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Human malignant brain tumors such as gliomas are devastating due to the

induction of cerebral edema and neurodegeneration. A major contributor to

glioma-induced neurodegeneration has been identified as glutamate. Glutamate

promotes cell growth and proliferation in variety of tumor types. Intriguently,

glutamate is also an excitatory neurotransmitter and evokes neuronal cell death

at high concentrations. Even though glutamate signaling at the receptor and its

downstream effectors has been extensively investigated at the molecular level,

there has been little insight into how glutamate enters the tumor

microenvironment and impacts on metabolic equilibration until recently.

Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11)

appeared to be a major player in this process, mediating glutamate secretion

and ferroptosis. Also, PPARg is associated with ferroptosis in neurodegeneration,

thereby destroying neurons and causing brain swelling. Although these data are

intriguing, tumor-associated edema has so far been quoted as of vasogenic

origin. Hence, glutamate and PPARg biology in the process of glioma-induced

brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA

receptors in vivo, brain swelling and peritumoral alterations can be mitigated.

This review sheds light on the role of glutamate in brain tumors presenting the

conceptual challenge that xCT disruption causes ferroptosis activation in

malignant brain tumors. Thus, interfering with glutamate takes center stage in

forming the basis of a metabolic equilibration approach.
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Introduction

Malignant primary brain tumors account for approximately

30% of all primary brain tumors diagnosed annually in the United

States (1). Gliomas are the most common of these and represent one

of the leading causes of morbidity and mortality in neurological

practice (2). Glioblastomas (also referred to CNS WHO grade 4

glioma) with their median survival time of less than 15 months are

considered to be the most malignant brain tumor entity (3). To

date, conventional treatment includes surgical resection of the bulk

tumor mass, followed by radiotherapy and alkylating agent-based

chemotherapy. Even with these advanced therapies developed over

the last two decades, survival times have only been extended a few

months, and a cure remains elusive. In addition, certain biological

properties of glioma make complete surgical resection nearly

impossible and radiochemotherapy less effective or ineffective in

treating residual glioma cells (4–6). At the cellular level, treatment

resistance can be explained by the intra- and intertumoral

heterogeneity observed in glioblastomas. Based on genomic and

transcriptomic analyses of bulk tumors, glioblastomas can be

categorized into four molecular subtypes, namely proneural,

neural, classical, and mesenchymal (7, 8). However, a follow-up

study revealed that all molecular subtypes coexist within a brain

tumor heterogeneously (5). The clinical prognosis remained

unaffected except for individuals belonging to the proneural

subtype. In glioblastomas with high proportions of alternative

subtypes, patients with dominant proneural subtype had poorer

survival outcomes. In addition, the existence of glioblastoma stem

cells (GSC) also contributes to resistance to adjuvant therapy and

promote tumor recurrence (9).

Untreated cases of glioblastoma are commonly associated with

perifocal edema resulting from blood-brain barrier disruption.

These events can lead to devastating neurological sequelae, such

as hemiparesis or cognitive decline (10). Whether the tumor-related

edema zone should be resected presents a controversial issue until

now, but according to a recent study, surgical resection of the

peritumoral edema zone has been found not to carry a greater risk

of postoperative complications. It even delayed tumor recurrence

than simply removing the contrast-enhancing tumor alone (11).

There has been an association between glioblastoma-induced

edema and alterations of tumor-associated genes inside the edema

region, in terms of upregulations of e.g. c-myc, ERK, or AKT, and

downregulation of tumor-suppressors such as p53 (11). Additional

bioinformatic analysis of ‘The Cancer Genome Atlas’ (TCGA) data

revealed that occurrence of tumor-related brain edema affects

inflammatory gene expression, e.g. by increasing IL-10 levels (12),

which in turn was shown to promote glioma cell invasion (13, 14).

As a result, the threshold for T cell activation can be raised, and

their antitumor activity can be directly suppressed (15). Aside from

that, HMOX1-positive myeloid cells are also capable of secreting IL-

10, causing T cell dysfunction and immune evasion (16). These

recent data strongly suggest that these edema-enriched genes are

crucial for gliomagenesis and tumor angiogenesis. The presence of

these gene alterations in the edema region is in line with the
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observation that this area represents the biologically active part of

the glioma microenvironment (6).

Brain tissues in the peritumoral area show evidence of oxidative

stress, manifested through increased production of reactive oxygen

species (ROS) and decreased antioxidant-enzyme defenses such as

catalase, glutathione peroxidase, and superoxide dismutase (17, 18).

The oxidative stress in the glioma microenvironment is closely

related to iron homeostasis, since the balanced amount of

intracellular iron governs the oxidation state of phospolipids (19,

20) (Figure 1). An iron overload induces lipid peroxidation and

subsequent cell death (21). In a recent study, it was found that GSC

can absorb iron from the glioma microenvironment more

effectively by upregulating their expression levels of ferritin and

transferrin receptor (TfR) 1 (22). The proliferation of glioma cells is

facilitated by such TfR overexpression-mediated oxidant

accumulation, which inactivates cell cycle regulators and

promotes S-phase entry (23).

In addition to the direct iron-related mechanism of tumor

progression, another relevant upstream mechanism for the

development of edema or glutamate-induced excitotoxicity is

represented by the glutamate-cystine antiporter system xc
− (24,

25) (Figure 1). In glioblastoma cells, increasing cystine import

through system xc
− drives the production of antioxidant

glutathione, whereas the inhibition of cystine import, e.g. by

application of system xc
− inhibitors, decreases the antioxidative

capabilities of (brain) tumor cells (26). Several molecular aspects

modulate these antioxidative properties, including the expression of

mitoferrin-1, Nrf2, and catalase, among others (27–29). Thus, the

tumor itself expresses a variety of molecules that serve to decrease

the oxidative stress in its tissue, promoting growth. Interestingly,

blocking system xc
− allows oxidative agents to accumulate

intracellularly, which leads to cell death in the form of ferroptosis

(30) (Figure 1). Ferroptosis inhibits malignant brain tumors and

tumor-related edema by inducing oxidative stress in tumor cells and

through antagonism of the treatment resistance that is strongly

displayed by malignant gliomas (31).

In recent years, different pathways have been identified that

promote an understanding of the biological actions of malignant

tumors and their related cerebral edema. The benefits of current

treatment options are still modest, so the investigation of newly

identified, tumor- and edema-specific targets could translate

quickly into clinical applications, ultimately improving survival

rates and quality of life for patients. In this review, we outline

recent advances in the treatment of tumor-associated cerebral

edema and discuss the overlap between ferroptosis induction in

the tumor and the role of ferroptosis adjacent to the edema site.
Origins and relevance of tumor-
induced cerebral edema

Aside from rapid growth and diffuse brain infiltration,

peritumoral cerebral edema represents a feared hallmark of high-

grade gliomas (HGGs, CNS WHO grades 3 and 4) (6, 32). This
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process involves an increase in fluid content in the surrounding

parenchyma. As a result, the volume and, correspondingly, the

clinical reflection of the mass-effect of the space-occupying

intracranial process rises significantly (33, 34). According to their

cause, there are four known types of cerebral edema, namely

vasogenic, cytotoxic, interstitial, and osmotic edema (6, 32, 35–

37). It cannot be denied that the vasogenic component is the major

player in the progression of HGGs. In most cases, disruption of the

blood-brain barrier and increased vascular permeability are

responsible for the described fluid accumulation (38). This results

in impaired oxygen transport, which increases the symptoms

elicited by the edema (39). The disturbed fluid discharge increases

intracranial pressure (40). This can be compensated in the first line

by reduction of the intracerebral volume of blood and liquor (41),

but soon this reserve is exhausted and the intracranial pressure

rapidly rises. In the final stage, the swelling brain compresses

essential brain areas as well as the venous outflow from the brain

and thus results in an episode of ischemia that consequently leads to

brain death. In fact, the malignancy of primary brain tumors

correlates highly with the development of peritumoral edema (6,

17). The modified tumor microenvironment, known as perifocal or

perilesional brain swelling, has been traditionally believed to

originate primarily from vasogenic mechanisms and is also

associated with the region of tumor-related angiogenesis (6, 42).

Morphologically, tumor vessels show characteristic features such as

altered capillary endothelial with fenestration of hyperplasia

(glomeruloid tufts), irregular basal membranes and extravascular

spaces, and also convoluted and sinusoidal abnormalities (43). As a

consequence of this altered vascular architecture, gliomas

accumulate extracellular water in the peritumoral zone while

losing blood-brain barrier integrity and permeability selectivity
Frontiers in Oncology 03
(44). A crucial cellular component found within the tumor

microenvironment is the astrocytic glial cell. Astroglial changes

such as altered cytoskeletal arrangements, cytoplasmatic processes

and filopodia, and altered expression of water channels (i.e.

aquaporin-4) were indentified in perifocal areas (45, 46). These

astroglial transformations may reflect a desperate attempt to restore

the extracellular balance of fluids. In addition to astrocytes,

microglia are also present in the tumor microenvironment and

may influence the survival of patients (47). Recently, tumor-

associated microglia/macrophages have been found to hold an

important role in shaping the tumor microenvironment in mice

(48). These data are particularly interesting because up to 50% of

microglia/macrophages are estimated to constitute the tumor (49).

Furthermore, beyond the bulk tumor mass, an analysis of the

peritumoral zone has shown that activated microglia accumulate

at the tumor and therby constitute a major component of the

perifocal area that contributes to tumor-related edema (45). In total,

the mechanisms of this perilesional edema and the cellular and

molecular composition of the microenvironment are only partially

understood, and further studies are required to assess how a cell-

type specific intervention may elevate patients’ symptoms.

Based on the mostly vasogenic nature of peritumoral edema

(44), it is relevant to identify the various angiogenic factors secreted

by HGGs. The most prominent candidates associated with tumor

angiogenesis are vascular endothelial growth factor (VEGF) and

angiopoietin, as both can stimulate endothelial and perivascular

progenitor cell growth as well as tube formation (50). Several

mechanisms in which VEGF is involved, lead to an increase in

the membrane permeability and thus are responsible for edema

formation. Secretion of nitrogen oxide and phosphorylation of

occludin are mainly driven by VEGF and result in relaxation of
FIGURE 1

Schematic model for the mechanism of ferroptosis in glioblastoma. The figure shows the related molecules and pathways of ferroptosis. Ferroptosis
is induced by inhibition of system xc

− or glutathione peroxidase 4 (GPX4), or accumulation of iron (Fe2+) ions. The catabolic enzyme acyl-CoA
synthetase long-chain family member 4 (ACSL4) must be expressed.
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tight junctions (51). Another factor is the hydrostatic edema. This

type of edema induces a shift in the liquor drainage due to the bulk

tumor mass, creating a subsequent hydrostatic pressure gradient

between the ventricle and brain parenchyma. As a result, fluid is

forced into the brain tissue (52–54).
Possibilities to broaden the
therapeutic toolbox to treat
perifocal edema

In clinical settings, the first choice remains the administration

of synthetic glucocorticoids (i. e. dexamethasone) and, in rare cases,

osmotically active compounds like mannitol (55). These clinical

procedures usually reduce the edema rapidly. The underlying

mechanisms consist of blocking nitrogen oxide synthase (NOS),

accelerating the depletion of bradykinin, and reducing expression of

VEGF by tumor cells (56, 57). These procedures stabilize the tight

junctions and therefore reduce the efflux of capillary fluid into the

brain parenchyma. However, there is also evidence that

glucocorticoids may even accelerate the process of tumor

progression (58). For instance, glucocorticoids have strong

glycolytic effects and enhance fructose 2,6-bisphosphate

production - the most potent stimulator of phosphofructokinase 1

- as well as lactate secretion, which may counteract the further

action of anticancer drugs (59). Furthermore, frequent adverse

reactions become increasingly relevant in long-term treatment

with glucocorticoids, and can cause immuno-suppression,

reduction in quality of life, and limiting treatment modalities (60).

With this wide variety of undesirable side effects, alternative

treatment targets need to be indentified and utilized. Since it has

been found that glutamate influx may contribute to cell-swelling

(61, 62), therapeutic targeting of glutamate homeostastis-related

proteins as system xc
- and EAAT1/2 may be potentially beneficial in

treatment of tumor-related cerebral edema. In glioma, the decrease

in EAAT2 (also known as solute carrier family 1 member 2

(SLC1A2) or glutamate transporter 1 (GLT-1)) correlates with

tumor malignancy (63), making the potential involvement of

EAAT in tumor-associated diseases much more relevant. For

breast and colon cancers beneficial effects of EAAT2 upregulation

have already been reported, and the antineoplastic effects have

already been well studied (64, 65). Contrary to the system xc
-,

EAAT2 is poorly expressed by glioblastoma cells (66, 67). It

regulates the entry of glutamate into these cells (Figure 1),

ultimately decreasing extracellular clearance. Under normal

conditions, EAAT2 is predominantly expressed in astrocytes,

although detection is also possible in oligodendrocytes and

neurons (68, 69). EAATs, in general, are membrane-bound

pumps. Up to 90% of extracellular glutamate uptake can be

accounted for by these transporters (70, 71), making them the

single most important mechanism for a glutamate equilibrium.

Upregulation of these receptors, in turn, leads to a substantial shift

of extracellular to intracellular glutamate. Their expression can be

modified by multiple substances and levels, including signaling
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pathways through PI3K and NF-kB, as well as EGF, PPARg and

pituitary adenylate cyclase-activating polypeptide (67, 71, 72).

When EAATs get activated, the sodium ion-driven uptake of

glutamate also leads to the uptake of water, which may contribute to

cytotoxic edema (54). However, observations from liver failure-

induced cerebral edema suggest a decrease of EAAT2 accompanied

by a concurrent increase in AQP4 expression (73, 74). These actions

can elevate extracellular glutamate levels, until reaching neurotoxic

amounts of glutamate leading to the activation of NMDA receptors

associated with neurotoxicity (75, 76). Mechanistically, in terms of

tumor-related edema, its formation can result from a rise in

glutamate, as well as leukotrienes and vascular endothelial growth

factors, which increase the permeability of the brain vessels

surrounding the tumor, that leads to the influx of protein-rich

influx in the brains’ white matter (77). In cases of the other forms of

edema such as cellular or interstitial edema, the pathophysiological

mechanism differs and may involve other consequences, e.g.

increased sodium influx.

When AMPA receptor involvement in cerebral edema, tumor

unrelated and evoked e.g. by traumatic brain injury, was assessed, it

was found that blocking AMPA receptor activity attenuates edema

(78–80). Interestingly, in studies using rodent ischemic models,

AMPA-R and NMDA-R antagonistic actions have demonstrated

promising results. However, despite these positive preclinical

findings, clinical trials using AMPA receptor and NMDA receptor

antagonists have been unsuccessful (81, 82). Nonetheless, the

neuronal microenvironment near the tumor plays an important

role for the tumor progression. In breast and prostate carcinoma

cells, it was shown that tumor behavior is responsive to modulation

of neurotransmitter activity (83), indicating the importance of

chemical released by neuronal tissue. In the specific case of brain

cancer, it is important to understand how malignant tumor cells

and the neuronal cells in the brain communicate with each other in

a reciprocal manner. Previous efforts have been made to address

these questions. A soluble form of neuroligin-3, a synaptic protein,

was able to activate PI3K-mTOR in high-grade glioma, and

increased neuroligin-3 expression was negatively associated with

patient survival (84). In addition to the dependency on such

molecules, it was shown that glioma membrane depolarization

drove tumor proliferation (85). In the same study, it was found

that glioma provide electrical feedback to neurons in the circuit,

thereby regulating their own, activity-driven growth. These data

strongly illustrate how the neuronal compartment in the brain in

the near vicinity of the tumor is involved in the tumor’s progression.
xCT, microenvironment and tumor-
associated cytotoxicity

As another glutamate level-regulating protein, the amino acid

transporter xCT (system xc
-, SLC7A11) is expressed in various

cancers including high-grade gliomas (HGGs). Its specific

modulation of tumor microenvironment is revealed to be a

hallmark of primary malignant brain tumors. In particular, this
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modulation influences the tumor-induced neurotoxicity and

perifocal edema (32). De- and methylation processes as well as

imbalances between the histone deacetylases and acetylases play a

critical role in tumor development, whereas the link between these

epigenetic regulatory mechanisms and the malignant glioma

progression is the transporter system (86).

The inhibition of the cystine/glutamate antiporter xCT leads to

a decrease in neurodegeneration, perifocal edema and prolonged

survival in vivo. Furthermore, this supports the hypothesis that the

formation of edema is, to some extent, influenced by the death of

peritumoral cells (24) (Figure 1). Inhibition of xCT primarily

disrupts its neurodegenerative and microenvironment-toxifying

activity (87). A decrease in glioma cell proliferation was

associated with higher concentrations of xCT inhibitors in an L-

cystine-dependent manner (24, 88, 89). Glioblastoma cells derived

from human patients have been shown to be susceptible to the

cytotoxic effects of xCT-inhibitors (90). Additionally, cytotoxic

effects of substances such as temozolomide are augmented during

sulfasalazine-mediated xCT inhibition (91), and in another study it

was found that the glioma-toxic effect of sulfasalazine alone was

detectable at concentrations above 200 µM (89). HGGs use xCT to

increase glutamate levels and manipulate neuronal glutamate

signaling for their own growth advantage, leading to

chemotherapeutic resistance and a toxic tumor microenvironment

for neurons. Reactive oxygen species (ROS) activate transient

receptor potential (TRP) channels with the result of a potentiated

glutamate release via the TRP-channels. The system xc
- modulates

the tumor microenvironment with impact on host cells and the

cancer stem cells (92).

Glioma-associated microglia/macrophages (GAMs) are an

important cell population component of glioblastoma

microenvironment. The increasing glutamate levels cause

transcriptional changes in GAMs. These cells respond to extracellular

glutamate excess in the glioblastoma microenvironment with

increasing expressions of genes related to glutamate transport and

metabolism such as GRIA2 (GluA2 or AMPA receptor 2), SLC1A2

(EAAT2), SLC1A3 (EAAT1), decreasing expression of xCT and

increasing expression of GLUL (glutamine synthetase) (93).

Regarding the modulation of chemotherapeutic therapy of

HGGs, many promising inhibitors and activators of xCT have

been detected so far. The key problem of a specific modulation of

xCT in gliomas is the ubiquitous expression of xCT also in vital

tissue cells which makes it difficult to specifically target expression

of xCT in tumor cells, especially because of its essential role in

physiology of the CNS (94, 95).

The main cytotoxic tool in countering HGGs is the autophagy-

inducing standard chemotherapeutic agent temozolomide.

Interestingly, silencing xCT expression in human glioma cells is

associated with a higher vulnerability towards temozolomide.

However, gliomas with a high xCT expression are more

vulnerable towards combinatorial treatment with temozolomide

and erastin, a ferroptosis inducing agent (87).

The HDAC-inhibitor SAHA achieves equilibrium with the xCT

transporter and is specific to malignant brain tumors, while leaving

physiological xCT levels in healthy brain parenchyma unaffected.

Consequently, the reduction of extracellular glutamate levels leads
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to a decrease in neuronal cell death and normalization of the tumor

microenvironment. Reducing neurodegeneration results in less

damage to the surrounding healthy brain parenchyma (94).

Activating transcription factor 4 (ATF4) is a critical oxido-

metabolic regulator that contributes to the malignancy of HGGs by

promoting cell proliferation, migration and tumor angiogenesis

through the modification of the microenvironment in a

potentially harmful way. ATF4 activation is associated with an

elevation of xCT levels. The ATF4-induced proliferation is

extenuated by xCT inhibition and ferroptosis inducers such as

sorafenib and erastin. Moreover, erastin is able to reduce the ATF4-

induced angiogenesis. ATF4 and xCT are tightly connected via a

xCT-dependent configuring of the vascular architecture (31).

Interestingly, ATF4 suppression comes along with an increased

temozolomide susceptibility and autophagy in HGGs leading to a

migratory stop after temozolomide application. ATF4 activation

comes along with a xCT elevation resulting in an elevated

temozolomide resistance. Thus, ATF4 can be regarded as a

chemo-resistance gene in gliomas being determined by its

transcriptional target xCT. Inactivation of ATF4 might be a key

strategy to eliminate chemo-resistance in human gliomas (96).

These findings open the door to new stra teg ie s o f

pharmacological interventions on tumor-associated genes by

epigenetic priming (86).
Involvment of ferroptosis in brain
tumor treatment and the implications
for associated edema

Ferroptosis is a recently discovered mechanism for cell death,

characterized by the accumulation of iron ions and lipid

peroxidation during cell death (30, 97) (Figure 1). This can

ultimately be caused by ROS accumulation through inhibition of

glutathione (GSH) or GSH-dependent selenoprotein glutathione

peroxidase 4 (GPx4) (6, 30), with the latter being expressed most

abundantly in testes and brains (98). This accumulation of iron ions

can then lead to a continuous cycle of lipid oxidation and further

iron accumulation. Interestingly, inhibitors of apoptosis, necrosis

and autophagy cannot reverse this type of cell death (30).

Blocking system xc
-, which displays a strong expression in

malignant tumors such as glioblastoma, induces ferroptosis in the

tumor cells. As this poses the question if system xc
- may be a

potential target during chemotherapeutic intervention, it also of

particular interest to examine whether ferroptosis is involved in the

tumor-associated edema. Recently, it was found that the standard

treatment for edema, dexamethasone, sensitizes cells to ferroptosis

(99), which would allow to target the tumor and its edema

simulatenously by potential medication regimens. In vivo

treatment with the ferroptosis inducer sulfasalazine in mice with

glioma also reduces the tumor-associated edema (89). In line with

this finding, system xc
- inhibition by RNA-mediated silencing

improves tumor associated-edema in glioma (24). In contrast to

this improvement, rats after subarachnoid hemorrhage developed

edema that improved after the inhibition of ferroptosis (100),
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instead of its induction. Thus, the underlying pathology that leads

to edema seems to be important for the interventions to be taken in

edema, and it may be possible that tumor-related edema appear to

be more reliant on the ferroptosis status at the tumor site.

Therefore, it would be valuable to assess other ferroptosis-

inducing drugs regarding their ability to modify tumor-related

edema. At the moment, four distinct classes of ferroptosis-

inducing drugs play a major role. Most important in treatment

are class 1 and class 2 inducers (95, 101). However, class 3 (GSH

depletion compounds, e. g. acetaminophen) and class 4 (lipid

peroxidation inducers, e. g. FINO2) also play significant roles.

Class 1 inducers, such as erastin, primarily target the

aforementioned transporter system xc
-, ultimately depleting the

cells of cystine and glutathione. Interestingly, it has been

reported, that especially some glioma cells, that were therapy-

resistent to current treatments, are characterized by increased

synthesis of polyunsaturated fats (102) – a dependency that can

be readily exploited by GPx4 inhibitors (103).

Class 2 inducers, such as Ras-selective lethal 3 (RSL3) and

ferroptosis inducer 56 (FIN56), directly target and inhibit GPx4

through/via downstream process (101). This presents another

therapeutic angle, as some trials with knockout human cancer

cells have shown a partial resistance to erastin, but not RSL3 (104).

However, serious side effects have been reported involving the

induction of ferroptosis in cardiomyocytes (105, 106). A probable

explanation for this could be the counteraction of the vital,

protective, and antioxidant role that GPx4 plays in many cell

types (17, 107). Therefore, therapeutic use should be exercised

with caution.

As a side note, a number of compounds can protect against

ferroptosis-induced tissue damage. These include thiazolidinediones

(TZDs), which are a class of PPARg agonists (108, 109), as well as
LOX-inhibitors, DPP4-mediated lipid peroxidation suppression and

iron chelators (97).

Ultimately, ferroptosis-inducing agents such as erastin and

RSL3 could potentially serve as extension to standard treatments,

especially in cancers that seem resistant to current drug regiments.

Potential side effects, however, should be taken into consideration.
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Role of PPARg in brain tumors and
cerebral edema
Glioma cells are represented by various cellular and molecular

alterations that may contribute to their pathological effects and may

also represent therapeutical targets. Amongst those altered signaling

pathways, glioma cells express lower endogenous levels of

peroxisome proliferator-activated receptor gamma (PPARg)
compared to healthy brain tissue (67, 110). PPARg is a ligand-

activated transcription factor that plays an important role in

differentiation at a cellular level, as well as glucose and lipid

homeostasis. It has been shown to inhibit cellular proliferation

and angiogenesis, while promoting differentiation and inducing

apoptosis through multiple pathways (111). One of the main

obstacles for drugs designated for intracranial effect is the

crossing of the blood-brain barrier. This can be easily overcome

by PPARg agonists, as demonstrated for pioglitazone in human

glioma xenograft model (112). As shown in Table 1, a wide variety

of antineoplastic efficacy could be seen with PPARg agonists.
While some effects in cerebral neoplasms and edema have been

reported, the exact relation is not yet fully understood. To illustrate,

rosiglitazone has been shown to cause G2/M arrest and apoptosis in

certain glioblastoma cell lines (113), furthermore a delay in the age of

onset of seizures has been demonstrated in genetically susceptible

mice, when utilizing pioglitazone (114). In a clinical trial, an extended

median survival of 19 months has also been reported for diabetic

patients with glioblastoma who received additional treatment with

PPARg agonists, compared to 6 months of extended survival for

patients receiving the standard treatment (115). However, it should

be noted that the observed result indicating longer survival for the

PPARg agonist group was not considered statistically significant due

to the small sample size used in the study. Currently, classic PPARg
agonists such as pioglitazone are FDA approved primarily as oral

antidiabetics but the possibility of generating tissue-specific drugs has

been validated (116). At the moment, treatment with first-generation

TZDs poses many obstacles, as they hold a wide variety of side effects,

limiting their use.
TABLE 1 Assessment of PPAR gamma agonists for their oncological value.

Author Year Agonist Cells Mechanism induced Mechanism hindered

Grommes et al. 2013 Pioglitazone LN-229 Tumor volume

Pestereva et al. 2012 Ciglitazone T98G neurospheres, primary GSC NANOG SOX2

Wang et al. 2012 Rosiglitazone U87MG, U251 MG TGF-ß, P-SMAD3, SMAD3/SMAD4 complex

Wan et al. 2011 Pioglitazone U87MG, U251 MG, T98G ß-catenin

Lee et al. 2011 Pioglitazone T98G AKT, MMP

Charawe et al. 2008 Ciglitazone U87, T98G neurospheres EGF, Tyk2-STAT3

Coras et al. 2007 Troglitazone SMA-560, U87MG, F98 TGF-ß, migration (organotopic model)

Spagnolo et al. 2007 Pioglitazone GL261 Superoxide in glioma cells

Grommes et al. 2006 Pioglitazone C6, A172, U87MG Ki67, tumour volume

Grommes et al. 2005 GW7845 C6, A172, U87MG Ki67, tumour migration
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Recent studies have linked PPARg to ferroptosis. For instance,

dendritic cells in the immune system were shown to require PPARg
to undergo ferroptosis in response to RSL3, a finding that has an

impact on antitumor immunity (117). The impact of PPARg is not
limited to cancer, since also other pathologies such as diabetic

retinopathy were shown to be influenced in their ferroptotic

behavior by PPARg (118). In neuronal tissue, PPARg-mediated

ferroptosis was found to be relevant in the context of traumatic

brain injury (119) and in intracerebral hemorrhage (120).

In addition to PPARg’s role in tumor tissue and ferroptosis that

ocurrs within, its importance also expands to edema. For example,

in the context of traumatic brain injury PPARg-modulating

substances like pioglitazone and rosiglitazone led to decreases in

edema in rodent models (121). Their use is, however, associated

with peripheral edema (122). Though rosiglitazone, for example,

has been shown to decrease edema following a hemorrhagic event

(123), further studies are required to investigate PPARg specifically
in the context of cerebral edema as a result of an adjacent glioma.

According to studies in glioma cell lines and glioma stem cells,

PPARg agonist pioglitazone enhances the functional expression of

EAAT2 (124). It suggests that glioblastoma cells at the peritumoral

zone may be able to improve glutamate transport, which may lead

to alleviation of tumor-related edema. PPARg agonists have

additional effects associated with lipid metabolism and ferroptosis

(Figure 1). Polyunsaturated fatty acids (PUFAs) play a crucial role

in the process of ferroptosis. To induce lipid peroxidation, the

PUFA catabolic enzyme acyl-CoA synthetase long-chain family

member 4 (ACSL4) must be expressed (109). This enzyme is

essential for ferroptosis and responsible for esterifying CoA into

PUFAs such as arachidonic acid (AA) and adrenic acid (AdA). By

forming Acyl-CoA, PUFAs are activated for fatty acid oxidation.

Ut i l i z ing pharmaceut i ca l inh ib i t ion of ACSL4 wi th

thiazolidinedione ligands, a class of PPARg agonists such as

pioglitazone and rosiglitazone, has demonstrated that PPARg
agonists can suppress ferroptosis sensitivity (109). Based on our

current understanding, there is a notable absence of comprehensive

and in-depth studies exploring the molecular mechanisms

underlying the regulation of PPARg and ferroptosis in

glioblastoma. Further investigations on the role of PPARg in

glioma microenvironment and ferroptosis are required.
Frontiers in Oncology 07
Conclusion

In this review, we propose a fresh view on metabolic

homeostasis in context of glioma-induced neurodegeneration and

peritumoral edema. We discussed the glutamate signaling cascade

and glutamate-EAAT-xCT axis with a special focus on ferroptosis.

Brain tumors display a deranged microenvironment with metabolic

changes. We discussed xCT and PPARg as therapeutic targets

addressing brain swelling and metabolic homeostasis. We provide

supporting evidence for the conceptual challenge that xCT

disruption causes ferroptosis activation in malignant brain

tumors. We raised the potential involvement of PPARg agonists

in the context of glioblastoma and tumor-related edema.
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