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signature based on macrophage-
related marker genes to
predict prognosis and
immunotherapeutic effects
in hepatocellular carcinoma
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1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research
Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative
Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China, 2Department of Surgical Oncology, The
First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
Background: Tumor-related macrophages (TAMs) have emerged as an essential

part of the immune regulatory network in hepatocellular carcinoma (HCC).

Constructing a TAM-related signature is significant for evaluating prognosis

and immunotherapeutic response of HCC patients.

Methods: Informative single-cell RNA sequencing (scRNA-seq) dataset was

obtained from the Gene Expression Omnibus (GEO) database, and diverse cell

subpopulations were identified by clustering dimension reduction. Moreover, we

determined molecular subtypes with the best clustering efficacy by calculating

the cumulative distribution function (CDF). The ESTIMATE method, CIBERSORT

(cell-type identification by estimating relative subsets of RNA transcripts)

algorithm and publicly available tumor immune dysfunction and exclusion

(TIDE) tools were used to characterize the immune landscape and tumor

immune escape status. A TAM-related gene risk model was constructed

through Cox regression and verified in multiple datasets and dimensions. We

also performed functional enrichment analysis to detect potential signaling

pathways related to TAM marker genes.

Results: In total, 10 subpopulations and 165 TAM-related marker genes were

obtained from the scRNA-seq dataset (GSE149614). After clustering 3 molecular

subtypes based on TAM-related marker genes, we found significantly different

prognostic survival and immune signatures among the three subtypes.

Subsequently, a 9-gene predictive signature (TPP1, FTL, CXCL8, CD68,

ATP6V1F, CSTB, YBX1, LGALS3, and APLP2) was identified as an independent

prognostic factor for HCC patients. Those patients with high RiskScore had a

lower survival rate and benefited less from immunotherapy than those with low

RiskScore. Moreover, more samples of the Cluster C subtype were enriched in

the high-risk group, with higher tumor immune escape incidence.
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Conclusions: We constructed a TAM-related signature with excellent efficacy

for predicting prognostic survival and immunotherapeutic responses in HCC

patients.
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1 Introduction

Primary liver cancer, a type of highly malignant tumor, has been

the major cause of tumor-related mortality (1, 2). According to

global statistics, with 905,677 newly diagnosed cases and 9,30,180

death cases in 2020, liver cancer has caused a heavy burden on the

global health system. Hepatocellular carcinoma (HCC), accounting

for approximately 80% of all cases, is the most common

histopathological subtype of primary liver cancer and is

characterized by high aggressiveness, low treatment response and

poor outcome (3, 4). Unfortunately, most patients with HCC are at

terminal stages due to the lack of available diagnostic and

therapeutic measures, leading to a disappointingly low survival

rate (1-year survival rate <20%) (5). Despite considerable

advances in hepatocarcinogenesis in recent decades, further

exploration and construction of novel strategies to monitor and

apply intervention in patients with HCC are needed.

The tumor immune microenvironment (TIME) is mainly

composed of cancer cells, inflammatory cells, immune cells and

the extracellular matrix (6, 7). The complex and dynamic

interactions of various immune cells and active factors involved

in immune regulation play an essential role in oncogenesis,

metastasis and the treatment response (8, 9). Macrophages are

important immune cells that participate in various immune

activation processes, exerting important functions of phagocyte

fragments, mediating inflammatory reactions and regulating

tissue repair and regeneration (10, 11). Tumor-associated

macrophages (TAMs), which are abundantly infiltrating immune

cells in the TIME, are crucial factors in tumor-associated

inflammation and modulate the development of cancers by

secreting various cytokines and influencing other immune cells

(10). Among the disparate functional phenotypes of TAMs after
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-seq, single-cell RNA

ancer Genome Atlas;

une dysfunction and

t; EMT, epithelial–

egulatory cells; ROC,

ressed genes; KEGG,

ene Set Enrichment

e polymerase chain

death ligand; AFP,

02
polarization, the M1 type (classical activated macrophages) and the

M2 type (induced by IL-4 and IL-13) are most concerned (12). As

tumors progress, M2-like TAMs contribute to cancer metastasis by

facilitating the epithelial–mesenchymal transition (EMT) and

angiogenesis (13, 14). More importantly, TAMs induce

dysfunction of natural killer (NK) cells and restrain the effector

T-cell response by attracting immunosuppressive cells such as T

regulatory cells (Tregs) to the TIME, thereby decreasing antitumor

immune effects and accelerating oncogenesis (15, 16). It is

imperative to explore the molecular features of TAMs in HCC

and construct a TAM-related predictive signature.

Traditional RNA-sequencing technology (bulk RNA-seq) is

based on heterogeneous tissues or cell populations and reflects

average transcription profiles at an integrated level (17). However,

extensive heterogeneity exists among cell subpopulations, which is

of great significance for driving the phenotypes of cancers.

Remarkably, single-cell RNA sequencing (scRNA-seq) can reveal

the expression signature of all genes at the single-cell level, with a

more intuitive view of intratumor heterogeneity and individual

cellular subpopulations (18–20), greatly facilitating relevant

research and application. Moreover, informative datasets based on

scRNA-seq are crucial for studying the functional characteristics of

distinct cell subpopulations and the cell-interactive networks

in tumors.

Herein, we comprehensively analyze scRNA-seq and bulk RNA data

with informative data on clinical phenotypes. After clustering and

dimensionality reduction, we annotated various cell subtypes through

specifically expressed marker genes. Moreover, based on TAM-related

marker genes, we defined three molecular subtypes and constructed a

risk model to predict prognosis, immune landscape and biological

activities in HCC. The predictive capability of the gene signature was

further evaluated through multidimensional and multidataset validation.
2 Materials and methods

2.1 Data collection and preprocessing

We downloaded the scRNA-seq dataset GSE149614, which

contains informative data for 21 HCC samples, from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/

gds/) (21). Next, we filtered the scRNA-seq data according to the

standard that each gene is expressed in more than 3 cells and that the

expressed genes number less than 6000 andmore than 100 in each cell.

The PercentageFeatureSet function was utilized to calculate the ratio
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between rRNA and mitochondria to assure that the content of

mitochondria was less than 10%. Additionally, the UMI number of

each cell was at least 100 and less than 50,000. Finally, 64,424 cells were

obtained from the original data.

For validation, gene expression spectra with informative data on

clinical phenotypes were retrieved from the liver hepatocellular

carcinoma (LIHC) cohort in The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/) and HCCDB (http://lifeome.net/

database/hccdb) databases (22, 23). Next, samples without follow-

up information on prognosis were removed, and we used the mean

value of expression data with multiple gene symbols. After

screening, 365 samples from the LIHC cohort from TCGA and

389 samples from the LIHC cohort from HCCDB were finally

incorporated in our study.
2.2 Clustering dimensionality reduction of
single-cell sequencing data

First, we performed log-normalization to standardize the

scRNA-seq data and found hypervariable genes by employing

FindVariableFeatures functions, which identify variable

characteristics through variance stabilization transformation.

Then, we removed batches of samples using the CCA method

through the FindIntegrationAnchors function and integrated 21

samples using the IntegrateData method. After scaling all genes

through the ScaleData function, PCA dimensionality reduction was

performed to find anchor points. We obtained 16 cell

subpopulations clustered by the FindNeighbors and FindClusters

functions (Resolution=0.2) (24). UMAP dimensionality reduction

was performed on all cells with the RunUMAP function, which

maps available high-dimensional data samples into low-

dimensional space and achieves the dimensionality reduction

effect. Finally, all cell subsets were annotated using canonical

marker genes which were screened by using the FindAllMarkers

function (logfc=0.5, Minpct=0.5) (25).
2.3 ConsensusClusterPlus and cumulative
distribution function (CDF)

Marker genes of TAMs were uniformly clustered through the

ConsensusClusterPlus R package. In addition, the pam algorithm

and “pearson” were used to assess the measured distance. Next,

we carried out 500 bootstraps, of which each single process

included 80% of the patients in the training set. The 365 HCC

samples in the LIHC cohort from TCGA were clustered by the

ConsensusClusterPlus R package, and the optimal clustering

classification was determined by calculating the consistency

matrix and consistency CDF. By monitoring the distribution of

the CDF delta area curve, we searched for relatively stable

clustering results.
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2.4 Cell-type identification by
estimating relative subsets of
RNA transcripts (CIBERSORT)

CIBERSORT is an effective assessment method for characterizing

the cell subpopulation composition in multicomponent tissues based

on the input matrix of transcript profiles, which is useful for

exploring novel cell biomarkers (26). For this study, we calculated

the scores of 22 immune cells using the CIBERSORT algorithm. The

Kruskal test was performed to determine correlations between

immune infiltration and molecular subtype and risk score.
2.5 Evaluation of tumor immune
dysfunction and exclusion (TIDE)

The publicly available tool TIDE (http://tide.dfci.harvard.edu/

algorithm) was employed to predict potential clinical treatment

effects in different HCC molecular subtypes and risk groups. By

using the TIDE framework, one can predict accurately (27, 28)

immunotherapeutic response or resistance in patients with cancer.

High predictive TIDE scores indicate a higher incidence of tumor

immune escape, suggesting that patients will benefit less from

immunotherapy than those with low TIDE scores.
2.6 Identification and validation of the
risk model

To further screen TAM-related marker genes associated with

prognosis, we conducted univariate Cox regression analysis with the

Survival R package in the TCGA-LIHC dataset. LASSO (Least

absolute shrinkage and selection operator) regression analysis is a

biased computation that retains the advantages of subset

contraction. Unique variable selection characteristics can better

solve the complex multicollinearity problem during data

processing (29), which is commonly used to screen survival-

related genes and construct prognostic models. To further

compress the number of key genes in the risk model, we

performed LASSO analysis using the Glmnet R package and

determined the lambda value when the model was optimal.

Finally, we calculated the coefficients of these target genes

through multivariate Cox regression analysis.

Next, to validate the stability of the risk model, a calculation was

performed separately for each patient in the training datasets

(TCGA-LIHC, HCCDB-LIHC and GSE76427) using the

following formula: RiskScore = S coefficientmRNAn * expression

level mRNAn. In addition, we carried out receiver operating

characteristic (ROC) analysis with the timeROC R package and

evaluated the prognostic classification performance of the risk

model for 1-, 3- and 5-year survival prediction.
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2.7 Functional enrichment analysis

We screened differentially expressed genes (DEGs) among

diverse subtypes through the Limma R package. Then, Kyoto

Encyclopedia of Genes and Genomes (KEGG) functional pathway

enrichment analysis was conducted by the WebGestaltR R package

(screened by FDR<0.001) (30). To further explore signaling

pathways potentially regulated by the risk model, we downloaded

HALLMARK- and KEGG-related gene datasets from the Gene Set

Enrichment Analysis (GSEA) official website and performed GSEA

for high- and low-risk groups through the ClusterProfiler and fgsea

R package (31).
2.8 Cell culture and reverse-transcription
quantitative PCR (RT−qPCR)

The human hepatoma cell lines Hep-G2 and Huh-7 and normal

hepatic cell line LO-2 (obtained from the Chinese Academy of

Sciences) were cultured for measuring relative expression levels of

genes. Modified medium (Gibco, USA) was supplemented with 1%

antibiotics (Sigma, USA) and 10% fetal bovine serum (Wisent,

Canada). All cells were cultured in a humidified incubator (5%

CO2; 37°C). We used TRIzol reagent (QIAGEN, Germany) to

extract total RNA from cell lines and an ABI7500 fast PCR

instrument to perform RT−qPCR. GAPDH was used for

normalization. The primer sequence information is shown in

Additional file 1: Supplementary Table 1.
2.9 Statistical analysis

The R program (v 4.0.3) was used for statistical analysis and

informative visualization in our study. Single-cell analysis package

Seurat-V3 was performed in the study. Unsupervised Cox regression

analysis was performed to determine the predictive performance of

the risk model. Classified and continuous variables between

subgroups were compared by Wilcoxon and t tests, respectively. A

P value < 0.05 was considered statistically significant.
3 Results

3.1 Dimensionality reduction for clustering
cell subsets and functional enrichment

The statistics of the cell data before and after filtering are shown in

the histogram in Supplementary Figure 1A. After PCA dimensionality

reduction, we drew the anchor plot of the first 50 PCs (Supplementary

Figure 1B) and then removed the batch of samples through CCA

methods (Supplementary Figures 1C, D). A total of 21 samples were

integrated together by using IntegrateData. We selected dim=30 for

UMAP dimensionality reduction, and a total of 16 cell subpopulations

were obtained. Then, we used the classic marker genes to annotate

these cell subgroups, as shown in Supplementary Figure 2. Subgroups

2, 3, 5 and 12 were identified as T cells by specifically expressed genes,
Frontiers in Oncology 04
including CD2, CD3D, CD3E and CD3G. Subgroup 11 was identified

as B cells by specifically expressed genes, including CD79A and

MS4A1. Subgroup 9 included plasma cells specifically expressing

CD79A and JSRP1. Subgroup 10 included FB cells specifically

expressing the genes ACTA2, PDGFRB and NOTCH3. Subgroup 6

included endoepithelial cells specifically expressing the PECAM1 gene.

Subgroup 0 included hepatoma cells specifically expressing GPC3,

CD24 and MDK. Subgroups 1, 4, 13 and 14 were macrophages

specifically expressing CD163 and CD68. Mast cells, proliferating

cells and NK cells were also identified by marker genes.

The UMAP map of the cell subpopulation distribution after

clustering is shown in Figure 1A, and the annotated cell subgroups

are shown in the form of UMAP (Figure 1B). We obtained a total of

10 cell subgroups, including B cells, endothelial cells, fibroblasts,

HCC, macrophages, mast cells, NK cells, plasma cells, proliferating

cells and T cells. Next, we screened marker genes of the 10 cell

subpopulations by using the FindAllMarkers function (logfc=0.5,

Minpct=0.5). The expression signatures of the first five prominent

marker genes in each subpopulation are shown in Figure 1C. KEGG

functional enrichment analysis results based on the marker genes of

each cell population are provided in Figure 1D.
3.2 Construction of molecular subtypes
based on TAM-related marker genes

Consistency clustering was carried out for the 165 marker genes of

macrophages, and the best classification was determined by using the

ConsensusClusterPlus R package. Then, we conducted consistency

clustering on 365 HCC samples in the LIHC cohort from TCGA. The

delta area curve of consensus clustering showed that the clustering

results were relatively stable when the number selected was 3

(Figures 2A, B). Finally, we chose k=3 to define three molecular

subtypes (Figure 2C). We further analyzed the prognostic signatures

of these three subtypes and found significantly different prognostic

survival of patients among molecular subtypes (Figure 2D). The

prognosis of patients with HCC in Cluster C was the worst, followed

by Cluster B; in contrast, the patients in Cluster A had a relatively good

prognosis. For further verification, we used the samemethod to analyze

the independent dataset GSE76427, with similar observations of

prognostic outcomes in these three subtypes (Figure 2E).
3.3 Different clinical characteristics among
molecular subtypes

Next, we explored the distribution characteristics of multiple

clinical phenotypes in three molecular subtypes (chi-square test)

and found significant differences in clinical features, including the

tumor stage, grade and survival status, among the three subtypes

(Figure 3A). For example, patients in Cluster C had higher tumor

grade and lower survival rates. Moreover, we visualized the

distribution relationship between these clinical characteristics and

molecular subtypes using a Sangi diagram (Figure 3B), which

suggested that molecular subtype can provide novel perspectives

to predict progression and outcomes of HCC.
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3.4 Functional enrichment analysis of
molecular subtypes

DEGs for each cluster (Cluster A vs. Cluster B+Cluster C, Cluster B

vs. Cluster A+Cluster C, Cluster C vs. Cluster A+Cluster B) were

identified and screened according to the criteria of |log2 (Fold Change)

|>log2 (1.5) and FDR<0.05. Then, we performed KEGG enrichment

analysis through the WebGestalt R package (FDR<0.001). We found

that a large proportion of upregulated genes in the three subgroups

were enriched in metabolic signaling pathways, such as cholesterol

metabolism, tryptophan metabolism and type 1 diabetes mellitus, but

that downregulated genes seemed to be more related to immune-

related biological activities, such as the T-cell receptor signaling

pathway and Th17 cell differentiation (Supplementary Figures 3A-C).

Notably, the cell cycle, as a significant pathway for both Cluster A and

Cluster C, was enriched by downregulated genes in Cluster A, though it

was enriched by significantly upregulated genes in Cluster C.

Furthermore, we obtained characteristic genes of 10 typical

tumor-related signaling pathways from a previous study (32) and

computed enrichment scores for each patient based on these 10

pathways using the ssGSEA method. Based on the Kruskal test, we

detected critical differences in 8 of the 10 oncogenic signaling
Frontiers in Oncology 05
pathways among the three subtypes (Figure 4), indicating a close

relationship between molecular subtype and tumor-driving factors.
3.5 Comprehensive immune signatures in
the three molecular subtypes

To characterize immune signatures in HCC, we calculated the

immune infiltration scores of each patient in the LIHC cohort from

TCGA. The results showed that patients in Cluster A, with the best

prognosis, had the highest immune infiltration levels. Patients in

Cluster C had a higher immune score than those in Cluster B

(Figure 5A), whereas patients in Cluster B had a better prognosis

than those in Cluster C. Due to the phenomenon of immune escape in

the subtype C, the reason for the worse prognosis of C may not be the

lower immune infiltration. Moreover, infiltration of 22 kinds of

primary immune cells was evaluated by the CIBERSORT algorithm,

showing that the immune infiltration scores of the majority of immune

cells among the molecular subtypes differed significantly (Figure 5B).

For verification, we acquired characteristic genes of 28 immune cells

and 13 immune-associated gene sets from previous research (33, 34)

and calculated immune scores by ssGSEA. Similarly, significant
B

C D

A

FIGURE 1

Cell subset distribution with functional annotation of marker genes. (A) UMAP map of the cell distribution of 16 cell subpopulations. (B) The cell
subgroups identified by specially expressed marker genes. (C) Bubble diagram showing top5 marker genes in each cell subgroup (logfc=0.5,
Minpct=0.5). (D) KEGG function enrichment analysis based on marker genes of each cell subgroup.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1176572
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Su et al. 10.3389/fonc.2023.1176572
differences in immune cell infiltration status and immune-related gene

sets were identified among the three subtypes (Figures 5C, D).

Furthermore, we implemented TIDE software to evaluate potential

treatment response to immunotherapy. The results showed that Cluster

C had a higher prediction score than Cluster B or Cluster A (P <

0.0001) (Figure 5E); thus, immune escape was more prone to occur in

Cluster C, and it was less possible for patients to benefit

from immunotherapy.
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3.6 Establishment of a risk model based on
TAM-related key marker genes

Univariate Cox analysis of the 165 marker genes of TAMs was

performed using the survival R package in TCGA-LIHC cohort, and

58 genes associated with prognosis were identified (P<0.05). We

used LASSO regression analysis to compress these 58 key genes. The

changing trajectory of each argument is displayed in Figure 6A,
B C

D E

A

FIGURE 2

Identification of distinct molecular subtypes based on TAMs-related marker genes. (A) CDF curves of 365 samples in the LIHC cohort from TCGA
database. (B) Delta area curve shows clustering results were relatively stable when Cluster number is selected as 3. The horizontal axis refers to the
category number and the vertical axis refers to the relative change in the area under the CDF curve. (C) The sample clustering heatmap as consensus
number=3. (D, E) Kaplan-Meier survival analysis of three subtypes in the LIHC cohort from TCGA. the independent LIHC dataset GSE76427.
B

A

FIGURE 3

Distribution of multiple clinical phenotypes in the TCGA-LIHC cohort among three molecular subtypes. (A) There were significant differences of
clinical features among patients in three Clusters. (B) Sangi diagram of distribution relationship between three molecular subtypes and clinical
features including tumor stage, grade and survival status of patients.
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from which we found that as the lambda value increased, the

number of argument coefficients approaching 0 gradually

increased. The confidence intervals for each lambda value are

shown in Figure 6B, and we found that the risk model was

optimized as lambda=0.0343. Finally, 9 genes were identified as

target genes: TPP1, FTL, CXCL8, CD68, ATP6V1F, CSTB, YBX1,

LGALS3, and APLP2. We calculated the coefficients of these 9 genes

through multivariate Cox regression analysis and determined the

final calculation formula as follows: RiskScore = 0.108*TPP1 +

0.133*FTL + 0.059*CXCL8 + 0.072*CD68 + 0.108*ATP6V1F +

0.072*CSTB + 0.488*YBX1 + 0.055*LGALS3 + 0.166*APLP2.
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3.7 Predictive efficiency evaluation of the
risk model in training datasets

Then, we calculated the risk score of each patient in the LIHC

cohort from TCGA. As shown in Figure 6C, patients with high

RiskScore had an obviously lower survival rate than those with low

RiskScore. Z score analysis was also conducted, and samples with

scores greater than zero were classified into the high-risk group; the

other samples were classified into the low-risk group. A heatmap

showed that the Z score of the expression of 9 genes correlated

positively with poor prognosis. Moreover, we measured relative
FIGURE 4

Functional pathway enrichment analysis based on differentially expressed genes in each molecular subtype and 8 of 10 typical tumor-related
signaling pathways show significant differences among three subtypes. **p < 0.01; ***p < 0.001.
B

C

D E

A

FIGURE 5

Characteristics of immune cell infiltrating landscape and immunotherapy response in three molecular subtypes. (A) Comparison of Stromal score,
Immune score and ESTIMATE scores among three subtypes. (B) Immune infiltrating characteristics of 22 immune cells among three subtypes. (C)
and (D) Comparison of immune scores based on the characteristic genes of 28 immune cells and 13 immune-associated gene sets among three
subtypes. (E) Significant differences of TIDE scores among three subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ns p > 0.05.
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transcription levels of 9 genes in hepatoma cell lines (Hep-G2 and

Huh-7) and normal hepatic cell line by RT−qPCR. The results

showed that the YBX1, TPP1, CD68, APLP2, FTL and CXCL8 genes

were significantly upregulated in the Hep-G2 cell line compared

with the LO-2 cell line (P < 0.05) (Figure 6D). Additionally, the

relative transcription levels of CSTB, CD68, FTL, LGALS3, TPP1

and APLP2 genes were found to be upregulated in the Huh-7 cell

line compared with the LO-2 cell line (Supplementary Figure 4).

Next, ROC analysis was performed to evaluate the prognostic

classification efficacy of the risk model for 1-, 3- and 5-year survival.

As shown in Figure 6E, the risk model had high areas under the

positive fraction curve, indicating excellent predictive performance.

Moreover, we plotted a Kaplan−Meier (KM) survival curve, which

showed a significant difference in prognosis between the high- and

low-risk groups (Figure 6F). In validation of the reliability of the

risk model, we obtained similar results after applying the 9-gene risk

model for patients in the LIHC cohort from HCCDB and

independent dataset GSE76427 (Figures 7A–D), suggesting that

the risk model is a significant factor for predicting prognosis.
3.8 Indicative value of the risk model for
clinical phenotype in HCC

To explore the association between RiskScore and

clinicopathological phenotypes of patients with HCC, we analyzed

differences in RiskScore among diverse clinical phenotypes in the
Frontiers in Oncology 08
LIHC cohort from TCGA. The results showed that an increased

RiskScore had a critically positive correlation with advanced tumor

stage, increased patient mortality and high tumor grade

(Figure 8A). Moreover, Cluster C had the highest RiskScore

among the three molecular subtypes. Figure 8B depicts the

distribution map of different phenotypic characteristics with an

increased RiskScore.
3.9 Functional enrichment analysis
and immune signature of the risk
model in HCC

Gene sets related to HALLMARK and KEGG were downloaded

from the publicly available GSEA website. First, we conducted

GSEA gene enrichment analysis on the HALLMARK dataset

through the ClusterProfiler R package. In the high-risk group, 37

functional pathways were significantly enriched; conversely, none

were enriched in the low-risk group. We selected the first five most

significant pathways for visualization (Figure 9A). More

importantly, enriched pathways such as apoptosis and the

epithelial-mesenchymal transition (EMT) play essential roles in

the oncogenesis and progression of tumors. The first five most

significant pathways of the KEGG enrichment analysis for both

groups are displayed in Figure 9B.

The ESTIMATE algorithm and Spearman analysis were

conducted to evaluate the correlation between tumor immune
B

C

D

E

F

A

FIGURE 6

Establishment of the risk model based on key TAM-related genes. (A) LASSO coefficients profile plots of each independent variable changing with
the lamba value. (B) Confidence interval under each lambda value. The vertical axis refers to the partial likelihood deviance and the risk model was
optimized as lambda=0.0343. (C) Heatmap of Z score expression distribution of 9 genes in the risk model (including TPP1, FTL, CXCL8, CD68,
ATP6V1F, CSTB, YBX1, LGALS3, and APLP2). (D) Relative transcription levels of YBX1, TPP1, CD68, APLP2, FTL and CXCL8 genes were significantly
upregulated in the Hep-G2 cell line compared with the LO-2 cell line (P < 0.05). (E) ROC analysis curves of RiskScore in TCGA-LIHC cohort indicate
the prognostic classification efficacy of the risk model for 1-, 3- and 5-year survival. (F) Kaplan-Meier survival curves of high or low risk groups of
HCC patients in TCGA-LIHC cohort.
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status and the risk model. The results showed a positive correlation

between RiskScore and the immune ESTIMATE score (R

value=0.237. P value < 0.001) (Figure 9C). Moreover, the immune

scores of 22 primary immune cells were computed by the

CIBERSORT algorithm, and the infiltrating levels of most

immune cells differed between the high- and low-risk groups

(Figure 9D). Notably, the immune scores of B cells, CD4+ T cells

and NK cells in the high-risk group were significantly lower than

those in the low-risk group, but they were higher for Tregs. The

distribution of 28 primary immune cell enrichment scores in groups

of different taxonomic characteristics is shown in a heatmap in

Figure 9E. Importantly, there were more samples of the Cluster B

subtype distributed in the low-risk group, with lower TIDE scores,

and there were more samples of the Cluster C subtype distributed in

the high-risk group, with higher TIDE scores. In a previous analysis,

we elucidated that tumor immune escape is more prone to occur in

Cluster C. The above results suggested the favorable value of the risk

model for tumor immune assessment.
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3.10 RiskScore combined with clinical
phenotype improves the predictive efficacy
of the prognostic model in HCC

RiskScore was proven to be a significantly independent

prognostic factor through Cox regression analysis with multiple

clinical features (Figures 10A, B). To quantify prognostic evaluation

and survival prediction of patients with HCC, we combined it with

other clinicopathological traits to construct a nomogram

(Figure 10C). From the constructed model, RiskScore was the

greatest predictor for survival in patients. Furthermore, a

calibration curve was generated to assess the predictive

performance of the model. As illustrated in Figure 10D, the

predicted calibration curve approached the standard curve at

three calibrated points (1, 3 and 5 years), indicating that the

nomograph had excellent predictive ability. Furthermore, a

decision curve was utilized to validate the stability of the model.

The results showed that the predictive benefits of the risk score and
B C DA

FIGURE 7

Validation of the reliability of risk model in training datasets. (A, B) ROC analysis curves of the risk model in the LIHC cohort from HCCDB and the
independent GSE76427 dataset. (C, D) Kaplan-Meier survival curves of the risk model in the LIHC cohort from HCCDB and the independent
GSE76427 dataset.
B

A

FIGURE 8

Relationship between RiskScore and clinical phenotypes of HCC patients. (A) Differences of RiskScore between multiple clinicopathologic groups in
the TCGA-LIHC cohort (gender, stage, survival, age, grade, cluster and grade). (B) The distribution map of phenotypic characteristics of the samples
with an increase of RiskScore. *p < 0.05; **p < 0.01; ***p < 0.001; ns p > 0.05.
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nomogram were critically superior to those of the extreme curve

(Figure 10E), displaying the strongest survival prediction ability.
4 Discussion

HCC is one of the most refractory malignancies worldwide,

with complex and multiple risk factors involved in its pathogenesis

(35, 36). Currently, the main treatment for patients with HCC is

surgical hepatectomy and liver transplantation. Unfortunately,

most patients are at an advanced stage when diagnosed, and only

5% to 15% of patients are eligible for surgical resection (37). Owing
Frontiers in Oncology 10
to drug resistance and chemotherapy toxicity, a minority of patients

can benefit from chemotherapy (37). The lack of effective and safe

treatment for patients at advanced stages leads to rapid disease

progression and poor prognostic outcomes (11). It has been

widely evidenced that the immune system exerts essential

functions in antitumor processes, and improved insights into

tumor immunobiology have brought about novel treatment

options for patients. TIME-regulated immunotherapy has a

variety of clinical advantages, including triggering a systemic,

effective and lasting antitumor immune response with a low

recurrence rate and few side effects (38, 39). As a highly

immunogenic malignancy, HCC is characterized by abundant
B

C D

E

A

FIGURE 9

Association between functional signaling pathways and the immune signature and RiskScore in HCC. (A) The five most significantly enriched
pathways of GSEA enrichment analysis in high or low risk group based on HALLMARK gene sets. (B) The five most significantly enriched pathways of
KEGG enrichment analysis in high or low risk group. (C) Correlation analysis of RiskScore and the ESTIMATE immune score. (D) Immune infiltrating
scores of 22 immune cells in high- and low-risk groups. (E) Heatmap for the 28 primary immune cell enrichment scores in groups of different
taxonomic characteristics. *p < 0.05; **p < 0.01; ***p < 0.001.
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immune cell infiltration into the tumor microenvironment. Various

immunotherapeutic strategies, including adoptive cell therapy,

tumor vaccines and immune checkpoint inhibitors, have achieved

certain success in HCC (9, 40, 41).

As important components in the TIME, macrophages have

been proven to directly or indirectly regulate key characteristics of

malignancies, including angiogenesis, metastasis, formation of the

tumor microenvironment and drug resistance. A previous study

demonstrated that IL-6 generated by TAMs induces upregulation of

CD47 on hepatoma cells via the STAT3 signaling pathway,

subsequently influencing TAM-mediated phagocytosis, promoting

tumor progression in HCC, and leading to poor prognosis (42).

Zong et al. (43) found that M1 TAMs exerts oncogenic effects by

enhancing expression of programmed cell death ligand (PD-L) 1, a

pivotal immune checkpoint molecule mediating HCC immune

escape. In our study, we performed cluster dimensionality

reduction to identify different cell subpopulations through

specifically expressed marker genes; we then systematically

explored the relationship between TAM-related marker genes and

clinical phenotype, survival prognosis and TIME in patients with

HCC. We determined three molecular subtypes by calculating the

consistency matrix and consistency CDF. We found that the

prognosis of patients in Cluster A was much better than that of

patients in Cluster B or Cluster C in both the LIHC cohort from

TCGA and independent dataset GSE76427, with a higher immune

score, which was consistent with previous research (33, 34). The
Frontiers in Oncology 11
immunosuppressive microenvironment and tumor immune escape

might be enhanced in Cluster C. In addition, we obtained

characteristic genes of 10 tumor-related signaling pathways from

a previous study (32) and found critical differences in 8 of the 10

oncogenic signaling pathways among the three subtypes, indicating

that molecular subtype has good predictive efficacy with regard to

molecular functions and biological activities.

Single-cell sequencing technology has been emerging as an

innovation in biomedical research and clinical practice, enabling

comprehensive characterization of cell subpopulation, status and

lineage in heterogeneous tissues (18, 44). Indeed, identification of

cell subpopulations modulating phenotype is essential for the study

of disease progression, tumor metastasis, therapeutic response and

survival probability evaluation (45, 46). Therefore, single-cell

sequencing can greatly promote the discovery of targeted therapy

and prognostic biomarkers. However, analyzing vast amounts of

scRNA-seq data is notably challenging work for investigators;

hence, it is necessary to implement systems biology approaches

through mathematical models (47, 48). In this work, we performed

unsupervised cluster analysis to identify distinct cell subtypes and,

more importantly, established a quantitative and stable risk model

based on the GEO-LIHC scRNA-seq dataset for predicting survival

probability. Surprisingly, the risk model combined with

clinicopathological features showed better prediction performance

for the 1-, 3- and 5-year survival of patients with HCC. Among the

target genes identified by LASSO Cox regression analysis, CSTB was
B

C

D

E

A

FIGURE 10

RiskScore combined with clinical phenotype improved the predictive efficacy of the prognostic model in HCC. (A) and (B) Univariate and multivariate
Cox regression analysis of the risk score and the clinical phenotype was determined by the P value and hazard ratio. (C) Nomogram model
established by combining with RiskScore and other clinicopathological features. (D) The predicted calibration curve approached the standard curve
at the 1-, 3- and 5-year calibration points. (E) Decision curve of the nomogram.
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specifically upregulated in HCC, and levels of CSTB and alpha-

fetoprotein (AFP) may serve as a highly sensitive diagnostic

biomarker for HCC (49) patients. Similarly, overexpressed YBX1

was found to be a master oncogenic contributor correlating highly

with tumor progression and prognostic outcomes (50, 51).

Moreover, Zhang et al. (52) demonstrated that LGALS3 secreted

by HCC cells facilitates the metastatic property of hepatoma cells

and reduces the bone metastasis-free survival of patients.

In addition to predicting the prognostic outcomes of patients, the

risk signature showed an association with the immune landscape and

immunotherapeutic response in HCC. We calculated scores of

immune infiltrating cells through CIBERSORT and ESTIMATE.

Notably, the immune scores of B cells, CD4+ T cells and NK cells

in the high-risk group were lower than those in the low-risk group,

though Tregs were present at higher levels in the high-risk group.

Significant advances have been made in understanding the essential

roles of NK cells in HCC. By killing cancer cells or enhancing the

adaptive T-cell immunological response, NK cells exert powerful

antitumor effects in early stages (53–55). Tregs have been widely

reported to be a tumor immunosuppressive factor, and depletion of

Tregs is an attractive strategy for HCC (56). This might explain why

the infiltrating level of Tregs was higher in high-risk score patients

with HCC. Intriguingly, we found more samples of the Cluster C

subtype in the high-risk group, indicating that patients with high

RiskScore might benefit less from immunotherapy than those with

low RiskScore. According to the prognostic results, the immune score

in Cluster C seems to be lower. However, due to the phenomenon of

immune escape in the Cluster C, the reason for the worse prognosis

of patients may not be the lower immune infiltration. This also

indirectly indicates that in high-risk group, immune escape may be

more prone to occur, which mainly related to Cluster C. The

differential distribution of multiple immune cells might provide

new perspectives on immunotherapy for HCC.

Collectively, this study aimed to cluster patients with HCC into

different TAM-related subtypes and establish a risk model to link

TAM-related marker genes with prognosis, immune characteristics

and biological activities. Through multidimensional and multidataset

validation, the novel signature we identified showed excellent prospects

for predicting the prognosis of patients with HCC. However, our study

has some limitations. First, the sample size was fairly small, and the

stability and accuracy of the risk model need to be verified in a larger

sample with multiple space-time distributions. Second, the data

analyzed were generated from tumor tissues of patients with HCC,

with low diagnostic efficacy for early HCC. To improve clinical

applicability, the predictive efficiency of the risk model for peripheral

circulating immune cells in HCC patients needs to be evaluated. In

future research, we will explore the functional roles and underlying

mechanisms of these 9 key genes in HCC through phenotypic assays

and molecular biology experiments (both in vivo and in vitro).
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5 Conclusions

In conclusion, we constructed a novel gene signature based on

TAM-related marker genes, which was validated to be stable and

highly efficient for predicting prognostic outcomes, immune

signature and biological activities in HCC. Our study suggests

effective strategies for immunotherapeutic therapy and

prognostic intervention.
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SUPPLEMENTARY FIGURE 1

Infiltration and cluster dimension reduction of scRNA-seq data. (A) Bar chart of cell
count statistics before and after filtration. (B) The anchor plots of the top 50 PCs for

PCA dimensionality reduction. (C) UMAP distribution map of all samples before
excluding batches. (D)UMAPdistributionmapof all samples after excluding batches.
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SUPPLEMENTARY FIGURE 2

Violin map of marker gene expression of 16 cell subgroups.

SUPPLEMENTARY FIGURE 3

Gene enrichment analysis based on differentially expressed genes. (A-C)
Bubble diagrams of KEGG enrichment analysis for upregulated and

downregulated genes in the three molecular subtypes.

SUPPLEMENTARY FIGURE 4

Relative transcription levels of CSTB, CD68, FTL, LGALS3, TPP1 and APLP2
genes were upregulated in the Huh-7 cell line compared with the LO-2

cell line.
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