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Machine learning for
predicting breast-conserving
surgery candidates after
neoadjuvant chemotherapy
based on DCE-MRI

Zhigeng Chen, Manxia Huang, Jianbo Lyu, Xin Qi, Fengtai He
and Xiang Li*

Department of Radiology, the Second Hospital of Dalian Medical University, Dalian, China
Purpose: This study aimed to investigate a machine learning method for

predicting breast-conserving surgery (BCS) candidates, from patients who

received neoadjuvant chemotherapy (NAC) by using dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) obtained before and

after NAC.

Materials and methods: This retrospective study included 75 patients who

underwent NAC and breast surgery. First, 3,390 features were comprehensively

extracted from pre- and post-NAC DCE-MRIs. Then patients were then divided

into two groups: type 1, patients with pathologic complete response (pCR) and

single lesion shrinkage; type 2, major residual lesion with satellite foci, multifocal

residual, stable disease (SD), and progressive disease (PD). The logistic regression

(LR) was used to build prediction models to identify the two groups. Prediction

performance was assessed using the area under the curve (AUC), accuracy,

sensitivity, and specificity.

Results: Radiomics features were significantly related to breast cancer shrinkage

after NAC. The combination model achieved an AUC of 0.82, and the pre-NAC

model was 0.64, the post-NAC model was 0.70, and the pre-post-NAC model

was 0.80. In the combination model, 15 features, including nine wavelet-based

features, four Laplacian-of-Gauss (LoG) features, and two original features, were

filtered. Among these selected were four features from pre-NAC DCE-MRI, six

were from post-NAC DCE-MRI, and five were from pre-post-NAC features.

Conclusion: The model combined with pre- and post-NAC DCE-MRI can

effectively predict candidates to undergo BCS and provide AI-based decision

support for clinicians with ensured safety. High-order (LoG- and wavelet-based)

features play an important role in our machine learning model. The features from

pre-post-NAC DCE-MRI had better predictive performance.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1174843/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1174843/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1174843/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1174843/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1174843/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1174843&domain=pdf&date_stamp=2023-08-09
mailto:lixiang_5007@163.com
https://doi.org/10.3389/fonc.2023.1174843
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1174843
https://www.frontiersin.org/journals/oncology


Chen et al. 10.3389/fonc.2023.1174843
1 Introduction

Breast cancer is the most prevalent cancer among women and

its incidence is increasing yearly worldwide (1). Neoadjuvant

chemotherapy (NAC) is the standard treatment for early breast

cancer (2). For patients with heavy tumor load, it is designed to

reduce tumor stage and surgical interventions, provide more

patients with opportunities for breast-conserving surgery (BCS),

and avoid axillary lymph node dissection (3–5). For human

epidermal growth factor receptor 2 (HER2) + or triple-negative

(TN) breast cancer, NAC can provide doctors with more in vivo

information regarding drug sensitivity, a so-called individual drug-

sensitive platform (6). With the development of new targeted drugs

for early breast cancer, both the population receiving NAC and the

rate of achieving pathological complete response (pCR) are

increasing (7, 8). Meanwhile, patients without pCR still have the

opportunity to downstage to BCS through NAC, which can cause

less damage to the breast (9, 10). Thus, safe selection of candidates

for BCS after NAC is a critical issue.

The pCR rate varies among breast cancer subtypes, and HER2+

status is more likely to result in pCR (11). However, evaluation of

pCR is not sufficient to identify candidates for BCS. The efficacy

response of breast cancer patients after NAC can be classified into

three categories: pCR, partial remission, and non-remission. Partial

remission can be further divided into single-lesion shrinkage, major

residual lesions with satellite foci, and multifocal residuals based on

microscopic morphology (12–14). Fukada et al. (15) classified

tumors into concentric shrinkage (CS) and non-CS patterns. The

CS pattern was associated with better disease-free and overall

survival rates. However, in their study, the CS was composed of

single lesion shrinkage and major residual lesions with satellite foci.

Wang et al. (16) further specified this by defining single lesion

shrinkage as type 1, multifocal and patchlike lesions as type 2, and

major residual lesions with satellite foci as type 3. They proposed

that types 2 and 3 in partial remission had relatively high recurrence

rates after undergoing BCS. This is because types 2 and 3 have the

risk of missing tiny lesions, and negative surgical margins are not

guaranteed. Therefore, a detailed differentiation of tumor shrinkage

patterns is necessary for clinical work. The European Society of

Breast Imaging (EUSOBI) recommends magnetic resonance

imaging (MRI) to evaluate the efficacy of NAC in breast cancer

(17). Dynamic contrast-enhanced MRI (DCE-MRI) is a technique

for contrast imaging that uses differences in the distribution of

contrast agents within the tissues. It serves as the most sensitive

MRI sequence for breast cancer, allowing simultaneous assessment

of tissue perfusion and morphological changes to reflect the

response of breast tumors to NAC (18). Machine learning (ML)

can be used to extract information that cannot be recognized by

clinicians in medical images (19). Thus, ML can greatly improve the

ability to evaluate NAC with MRI, and most studies have focused on

building an ML model to distinguish pCR from non-pCR (20).

Previous studies have reported that multiparametric MRI

performed better than single sequences for prediction (21, 22).

Nevertheless, in multiparametric MRI radiomics, the outlining of

the region of interest (ROI) is usually performed in DCE-MRI and
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applied to other sequences using image registration algorithms (23).

The Speeded Up Robust Features algorithm, an accelerated version

of the scale-invariant feature transform algorithm, still suffers from

problems, such as insufficient feature points and accuracy (24).

Another way to outline the ROI is to complete the ROI on all

sequences separately (25), but the shortcoming is that the

differences in the ROI of each sequence are difficult to avoid. In

addition, general radiomics features, such as texture features, and

first-order features, have been adequately analyzed, while the use of

high-order features is relatively inadequate.

The image before the first phase of NAC is called the baseline

image. The image obtained after the last phase of NAC and before

surgery is referred to as the preoperative image. We used pre-NAC

DCE-MRI as the baseline image and post-NAC DCE-MRI as the

preoperative image. In this study, we constructed a model that has

the potential to provide clinicians with appropriate candidates for

BCS based on pre- and post-NAC DCE-MRIs.
2 Materials and methods

2.1 Patients

This study was approved by the Institutional Review Board, and

the requirement for informed consent was waived. This study

included 75 patients with breast cancer at the Second Hospital of

Dalian Medical University between June 2014 and May 2021. Pre-

and post-NAC images of the patients were used for the analysis, and

the total number was 150. The inclusion criteria were as follows (1):

invasive breast cancer confirmed by biopsy (2), accepted MRI

examinations before and after NAC (3), underwent definitive

surgery after standard NAC in our hospital, and (4) available

pathologic results. The exclusion criteria were as follows (1):

receiving other treatments during NAC. The ratio of the training

set to validation sets was 4:1.

The chemotherapy regimen for all enrolled patients was based

on the standard regimen recommended by the National

Comprehensive Cancer Network (NCCN) Breast Cancer

Guidelines. The preoperative chemotherapy regimens were

taxane-based, anthracycline-based, or a combination of both. For

HER2+ patients, the addition of anti-HER2 therapy (e.g.,

trastuzumab or a combination of trastuzumab and pertuzumab)

is required.
2.2 MRI technique and
immunohistochemistry

All patients were examined with 1.5T or 3.0T breast MRI (GE

Signa HDxt 1.5T, GE Discovery MR 750 W 3.0T, Siemens Verio

3.0T) before and after NAC (Table 1). Axial DCE-MRI: A T1-

weighted pre-contrast scan was first performed, followed by

injection of a contrast agent (Gd-DTPA). After injection, 20 ml of

saline was used to flush the tube, which was then continuously

scanned for nine phases.
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2.3 ROI masking

Two radiologists assessed the tumor borders. A radiologist with

5 years of experience completed ROI masking and was then

reviewed by another radiologist with over 23 years of experience.

The two radiologists reached a consensus on tumor bounderies. The

tumor contours on each slice of the third post-enhanced image were

manually outlined, and a 3D volume of interest (VOI). This step

was performed on pre-NAC images and post-NAC images

separately by using 3D Slicer 4.10.2 (www.slicer.org, including the

following steps unless noted).
2.4 Pathological assessment

Biopsies and surgical specimens were handled by a pathologist

with more than 8 years of experience. Surgical specimens were fixed

in standard formalin solution and processed in a standard breast

tissue processor, according to which the longest diameter of the

tumor was recorded.

Immunohistochemistry was used to determine the expression

of Ki-67, progesterone receptor (PR), estrogen receptor (ER), and

HER2. HER2 expression was graded as 0, 1+ was negative, and 3+

was positive. If HER2 expression was graded as 2+, additional

fluorescence in situ hybridization was required.

The maximum diameter of the tumor was measured using a 3D

slicer in pre-NAC DCE-MRI as the baseline. Shrinkage patterns

were assessed by comparing the surgical specimens with the

baseline values. The definition of shrinkage patterns was based on

the Response Evaluation Criteria in Solid Tumors (RECIST) version

1.1, Chalian et al., Schwartz et al. (26–28). Type 1 shrinkage pattern

included pCR and single-lesion shrinkage. pCR was defined as no

residual invasive carcinoma in the primary lesion or axillary lymph

node after NAC, and single lesion shrinkage was defined as a lesion

that had shrunk by more than 30% of its longest diameter. Type 2

shrinkage patterns include major residual lesions with satellite foci,

multifocal residuals, stable disease (SD), and progressive disease

(PD). Major residual lesions with satellite foci were defined as the

main residual lesions accompanied by at least one minor lesion on

the continuous slides. Multifocal residuals were defined as the

presence of at least two separate lesions. SD was defined as a

lesion shrinking by less than 30% of its longest diameter, and PD

was defined as a lesion exceeding the baseline in its longest
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diameter. Two experienced pathologists independently examined

the specimens and agreed to the regression patterns.
2.5 Image processing and
features extraction

Non-uniform intensity normalization (N4) bias correction was

applied to extract the bias field in MR imaging and correct it to

eliminate the effect of artifacts. The voxel sizes of the images were

resampled to (1, 1, 1).

The features of the pre-NAC model (pre-NAC features) were

extracted from pre-NAC DCE-MRI, and those of the features of

post-NAC model (post-NAC features) were extracted from post-

NAC DCE-MRI. The features of the pre-post-NAC model (pre-

post-NAC features) were obtained by subtracting the value of the

post-NAC features from the pre-NAC features. The features of the

combination model (combination features) consisted of pre-NAC,

post-NAC, and pre-post-NAC features.
2.6 Statistical analyses

All features were imported into the Darwin Scientific Research

Platform (Medical AI Technology (Beijing) Co., Ltd.) for

subsequent operations. The feature values were normalized

between −1 and 1 by maximum absolute value normalization.

Minimum redundancy maximum relevance (mRMR) feature

selection was utilized to select highly relevant features from pre-

NAC, post-NAC, pre-post-NAC, and combination features. The

filtered features were used to construct logistic regression (LR)

models. LR is a model for solving binary classification problems.

The importance of each independent variable is quantified in LR,

and a set of independent variables with optimal classification

performance is utilized to form a linear combination (29). As an

optimization problem, the binary class L2 penalized LR minimizes

the following cost function:

y = min 
w,c

1
2
w⊤w + Co

n

i=1
log(exp( − yi(x

⊤
i w + c)) + 1)

xi is the radiomics features for sample i, yi is the sample i label,

w is the coefficient vector of the LR model, and c the inverse of the

regularization intensity.
TABLE 1 DCE-MRI protocol for each scanner.

DCE-MRI GE Signa HDxt 1.5T GE Discovery MR 750W 3.0T Siemens Verio 3.0T

TR (ms) 5.1 6.9 4.54

TE (ms) 2.5–12 minimum 1.61

Matrix (pixels) 320 × 384 288 × 320 346 × 384

FOV (mm) 320 × 320 360 × 360 340 × 340

Slice thickness (mm) 2.8 1.4 1.6

Flip angel 15 10 10
TR, repetition time; TE, echo time; FOV, field of view.
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The performance of the LR model was demonstrated by

the receiver operating characteristic curve. Then the area

under the curve (AUC), accuracy, sensitivity, and specificity

were calculated. Type 1 was defined as negative and type 2 was

defined as positive.

The patient characteristics were calculated by SPSS software

(version 26, IBM). The normally distributed continuous data were

expressed as mean ± standard deviation and examined by

independent t-tests. Continuous variables between two groups

were examined by Fisher’s exact test or chi-square test. 0.05 was

used as the significant level.
3 Result

3.1 Patient characteristics

The radiomics framework is shown in Figure 1. A total of 75

patients were enrolled in the study, in which type 1 accounted for

67.2% (53.2 ± 9.1 years), and type 2 for 32.8% (53.3 ± 8.8 years).

Premenopausal patients accounted for 48.1% and 47.8% of patients

with type 1 and type 2 diseases, respectively. ER >1% accounted for

61.5% of type 1 cases and 60.9% of type 2 cases. A PR >1%

accounted for 57.7% of type 1 cases and 52.2% of type 2 cases.

HER2 positive accounted for 57.7% of the type 1 cases and 65.2% of

the type 2 cases. Clinical T-stages 1–2 accounted for 78.8% and

65.2% of patients with type 1 and type 2 tumors, respectively.

Luminal A, luminal B, HER2, and TN accounted for 13.5%, 59.6%,

17.3%, and 9.6% in type 1 while 21.7%, 39.1%, 34.8%, and 4.3% in

type 2. Age (P = 0.947), menopausal status (P = 0.984), ER status

(P = 0.956), PR status (P = 0.657), clinical T-stage (P = 0.211), and

molecular subtype (P = 0.215) were not significantly different

between types 1 and 2. The expression level of Ki-67 was

significally different (P = 0.047) between type 1 and type 2, of

which the proportion of Ki-67 >20% in type 1 was higher (78.8% in

type 1, 56.5% in type 2). The characteristics of the type 1 and type 2

patients are shown in Table 2. There were no significant differences

in the patient characteristics between the training and validation

sets (Table 3).
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3.2 Model effectiveness

The AUC of combination model was 0.84 (95% CI: 0.74–0.94)

for the training set and 0.82 (95% CI: 0.60–1.00) for the validation

set, pre-NACmodel was 0.81 (95% CI: 0.70–0.92) and 0.64 (95% CI:

0.34–0.94), post-NAC model was 0.83 (95% CI: 0.72–0.95) and 0.70

(95% CI: 0.43–0.97), pre-post-NAC model was 0.81 (95% CI: 0.69–

0.93), and 0.80 (95% CI: 0.56–1.00) (Figure 2). The model

performance details are listed in Table 4.
3.3 VOI features and linear combination

A total of 1,130 features were extracted from each VOI on pre-

and post-NAC DCE-MRIs. The categories of features consisted of

first-order features, shape features (2D and 3D), textural features,

wavelet-based features, and 3D textural features from image data

filtered by Laplacian-of-Gauss (LoG) with kernel sizes of 2, 4, and 6.

After the feature selection, 15 features were filtered out. The selected

features, in combination, are as follows:
pre-wavelet-HLH-gldm-Dependence Variance

pre-wavelet-HLL-glrlm-Short Run Low Gray Level Emphasis

post-original-shape-Elongation

pre-post-log-sigma-4-0-mm-3D-glcm-Informational Measure

of Correlation

pre-post-log-sigma-4-0-mm-3D-glcm-Maximum Probability

pre-post-wavelet-HLL-glrlm-Run Entropy

post-original-shape-Maximum 3D Diameter

post-wavelet-HHL-glrlm-Short Run High Gray Level

Emphasis

pre-post-log-sigma-6-0-mm-3D-gldm-Small Dependence Low

Gray Level Emphasis

pre-wavelet-HLL-first order-Skewness

post-log-sigma-6-0-mm-3D-glcm-Maximal Correlation

Coefficient

post-wavelet-HHH-gldm-Dependence Variance
FIGURE 1

Radiomics workflow.
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Fron
pre-wavelet-LHH-gldm-Dependence Variance

pre-post-wavelet-HHH-glszm-Size Zone Non Uniformity

Normalized

post-wavelet-LHL-gldm-Gray Level Non Uniformity
The features of the combination model and their correlation

coefficients are presented in Table 5 and Figure 3. Among the 15

features of the combination model, 9/15 (60.0%) were wavelet-

based features, 4/15 (26.7%) were LoG features, and 2/15 (13.3%)

were shape features from the original images. Wavelet-based

features generally have higher correlation coefficients than LoG

features do. The four wavelet-based features with the highest

correlation coefficients had higher correlation coefficients than the

four LoG features with the highest correlation coefficients. Pre-NAC

features accounted for 4/15 (26.7%) patients, post-NAC features

accounted for 6/15 (40.0%), and pre-post-NAC features accounted

for 5/15 (33.3%). Two of the four pre-NAC features had correlation
tiers in Oncology 05
coefficients greater than 2, accounting for 2/4 (50.0%); three of the

six post-NAC features had correlation coefficients greater than 2,

accounting for 3/6 (50.0%); and four of the five pre-post-NAC

features had correlation coefficients greater than 2, accounting for 4/

5 (80.0%). Pre-post-NAC features play a more important role in the

combination model than pre-NAC and post-NAC features.

The linear combinations of combination features were as

follows: RadScore = −2.757
+pre-wavelet-HLH-gldm-Dependence Variance × 4.812

+pre-wavelet-HLL-glrlm-Short Run Low Gray Level Emphasis

× 4.436

-post-original-shape-Elongation × 4.101
TABLE 3 Characteristics of patients in training set and validation set.

Characteristics Training set Validation set P-value

No. of patients 60 15

Age, years 53.1 ( ± 9.3) 53.7 ( ± 7.6) 0.824

Regression pattern 1.000

Type 1 42 (70.0%) 10 (66.7%)

Type 2 18 (30.0%) 5 (33.3%)

Menopausal Status 0.131

Premenopausal 29 (48.3%) 4 (26.7%)

Postmenopausal 31 (51.7%) 11 (73.3%)

ER Status 0.101

≤1% 22 (36.7%) 9 (60.0%)

>1% 38 (63.3%) 6 (40.0%)

PR Status 0.816

≤1% 26 (43.3%) 7 (46.7%)

>1% 34 (56.7%) 8 (53.3%)

HER2 Status 0.556

Positive 37 (61.7%) 8 (53.3%)

Negative 23 (38.3%) 7 (46.7%)

Ki-67 Status 0.486

≤20% 16 (21.2%) 6 (43.5%)

>20% 44 (78.8%) 9 (56.5%)

Clinical T-stage 0.842

1-2 44 (73.3%) 12 (80.0%)

3-4 16 (26.7%) 3 (20.0%)

Molecular Subtype 0.425

Luminal A 8 (13.3%) 4 (26.7%)

Luminal B 33 (55.0%) 7 (46.7%)

HER2 13 (21.7%) 4 (26.7%)

TN 6 (10.0%) 0 (0%)
fron
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor
receptor 2; TN, triple-negative.
TABLE 2 Characteristics of patients and breast cancers in our study.

Characteristics Type 1 Type 2 P-value

No. of patients 52 23

Age, years 53.2 ( ± 9.1) 53.3 ( ± 8.9) 0.947

Menopausal Status 0.984

Premenopausal 25 (48.1%) 11 (47.8%)

Postmenopausal 27 (51.9%) 12 (52.2%)

ER Status 0.956

≤1% 20 (38.5%) 9 (39.1%)

>1% 32 (61.5%) 14 (60.9%)

PR Status 0.657

≤1% 22 (42.3%) 11 (47.8%)

>1% 30 (57.7%) 12 (52.2%)

HER2 Status 0.540

Positive 30 (57.7%) 15 (65.2%)

Negative 22 (42.3%) 8 (34.8%)

Ki-67 Status 0.047

≤20% 11 (21.2%) 10 (43.5%)

>20% 41 (78.8%) 13 (56.5%)

Clinical T-stage 0.211

1–2 41 (78.8%) 15 (65.2%)

3–4 11 (21.2%) 8 (34.8%)

Molecular Subtype 0.215

Luminal A 7 (13.5%) 5 (21.7%)

Luminal B 31 (59.6%) 9 (39.1%)

HER2 9 (17.3%) 8 (34.8%)

TN 5 (9.6%) 1 (4.3%)
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor
receptor 2; TN, triple-negative.
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+pre-post-log-sigma-4-0-mm-3D-glcm-Informational

Measure of Correlation × 2.874

+pre-post-log-sigma-4-0-mm-3D-glcm-Maximum Probability

× 2.87

+pre-post-wavelet-HLL-glrlm-Run Entropy × 2.607

+post-original-shape-Maximum 3D Diameter × 2.331

+post-wavelet-HHL-glrlm-Short Run High Gray Level

Emphasis × 2.321

-pre-post-log-sigma-6-0-mm-3D-gldm-Small Dependence

Low Gray Level Emphasis × 2.113

-pre-wavelet-HLL-firstorder-Skewness × 0.636

+post-log-sigma-6-0-mm-3D-glcm-Maximal Correlation

Coefficient × 0.593

+post-wavelet-HHH-gldm-Dependence Variance × 0.531

-pre-wavelet-LHH-gldm-Dependence Variance × 0.253

-pre-post-wavelet-HHH-glszm-Size Zone Non Uniformity

Normalized × 0.242

+post-wavelet-LHL-gldm-Gray Level Non Uniformity × 0.122.
4 Discussion

The pattern of tumor shrinkage is critical for determining which

patients should be treated with BCS. We developed a combination
tiers in Oncology 06
model based on pre- and post-NAC DCE-MRI to predict the

pattern of tumor shrinkage in our cohort of patients. This model

can help clinicians to select suitable candidates for BCS. The

performance of the combination model was superior to those of

the pre-NAC, post-NAC, and pre-post-NAC models. High-order

features contribute significantly to the radiomics model.

Previous studies have demonstrated that first-order features,

shape features, and texture features can be used to predict tumor

response to NAC (30, 31). Our proposed method extracts general

radiomics features containing first-order, shape, and texture

features (2D and 3D). Meanwhile, this method computes high-

order features from filtered images with different filters. Sutton et al.

(32) added Gabor features to the general radiomics features to

predict pCR. However, Braman et al. (33) showed that only 2 of the

10 features used in the prediction models of hormone receptor+,

HER2−, and TN/HER2+ were Gabor features with a lower

correlation. In comparison, Gabor features were not highly

correlated with the top 10 features in the all-comers prediction

model (all subtypes were included). This discrepancy can be

attributed to the inadequate processing capability of the Gabor

filter for mutant and non-smooth signals.

The wavelet transform can compensate for the deficiency of the

Gabor transform, which is a localized analysis of spatial frequencies.

This fact can be applied to effectively extract high- and low-

frequency signals from images and to analyze image texture

changes more carefully and comprehensively. Zhou et al. (34)
A B

FIGURE 2

The receiver operating characteristic curves of radiomics features, combination model, pre-NAC model, post-NAC model and pre-post-NAC model
in both the training set and the validation set, (A) is Training Set, (B) is Validation Set.
TABLE 4 Performance of different radiomics models in training and validation set.

Training set Validation set

AUC ACC SEN SPE AUC ACC SEN SPE

combination model 0.84 0.75 0.72 0.76 0.82 0.73 0.80 0.70

pre-NAC model 0.81 0.72 0.83 0.67 0.64 0.60 0.80 0.50

post-NAC model 0.83 0.75 0.83 0.71 0.70 0.60 0.80 0.50

pre-post-NAC model 0.81 0.73 0.72 0.74 0.80 0.73 0.80 0.70
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; NAC, neoadjuvant chemotherapy.
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confirmed that wavelet-transformed textures can be used to predict

pCR based on DCE-MRI. Thus, wavelet-based features were added

to the models. Nine wavelet-based features were selected using the

combination model.

Some scholars have suggested that LoG, which is designed to

highlight the regions in an image where the intensity is changing

rapidly, is compelling. Choudhery et al. (35) extracted 3D shape and

texture features of TN breast cancer for analysis. They found that

LoG features, including mean signal intensity, median signal

intensity, maximum signal intensity, minimum signal intensity,

and standard deviation of intensity, could be used to predict pCR.

This study also included LoG features for analysis, namely the

Informational Measure of Correlation, Maximum Probability,

Small Dependence Low Gray Level Emphasis, and Maximal

Correlation Coefficient. Our method uses both wavelet-based and

LoG features to achieve better performance. These results suggest
Frontiers in Oncology 07
that high-order features have more potential for application in the

prediction of BCS candidates.

In addition, among the features with correlation importance >2,

the number of features from pre-post-NAC DCE-MRI surpassed

pre- and post-NAC DCE-MRI. This showed that pre-post-NAC

images can provide more effective information about the regression

pattern of the tumor response to NAC. This is confirmed by the fact

that the pre-post-NAC model is second only to the combination

model in terms of predictive performance.

Most of the studies above were dedicated to predicting pCR and

lacked further discussion of non-pCR tumors. The accurate

identification of tumor remission patterns is critical for deciding

the surgical approach. To accurately identify patients suitable for

BCS, our study classified all tumor shrinkage patterns into types 1

and 2. Multifocal and major residual lesions with satellite foci are at

risk of missing lesions during surgery, resulting in false-negative
TABLE 5 Description of the selected radiomics features in combination model.

Radiomics feature Radiomics group Feature class filter Image

Dependence Variance gldm wavelet-HLH pre

Short Run Low Gray Level Emphasis glrlm wavelet-HLL pre

Elongation shape original post

Informational Measure of Correlation glcm log-sigma-4-0-mm-3D pre-post

Maximum Probability glcm log-sigma-4-0-mm-3D pre-post

Run Entropy glrlm wavelet-HLL pre-post

Maximum 3D Diameter shape original post

Short Run High Gray Level Emphasis glrlm wavelet-HHL post

Small Dependence Low Gray Level Emphasis gldm log-sigma-6-0-mm-3D pre-post

Skewness first-order wavelet-HLL pre

Maximal Correlation Coefficient glcm log-sigma-6-0-mm-3D post

Dependence Variance gldm wavelet-HHH post

Dependence Variance gldm wavelet-LHH pre

Size Zone Non Uniformity Normalized glszm wavelet-HHH pre-post

Gray Level Non Uniformity gldm wavelet-LHL post
Gldm, gray level dependence matrix; glrlm, gray level run length matrix; glcm, gray level co-occurrence matrix; glszm, gray level size zone matrix.
FIGURE 3

The importance of selected features by combination model.
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margins. Thus, they were combined with SD and PD, which do not

respond well to NAC, to form type 2. The remaining pCR and

single-lesion shrinkage were classified as type 1. The combination

model used four LoG features, nine wavelet-based features, and two

original shape features to classify shrinkage patterns with an AUC

of 0.82.

Several studies that used pre-NAC MRI and MRI before and

after NAC had predictive effectiveness similar to ours. Cain et al.

(36) predicted the pCR of TN/HER2 patients based on pre-NAC

DCE-MRI, with an AUC of up to 0.71. Sutton et al. (32) combined

pre- and post-NAC DCE-MRI to establish a recursive feature

elimination random forest model with AUC of 0.80 and 0.78 for

training set and test set. However, these studies only discriminated

between pCR and non-pCR patients. In our study, a further

distinction was made between non-pCR and types 1 and 2. This

approach was also presented in studies by Zhuang et al. (23) and

Huang et al. (37). However, there was no comparison between the

pre- and post-treatment images in their study. To this end, in

addition to the combination model, we built the pre-NAC, post-

NAC, and pre-post-NAC models separately for comparison. Our

study showed that the performance of pre-post-NAC images was

better than that of pre-NAC and post-NAC images. This suggests

that changes in tumors before and after NAC treatment have

significant predictive power in revealing the patterns of tumor

regression. The above mentioned in our research is a further

extension of previous research.

Ki-67 is a tumor proliferation marker with the gene located on

the long arm of chromosome 10 (10q25) (38). Previous studies have

concluded that higher Ki-67 levels in breast cancer are correlated

with a better response to NAC (39, 40). Our findings showed that

the regression pattern of Ki-67 >20% was more inclined towards

type 1. However, the use of Ki-67 as an independent predictor

requires further investigation.

Our study had several limitations. First, we did not include

tumor subtypes as clinical features in the prediction model. This

was because the tumor subtypes were not statistically significant in

this study. The reason for this the distribution imbalance caused by

the different incidence of each tumor subtype. Second, our proposed

method can only be a component of the decision-making of the

surgical approach for patients who have received neoadjuvant

therapy, but other factors such as age, clinical nodal status, and

tumor grade must be taken into consideration. Third, this was a

pilot study, conducted with a sample size of 75 patients, and for

validation, it required a larger population. Finally, this retrospective

study must be evaluated for reproducibility and efficacy in a

prospective validation set before its clinical application.
5 Conclusion

We constructed a combination model based on pre- and post-

NAC DCE-MRI, utilizing general radiomics features, wavelet-based

features, and LoG features to precisely predict tumor shrinkage

patterns before surgery in our cohort of patients. High-order

features, particularly texture features based on the wavelet
Frontiers in Oncology 08
transform filter, are significant for the prediction model. Pre-post-

NAC features offer a better predictive efficacy than pre- and post-

NAC features. The model can help clinicians select suitable

candidates for BCS to reduce the likelihood of residual tumors at

surgical margins. Further expansion of the sample size and separate

discussion by tumor subtype would help improve this model.
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