression (6).

TME is a complex system, primarily comprising various cells like

infiltrated stromal and immune cells, endothelial cells, and cancer cells.

Extracellular matrix (ECM), several signaling molecules, and soluble

biological factors comprise the non-cellular component of TME (7, 8).

Therefore, TME has a significant impact on BLCA development.

Bladder tumor microenvironment comprises several types of stromal

and immune cells (9). Cancer-associated fibroblasts (CAFs) are the

most abundant stromal cell type in TME (10). CAFs are an important

component of the ECM of TME, which participates in cell invasion,

angiogenesis, and ECM remodeling by secreting factors to promote cell

invasion and enhance cell-cell interaction (11). Mounting evidence has

revealed the close correlation between CAFs and poor prognosis of

patients with ovarian, colon, and gastric cancers (12–14) and their

underlying mechanisms. However, TME, specifically CAFs in bladder

tumor microenvironment, have not been extensively studied compared

to the TME of several other cancers. Therefore, exploring the biological

characteristics and functions of CAFs would aid in BLCA therapeutics.

In this study, we constructed and validated the CAFs-related

genes (CRGs) prognostic model using RNA-sequencing (RNA-seq)

and clinical data of 958 patients with BLCA from three datasets. Next,

we used bioinformatics algorithms and immunohistochemistry

(IHC) to explore as well as validate the involvement of CAFs in the

onset and progression of BLCA. Finally, we calculated a risk score

based on CRGs expression to determine its prognostic and clinical

significance in patients with BLCA. Furthermore, we explored the

correlation between CRGs-risk scores, TME, and drug sensitivity.

These results may provide new insights for determining the patient’s

prognosis, survival, and the underlyingmechanism of CAFs in BLCA.
2 Materials and methods

2.1 Data acquisition

We retrieved the RNA-seq and clinical data, copy number

variation (CNV), and mutation annotation format (MAF) file of 409
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BLCA and 19 normal samples from “the Cancer Genome Atlas

(TCGA; https://portal.gdc.cancer.gov/)” database. The RNA-seq and

clinical data of patients with BLCA from the “Gene Expression

Omnibus” (GEO; GGSE13507 and GSE32894 datasets; https://

www.ncbi.nlm.nih.gov/geo/) database. Next, gene expression data of

patients from the TCGA-BLCA cohort, as well as the GGSE13507 and

GSE32894 datasets, were merged into an entire cohort. Subsequently,

we used the “Combat” algorithm to eliminate the batch effects. Finally,

we included 958 patients with BLCA for subsequent analyses.

To identify CAF gene sets, we searched for “CAFs” as a keyword in

a publicly available database: “Gene Set Enrichment Analysis (http://

www.gsea-msigdb.org/gsea/msigdb/genesets.jsp)” and approximately

48 CRGs were screened. Additionally, 19 CRGs were collected from

previous studies (15–18). Finally, 67 CRGs were obtained.

We downloaded immunohistochemistry images of tissues of

BLCA and normal bladder of human origin from the “Human

Protein Atlas (http://www.proteinatlas.org)” database.
2.2 Clustering pattern of
CAFs-related genes

Based on CRGs expression, Bayesian information criterion, and

consensus cluster analysis, we selected the number of clusters (k)

using the “Consensus Cluster Plus” software. Next, we classified

patients based on the “K-value” into two subtypes.
2.3 Identification and function analysis of
differently expressed CAFs-related genes

We used the “linear models for microarray data (limma)” R

package to identify DECRGs in tissues of normal and patients with

BLCA based on the following criteria: “|log2(fold change)|>1” and

“adjusted P < 0.05.” We identified biological functions enriched by

DECRGs using the “Gene Ontology (GO)” and “Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway” enrichment analysis. We

used the “Gene Set Variation Analysis (GSVA)” R package to

determine the activity differences of pathways or biological processes.
2.4 Construction and validation of the
CAFs-related genes prognostic model

We determined the correlation between CRGs and patients’

prognoses from TCGA-BLCA and GEO cohorts. First, we

performed the “Univariate Cox regression” analysis to identify

DECRGs related to the survival of patients with BLCA using the

“survival” R package. The threshold value for identifying these

genes is “P < 0.05.”Next, we classified the patients into gene clusters

A and B for further analysis. Then, we randomly categorized the

patients in a 1:1 ratio into the training (n = 395) and testing (n =

395) sets. Furthermore, we employed the “least absolute shrinkage

and selection operator (LASSO) regression analysis” for correcting

the overfitting risk and screened DEGs. Finally, we established a

CRGs prognostic model based on five CRGs. We calculated the
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CRGs-risk scores using the following formula: CRGs-risk scores= S
(Expi * Coefi) Coefi is the risk coefficient, and Expi is gene

expression). Finally, we classified patients with BLCA based on

CRGs-risk scores into the high-risk group and the low-risk group.

Next, we performed the “Kaplan-Meier (KM) survival analysis”

using the “survminer” R package for comparing the OS of patients

in both groups and the testing set and validated using the entire sets.
2.5 Evaluation of immune cell infiltration in
CAFs-related genes of patients with BLCA

The “Estimation of STromal and Immune cells in MAlignant

Tumor tissues using Expression data (ESTIMATE)” algorithm was

employed to calculate the immune and stromal scores of patients with

BLCA. The fraction scores of all tumor samples about 23 immune cell

subtypes were identified by the “Cell-type Identification by Estimating

Relative Subsets of RNA Transcripts (CIBERSORT)” R package (cell

type identification by estimating relative subtypes of RNA transcripts).

Finally, we compared the status of immune cell infiltration.
2.6 Evaluation of the correlation between
CRGs-risk scores and TME, CSC, mutation,
and drug sensitivity

The stromal and immune scores of patients with BLCA were

calculated using the “ESTIMATE” algorithm. The fraction scores of

23 immune cell types in all tumor samples were calculated using the

“CIBERSORT” R package, where in immune cell types were

established by estimating relative levels of RNA. Next, we

determined the correlation between the CRGs-risk scores and

tumor mutational burden (TMB). The “maftools 2.12.0” R package

was used for visualizing the results. Further, we analyzed the

correlation between the cancer stem cell(CSC)-risk scores and both

risk groups. The “maftools” R package was used for exploring the

somatic mutations in patients from both risk groups. Finally,

the “Genomics of Cancer Drug Sensitivity (GDSC; https://

www.cancerrxgene.org/)” database was used to determine patients’

sensitivity to several chemotherapy drugs. Finally, we calculated the

IC50 values using the”pRRophetic” R package.

3 Statistical analysis

We used the “R (version 4.2.2)” and “Perl (5.30.0.1-64bit)”

software for performing all statistical analyses. All statistical tests

were two-sided, and P < 0.05 indicated the significance level.

4 Results

4.1 Landscape of genetic and
transcriptional alterations of CAF-related
genes in bladder cancer

We evaluated the incidences of somatic mutations in 67 CRGs

in patients with BLCA (Figure 1A). Out of 411 patients from the
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TCGA-BLCA cohort, 188 (45.74%) harbored mutations in CRGs.

Of which, the frequency of mutations in COL11A1 (6%) was the

highest, followed by FN1 and TNC (both 5% each). Nearly 4% of

patients harbored mutations in PDGFRA and MET each and 3% in

ZFB1, COL3A1, and COL1A2. Next, we determined CNV in CRGs,

and the results revealed the highest number of CNV gains in CTSK,

S100A4, and CTHRC1 in patients with BLCA (Figure 1B). The

chromosomal location of CNV in CRGs in patients with BLCA is

shown in Figure 1C. The comprehensive picture of CRGs

interactions and their prognostic value for BLCA was explored

with a network (Figure 1D). The interaction between CRGs and

their prognostic value in BLCA was shown in the network diagram.

The results revealed a significant correlation between many CRGs

and the patient’s prognosis. Finally, we determined CRGs

expression in tissues of normal and patients with BLCA, and the

results showed differential expression in 45 out of 67 CRGs

(Figure 1E). An increase in CD24, COL11A1, CTHRC1, CTS,

FXYD3, HSPA1A, JUP, KRT7, MAN2B1, MET, MMP11, MMP9,

PLAU, RAB3B, SPINT2, and TCN1 expression level was observed.

The results revealed a decrease in ACTA2, BEX5, CAT, CAV1,

CD55, COL6A1, COL6A2, CTSK, EGR1, EMILIN1, FOS, FOXF1,

GEM, HBA2, ID2, JUP, MFAP4, MFAP5, MMP2, OGN, PDGFRA,

PDGFRB, PDPN, RARRES2, SLC16A4, TCEAL1, TNC, and ZEB1

expression level. These results show significant differences in the

genetic alterations and the expression of CRGs in normal and

tumor tissue, indicating significant involvement of CRGs in

BLCA progression.
4.2 Identification of CAFs subtypes
and their biological characteristics
in patients with BLCA

We merged the TCGA-BLCA cohort, GGSE13507, and

GSE32894 into an entire cohort containing 958 patients. We

performed consensus clustering based on 67 CRGs expressions to

categorize all patients into two subtypes, cluster A containing 557

patients and cluster B containing 401 (Figure 2A). The heatmap

shows the expression profile of 67 CRGs and the clinical

characteristics of patients. The results revealed that the clinical

characteristics of patients like gender, age, tumor grade, and

metastasis were enriched in cluster B (Figure 2B). The prognostic

analysis revealed that the survival status of patients in cluster A was

better compared to cluster B (P < 0.001; Figure 2C). Principal

component analysis (PCA) showed a significant transcription

profile distribution into two groups (Figure 2D).

Next, we determined the difference in the biological functions

enriched by the two clusters using GSVA. The results revealed

significant enrichment of pathways linked to ECM production and

remodeling like “CELL ADHESIONMOLECULES,” “REGULATION

OF ACTIN CYTOSKELETON, ” “ECM RECEPTOR

INTERACTION,” and “FOCAL ADHESION” in Cluster B

(Figure 2E). Finally, we employed the “ssGSEA” algorithm to

determine the proportion of tumor-infiltrating immune cells. The

results revealed significant infiltration of activated lymphocytes in

tumors of patients in cluster B, specifically activated CD4+ T cells, B
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cells, CD8+T cells, and monocytes. Moreover, high infiltration of T

helper 17 (Th17) cells, as well as CD56 bright and CD56 dim natural

killer cells, was observed in patients in cluster A (Figure 2F).
4.3 Characteristics of differently expressed
CAFs-related genes

The functions and pathways related to CAFs of the two

subtypes were determined using the “limma” R package. We used

these criteria: “|log2FC| ≥ 1” and “FDR <0.05” and identified 502

DECRGs associated with two subtypes (Figure 3A). Next, the “GO”

and “KEGG pathway enrichment analyses” was conducted on 502
Frontiers in Oncology 04
DECRGs. The “GO enrichment analysis” results showed that these

CRGs were mainly enriched in the GO-BP terms like the positive

regulation of ECM, extracellular structure, and external

encapsulating structure organization. The GO-CC terms

significantly enriched by these CRGs were collagen-containing

ECM. Additionally, the significantly enriched GO-MF terms by

these CRGs were the structural constituents of EC (Figure 3B).

Meanwhile, the “KEGG pathway enrichment analysis”

demonstrated that these CRGs were enriched in pathways related

to focal adhesion (Figure 3C). Overall, these results suggest that

CAFs mediate the invasion of cancer cells by depositing and

modifying the ECM and promote tumor development by

inducing epithelial-to-mesenchymal transition (EMT).
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FIGURE 1

Landscape of genetic and transcriptional alterations of CAF-related genes in bladder cancer. (A) Somatic mutation in CRGs in patients from the
TCGA- BLCA cohort. (B) The frequency of CNV in CRGs in patients with BLCA. (C)The chromosomal location of CNV in CRGs in TCGA-BLCA
cohort. (D) The network diagram of CRGs in patients with BLCA. (E) The difference in the expression of 45 CRGs in tissues of normal and patients
with BLCA. *P < 0.05, **P < 0.01, ***P < 0.001.
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4.4 Construction and validation of the
CAF-related genes prognostic model

We calculated the CRGs-risk scores based on the DECRGs. The

Sankey diagram shows the distribution of two CAFs subtypes, gene

clusters, CRGs-risk scores, and the status of the patient’s survival

(Figure 4A). Next, the entire set was randomly divided into the

training (n=395) and testing (n=395) sets. Finally, we performed the

“LASSO regression analysis” on 502 DEGs to identified and five

CRGs (as prognostic gene signatures) (Figures 4B, C). Additionally,

we performed a “multivariate Cox regression” analysis on these

CRGs. Finally, five CRGs, including POF1B, ARMCX1, ALDOC,

C19orf33, and KRT13, were identified, including two high-risk

CRGs: ARMCX1 and KRT13, as well as three low-risk CRGs:

POF1B, ALDOC, and C19orf33. We calculated CRGs-risk scores

based on the following formula: CRGs-risk scores = (-0.1622) *
Frontiers in Oncology 05
POF1B + (0.2061) * ARMCX1 + (-0.2425) *ALDOC+ (-0.4558) *

C19orf33 + (0.0657) * KRT13.

The results showed significant differences in terms of CRGs-risk

scores between the two clusters. The CRGs-risk scores of cluster A

were low, and that of cluster B was high (Figure 4D). Figure 4E

shows the distribution of CRGs-risk scores in the two subtypes.

Next, we categorized the patients based on the median CRGs-

risk scores in high-risk group and low-risk group. The results

showed a positive correlation between the mortality rate and the

CRGs-risk scores (Figures 4F, G). Furthermore, the CRGs-risk

scores heatmap showed an increase in ARMCX1 and KRT13

expression with an increase in risk scores (Figure 4H). In the

training set, a significant difference in the survival of patients in

both groups was observed (Figure 4I, P < 0.001). Moreover, the

“receiver operating characteristic (ROC) curve” was constructed to

determine the ability of CRGs-risk scores to predict patients’
D
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FIGURE 2

Identification of CAFs Subtypes and their Biological Characteristics in patients with BLCA. (A) The consensus clustering analysis was used to classify
patients into two subtypes (k =2). (B) The heatmap shows the correlation between clinical characteristics and two subtypes. (C) KM survival curves
were used for comparing the prognosis among patients in the two subtypes. (D) PCA of two clusters. (E) GSVA shows the pathways enriched in the
two subtypes. (F) Infiltration of immune cells in the two subtypes. ***P < 0.001.
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prognoses. The AUC value of 3-year OS was 0.915, and the value of

5-year OS was 0.956 (Figure 4J). The prognosis of patients in low-

risk group was significantly better compared to high-risk group,

thus indicating the outstanding ability of CRGs-risk scores in

predicting patients’ prognosis in BLCA (Figure 4K). Therefore,

CRGs-risk scores could be an excellent model for predicting

patients’ prognoses in BLCA.
4.5 Verification of the CAF-related
genes prognostic model in the
entire and test sets

Next, we validated the sensitivity, specificity, and ability of the

CRGs prognostic model in predicting the prognosis of patients in the

entire (Figures 5A-D) and test (Figures 5I) sets. The training set’s

results were in line with our previous results. The ROC curves were

used for predicting the sensitivity and specificity of 3- and 5-year OS

rates of patients with different risk scores in the entire (Figure 5E) and

test (Figure 5J) sets. The AUC values of 3- and 5-year OS of patients
Frontiers in Oncology 06
in the entire set were 0.879 and 0.918, respectively, and in the testing

set were 0.840 and 0.883, respectively.
4.6 Assessment of TME of patients
in both groups

We employed the “CIBERSORT” algorithm to determine the

correlation between the CRGs-risk scores and the proportion of

immune cells. A positive correlation was observed between resting

dendritic cells (DCs) as well as M2 macrophages and high CRGs-

risk scores. A negative correlation between the high CRGs-risk

scores and activated DCs, eosinophils, naive CD4 T cells, and T

follicular helper (Tfh) cells (Figures 6A-F). Next, we calculated the

stromal, ESTIMATE, and immune scores of patients with BLCA to

determine TME status. The results revealed that the stromal,

ESTIMATE, and immune scores of patients in high-risk group

were significantly higher compared to patients in low-risk group.

These results suggest an abundant relative concentration of stromal

or immune cells in bladder tumor microenvironment (Figure 6G).
A B

C

FIGURE 3

Characteristics of CAFs-Related DEGs. (A) Venn diagram shows pairwise DEGs in patients in the two subtypes. (B) The barplot graph shows the
enrichment of GO analysis and CRGs. (C) The bubble graph shows the enrichment of KEGG pathways and CRGs.
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We constructed the prognostic model based on five CRGs and

evaluated the correlation between the proportion of immune cells

and these five CRGs. The results revealed a significant correlation

between these five CRGs and various immune cells (Figure 6H).

Next, we evaluated the correlation between CRGs and the

prognostic model. We determined the CRGs expression profile,

and a significant difference in most CRGs expression was observed

in patients in two risk groups. Additionally, an increase in HGF,

MMP11, OGN, RAB3B, KRT17, and BDNF expression was observed

in patients in low-risk group, whereas an increase in the expression

of other CRGs was observed in patients in high-risk group

(Figure 6I). Furthermore, we performed ssGSEA on infiltrating

immune cells in TME to determine the alterations in the pathways
Frontiers in Oncology 07
(Figure 6J). The results showed a significant negative correlation

between CAF-risk score and the abundance of activated immune

cells against tumors like CD56 bright and CD56 dim natural killer

cells, monocytes, and Th17 cells.
4.7 Evaluation of the correlation between
CRGs-risk score and CSC, mutations, and
drug sensitivity

A positive linear correlation between CRGs-risk score and CSC

index was observed (Figure 7A, R = -0.33, P < 0.001), suggesting that

patients in low-risk group had higher stem cell-like characteristics.
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FIGURE 4

Construction and Validation of CRG Prognostic Model. (A) Sankey diagram shows the distribution of two CAFs subtypes. (B, C) LASSO regression
analysis was performed on CRGs. (D, E) Significant differences in gene clusters and CAF clusters in patients in both risk groups. (F, G) The risk score
plots of the two risk groups in the training set. (H) The risk heatmap of the two risk groups in the training set. (I) KM survival curves of the OS of
patients in both risk groups in the training set (P < 0.001). (J) The ROC curves of 3- and 5-year OS of patients in both risk score groups in the
training set. (K) CRGs-risk score for predicting the OS of patients with BLCA.
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We analyzed the status of TMB in patients in the TCGA-BLCA

cohort, and the results showed low TMB in patients in high-risk

group compared to low-risk group (Figure 7B, P < 0.001). The

“Spearman correlation analysis” revealed a negative correlation

between the CRGs-risk score and TMB of patients (Figure 6C, R =

-0.18, P < 0.001). Next, we analyzed the distribution of the somatic

mutations in two risk groups from TCGA-BLCA cohort. The results

revealed that the TOP10 mutated genes in patients in both risk

groups were TP53, TTN, MUC16, ARID1A, PCLO, LRP1B, FLG,

SYNE1, FAT, CSMD3, and DNAH5 (Figures 7D, E). Compared to

patients in high-risk group, the frequencies of mutations were higher

in genes like TTN, MUC16, TP53, ARID1A, PCLO, SYNE1, and FAT

and lower in genes like LRP1B, FLG, and CSMD3 in patients in low-

risk group (Figures 7D, E). Finally, we determined the correlation

between the CRGs-risk score and chemotherapy drugs. Higher
Frontiers in Oncology 08
sensitivity of patients in low-risk group to chemotherapy drugs like

AZD6482, BMS536924, Dasatinib, GDC0941, MG132, PF02341066,

and XMD8.85 was observed (Figure 7F). However, the IC50 values of

drugs like BIRB0796 were significantly higher in patients in high-risk

group (Figure 7G).
4.8 Determining the expression CAF-
related genes in tissues of normal bladder
and BLCA by IHC images

The “Human Protein Atlas” database was searched to validate

the difference in CRGs expression between tissues of normal

bladder and BLCA (Figure 8). Compared to normal bladder

tissues, an increase in ARMCX1 and KRT13 expression levels was
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FIGURE 5

Validating the CRG Prognostic Model in the Entire and Test Sets. The risk plots, Survival duration and profanity, Risk heatmap, and ROC curves of 3-
and 5 years for the risk score in the entire (A-E) and testing (F-J) sets.
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observed in BLCA. Additionally, a significant increase in POF1B,

C19orf33, and ALDOC expression levels was observed in normal

bladder tissues.
5 Discussion

A study has shown the significant influence of TME on BLCA

onset and progression (19), and the heterogeneity of TME poses a
Frontiers in Oncology 09
challenge for the treatment of patients with BLCA (6). CAFs are the

most abundant and widely studied stromal cells in TME and have a

significant role in tumor progression, specifically solid tumors.

CAFs are regulatory cells promoting cancer progression; hence,

they could significantly contribute to the prognosis and treatment of

patients with cancers (10). Several studies have reported that CAFs

promote BLCA progression by enhancing matrix metalloproteinase

(MMP) levels, which causes ECM deposition and modification (20).

Furthermore, CAFs stimulate the formation of new vessels by
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FIGURE 6

Assessment of TME of patients in Both Risk Groups. (A–F) A positive correlation between the CRGs-risk score and the resting DCs and M2
Macrophages. A negative correlation between the CRGs-risk score and the activated DCs, Eosinophils, naïve CD4 T cells, and Tfh cells.
(G) Correlation between CRGs-risk score, immune, and stromal scores. (H) Correlation between five selected CRGs and the proportion of
immune cells. (I) CRGs expression in patients in two risk groups. (J) Correlation between the CRGs-risk score and infiltrating immune cells.
*P < 0.05, **P < 0.01, ***P < 0.001.
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secreting pro-angiogenic factors like platelet-derived growth factor

(PDGF) and vascular endothelial growth factor (21). Additionally,

CAFs secrete anti-inflammatory cytokines like IL-6 to induce EMT

(22) and chemotactic factors like stromal cell-derived factor-1 to

induce chemoresistance (23). CAFs are spindle-shaped cells, which

express several mesenchymal markers, and lack non-mesenchymal

cell markers, like epithelial, immune, endothelial, and neuronal cells

(7). Chen et al. showed that Fibroblasts in BLCA could be divided

into two different subgroups (myCAFs and iCAFs) by single-cell

RNA sequencing on 8 BLCA samples. Comparing the iCAF and

mCAF role in bladder tumor and found iCAF may be more

involved in tumor progression and angiogenesis, tumor migration

than mCAF (24).
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In this study, we constructed a CRGs prognostic model for

patients with BLCA. First, we determined somatic mutations and

CNVs in 67 CRGs in patients with BLCA. The results revealed

significant alterations in CRGs in these patients. Further, we

determined the expression of 67 CRGs in tissues of patients with

BLCA and normal, and the results demonstrated significant

differences in the expression of 45 CRGs in BLCA and normal

tissues. Furthermore, all patients were classified into clusters A and

B by means of consensus clustering based on CRGs expression, and

the differences in the two subtypes were determined. The prognostic

analysis results showed higher survival, significant immune

activation, and immune pathways in patients in cluster A

compared to cluster B. Furthermore, the “GO” and “KEGG
D
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FIGURE 7

Evaluation of the correlation between CRGs-risk score and CSC, Mutation, and Drug sensitivity. (A) A positive correlation between the CSC index and
CRGs-risk score. (B, C) The Boxplot and Spearman correlation shows that patients in LRH had a higher TME rate. (D, E) The somatic mutation in
CRGs in patients in both groups. (F, G) The sensitivity of patients in both groups to chemotherapy drugs.
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pathway enrichment analyses” showed that these CRGs were

primarily enriched in functions like collagen-containing ECM, a

structural constituent of ECM, and pathways related to focal

adhesion. These results suggest that CAFs could induce EMT and

modify ECM to promote tumorigenesis. Moreover, we determined

DECRGs in patients in clusters A and B and performed “LASSO”

and “multivariate cox regression” analyses. Finally, we identified

five key CRGs like POF1B, ARMCX1, ALDOC, C19orf33, and

KRT13, to construct the CRGs prognostic model. Based on the

median CRGs-risk score, we classified all patients with BLCA into

two CRGs-risk score groups. The results revealed significant

differences in parameters like the patient’s prognosis, mutations,

TME and CSC indexes, and drug sensitivity in both risk groups.

Finally, we constructed a CRGs-risk score to explore BLCA

characteristics. Meanwhile, our CRGs-risk score demonstrated

good performance in predicting the OS and immune cell

infiltration of patients with BLCA. We also used CRGs-risk score

to investigate the dynamic changes in CAFs during tumorigenesis

and BLCA progression, thereby indicating significant involvement

of CAFs in tumor development in response to the TME.
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Previous studies have explored the roles of five key CRGs

included in our prognostic model. Of these five CRGs, two CRGs

indicate poor prognosis. Studies have shown that KRT13 is localized

in the suprabasal layers of the non-cornified stratified squamous

epithelium of tonsils, the transitional urothelium, esophagus,

larynx, esophagus, prostate tubule-initiating cells, and oral cavity

(25, 26). Studies have shown that KRT13 interacts with several

proteins for regulating various signaling networks associated with

the survival, death, migration, proliferation, invasion, and

metastasis of cancer cells (27). Li et al. showed that KRT13

promotes the growth and metastasis of breast cancer cells via the

plakoglobin/c-Myc pathway (28). Citron et al. showed that low

KRT13 expression activates miR-9 to promote EMT in Neck

Squamous Cell Carcinomas (29). Armadillo repeat-containing X-

linked 1 (ARMCX1) is an arm protein lost in epithelial cancer on

chromosome X1. It is involved in several cellular activities, like the

growth and apoptosis of cells conforming to adhesion (30). A

significant reduction in ARMCX1 expression level was observed

in tumor tissues compared to healthy samples from TCGA and

GEO (31). Tang et al. showed that ARMCX1 could significantly
FIGURE 8

Determining the expression CRGs in tissues of normal bladder and BLCA by IHC images.
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inhibit gastric gancer onset via the mechanism of affecting the PAR-

1/Rho GTPase pathway (32).

Additionally, a positive correlation was observed between the

remaining three CRGs and the patient’s prognosis. ALDOC belongs

to the aldolase family of isoenzymes and is critically involved in

glycolysis and fructolysis (33). A study has shown a significant

correlation between high ALDOC expression and longer survival

duration of patients with advanced oral squamous cell carcinoma

(34). Yuan et al. showed that the binding of ALDOC to GSK-b leads

to the b-Catenin complex collapse and destruction, thus increasing

cytoplasmic and nuclear levels of b-catenin in patients with non-

small-cell lung cancer (35). POF1B was located in the critical region

for normal ovarian function and participated in encoding

premature ovarian failure (36). Studies predicting the functions of

proteins have shown that POF1B had a tight homology relationship

with the myosin tail portion of the human myosin protein (37).

C19orf33 has four exons spanning nearly 1 kb and 11 kb

downstream of HAI-2 (37). Studies have shown aberrant

C19orf33 expression in several cancers, including pancreatic

cancer, and is closely related to the patient’s prognosis (38). Wen

et al. showed that C19orf33 inhibits breast cancer and papillary

thyroid carcinoma progression by regulating EMT or YAP1

coordination in the Hippo pathway, respectively (39).

We have determined and validated the clinical significance of

CAF-specific markers and constructed a CRGs prognostic model

for patients with BLCA. However, our study has a few limitations.

First, we have not used algorithms for deconvoluting CAFs in bulk

RNA-seq to identify subgroups in an accurate manner. Second, our

results are based on bioinformatics algorithms and should be

validated in in vivo or in vitro models to understand the

underlying mechanisms of CAFs in BLCA. Third, our CRGs

prognostic model should be further validated using prospective

clinical trials.
6 Conclusion

In summary, we constructed a CRGs prognostic model based on

CAFs in patients with BLCA and identified five key prognostic

genes like POF1B, ARMCX1, ALDOC, C19orf33, and KRT13. Our

model could predict drug sensitivity and determine the immune

status of patients with BLCA. Our results are helpful and can aid

future studies on CAFs in BLCA.
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