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Introduction: Radiation therapy is a common treatment option for Head and

Neck Cancer (HNC), where the accurate segmentation of Head and Neck (HN)

Organs-AtRisks (OARs) is critical for effective treatment planning. Manual labeling

of HN OARs is time-consuming and subjective. Therefore, deep learning

segmentation methods have been widely used. However, it is still a

challenging task for HN OARs segmentation due to some small-sized OARs

such as optic chiasm and optic nerve.

Methods: To address this challenge, we propose a parallel network architecture

called PCG-Net, which incorporates both convolutional neural networks (CNN)

and a Gate-Axial-Transformer (GAT) to effectively capture local information and

global context. Additionally, we employ a cascade graph module (CGM) to

enhance feature fusion through message-passing functions and information

aggregation strategies. We conducted extensive experiments to evaluate the

effectiveness of PCG-Net and its robustness in three different downstream tasks.

Results: The results show that PCG-Net outperforms other methods, improves

the accuracy of HN OARs segmentation, which can potentially improve

treatment planning for HNC patients.

Discussion: In summary, the PCG-Net model effectively establishes the

dependency between local information and global context and employs CGM

to enhance feature fusion for accurate segment HN OARs. The results

demonstrate the superiority of PCGNet over other methods, making it a

promising approach for HNC treatment planning.

KEYWORDS

head and neck cancer, radiation therapy, medical image, deep learning,
automated segmentation
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1 Introduction

Head and neck cancer (HNC) is the seventh most common

cancer worldwide, resulting in an estimated 50,000 deaths in 2018

(1). Radiotherapy is the most commonly prescribed curative

treatment option. Evidence showed that it took about 2.7 to 3

hours to delineate a full set of necessary structures in one HNC

patient (2), including 0.5 to 1 hour’s organs-at-risk (OARs)

delineation. Nowadays, the delineation process is usually

performed manually on treatment planning system (TPS).

Manual delineation exists inter-variability, which is highly related

to knowledge, experience, and preference of the radiation

oncologists (3). The OARs auto-segmentation system can save the

contouring time from at least half hour to only several minutes.

However, the accuracy of commercial auto-segmentation system

still needs to be evaluated and improved (4).

Traditional techniques including atlas-based methods (5, 6) and

hybrid model-based methods (7, 8) have been used in clinical

practice to improve the efficacy and accuracy. The atlas-based

process implements segmentation by aligning a fixed set of

manually labeled examples with the new images. Hybrid model-

based approaches were done by statistical analysis of ground truth

contours and imposed prior shape constraints in the segmentation

process. These methods may be limited due to large anatomical

variations of human organs or local uncertainty of deformable

registration (9, 10).

Currently, deep learning represented by deep convolutional

neural networks (CNNs) has shown great success in computer

science and medical image analysis. There have been many studies

which applied CNNs to segment various organs and substructures

in radiotherapy for various disease sites and various types of image

data (11–16). Given the varying sizes of the OARs) within the head

and neck region, we opted to use this particular set of OARs for

evaluating the segmentation performance of our deep neural

network model. This choice enables a comprehensive assessment

of the model’s segmentation abilities across a range of anatomical

structures, contributing to a more robust and clinically relevant

evaluation. Ibragimov first performed the convolutional neural

networks to segment the OARs in head and neck (HN) CT

images, and the DSC varied from 37.4% for optic chiasm to

89.5% for mandible (17). Sun et al. developed a first locating then

segmentation approach for accurate CT image segmentation of eyes

and surrounding organs, which is accurate, efficient, and suitable for

clinical use (18). Zhu et al. proposed an end-to-end atlas-free and

fully automated deep learning model for anatomy segmentation

from HN CT images, which introduced a new encoding scheme, 3D

squeeze-and-excitation residual blocks, and combined loss. The

experiments showed that compared to the prior state-of-the-art

results achieved during the MICCAI 2015 competition, their model

exhibited an average increase of 3.3% in the Dice similarity

coefficient (19).

However, firstly, traditional deep learning segmentation

requires large amounts of annotated datasets, while obtaining the

annotated datasets in medical image analysis requires manual layer-
Frontiers in Oncology 02
by-layer annotation by experienced clinicians (20). Moreover,

different institutions have different imaging modalities/protocols

and different annotation approaches. Therefore, it is extremely hard

to achieve cross-institution tasks by only using supervised training

strategies. Secondly, OARs contain regions of variable sizes,

including some OARs with very small sizes, such as optic chiasm

and optic nerves. Accurately segmenting these small OARs

structures is always a challenge.

To address above challenge, we attempted to utilize contrastive

pre-learning strategies to alleviate medical image tasks with small

annotated datasets and serious deviations in the distribution of

cross-institutional data, to strengthen model feature extraction

capability. Then we propose a parallel multiscale progressive

refinement graph neural network (PCG-Net) for segment HN

OARs, which contains A parallel encoder (PE), a cascade graph

module (CGM), and a progressive refinement module (PRM). In

addition, we proposed a new loss function based on the

combination of dice scores and focal losses, for better segmenting

small OARs structures.

To evaluate the performance of PCG-Net, we conducted

experiments using two publicly available datasets and two local

datasets for HN OARs segmentation. We performed a systematic

analysis of various components of PCG-Net and compared them

with other segmentation methods to demonstrate the effectiveness

of PCG-Net’s components. Furthermore, we utilized three distinct

downstream tasks to evaluate the robustness of PCG-Net. The

evaluation of PCG-Net indicating its potential for HNC treatment

and various clinical applications.

2 Related works

2.1 Siamese-contrastive learning

The overall architecture of Siamese contrastive learning is

shown in Figure 1. Two randomly augmented feature maps x1
and x2 from the input image x are fed to the encoder f , which

includes a backbone network (CNN or Transformer) and a multi-

layer perceptronMLP for performing prediction functions. The two

output vectors are denoted as zi ≜ Pr(f (xi)) and pi ≜ f (xi), where i

represents the input number and Pr representsMLP for performing

prediction. The difference between pi and zi is minimized with

negative cosine similarity as in equation (1), with optimizing

encoder f by Siamese-loss function as in equation (2), where ||·||2
is ℓ2-norm, S is the stop-gradient operation. S specifically presents

as S(p1 ;   stopgrad(z2)), and S(p2, stopgrad(z1)), which means the

gradient of zi is replaced by constant. Therefore, equation (2) can be

updated to equation (3), expressed as the encoded network on x1
receiving the back-propagation gradient from p1 in the first term,

while receiving no back-propagation gradient from z1 in the second

term (and vice versa for x2).

S(p1, z2) = − p1
∥ p1 ∥2

� z2
∥ z2 ∥2

S(p2, z1) = − p2
∥ p2 ∥2

� z1
∥ z1 ∥2

(1)
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L =
1
2
S(p1, z2) +

1
2
S(p2, z1) (2)

L =
1
2
S(p1,stopgrad (z2)) +

1
2
S(p2, stopgrad (z1)) (3)
3 Method

The parallel multiscale progressive refinement graph neural

network PCG-Net based on Siamese-contrastive learning is

shown in Figure 2. PCG-Net uses parallel encoder (PE) and

cascade graph module (CGM) to extract and fusion local features

and global contextual information, respectively (Further details are

available in the Supplementary Materials). In addition, the

prediction results are progressively refined from lower resolution

to higher resolution by the progressive refinement module (PRM)

to optimize segmentation details.
3.1 Parallel encoder

3.1.1 Gated-axial transformer encoder
In this work, the traditional self-attention layers were replaced

by two axial modules, which performed self-attention operations on

the height-axis and width-axis, respectively, as shown in Figure 3.

Specifically, the 2D spatial operation of the traditional self-attention
Frontiers in Oncology 03
layer was transformed into a 1D axial operation, and self-attention

encoding was performed for the height and width axes sequentially.

A multiple-headed attention mechanism was employed for both

axis modules to optimize encoding performance. In addition,

we define three positional bias matrices rqij, r
k
ij, r

v
ij ∈ RW�W to

encode positional parameters qij, kij, vij to accurately capture

more accurate positional information, respectively, where qij, kij,

vij, represent the query, key and value, respectively. These bias

matrices can participate in the gradient descent of neural networks

to update the weights parameters. Finally, we introduced the gate

mechanism to adaptively control the effect of the position bias

on the output yij during the self-attention encoding process, the

width-axis self-attention operations is shown in equation (4), where

GQ,GK ,GV1,GV2 ∈ R are learnable parameters which forms the

gate bias.

yij(xij) = o
W

w=1
softmax

�
qTiwkiw + GQq

T
iwr

q
iw + GKk

T
iwr

k
iwÞ

�
GV1viw

+ GV2r
v
iwÞ (4)
3.1.2 CNN encoder
Although the transformer architecture enables sufficient

extraction of global information, due to the self-attention

mechanism, the transformer is prone to ignore local details.

Without excellent feature extraction capability from the local to

global, the organ contours cannot be accurately segmented. To
x

x1 x2

Encoder f Encoder f

MLP

Weight 
Sharing

similarity

FIGURE 1

Two mutually independent augmentation operators t, t* are randomly sampled from the data augmentations cluster T, and applied to the input x to
obtain two correlated views x1, x2. Two identical encoder f (CNN/Transformer + MLP) are trained using x1 and x2, then the predicted MLP is applied
on one side while the other side stops the gradient update, using the negative cosine similarity to minimize the feature difference of the two output
results. After completing the training, we remove all MLP layers and use CNN or Transformer encoder for downstream tasks.
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extract both local features and global context information, the CNN

encoder was utilized to compensate for the deficiencies of the

transformer encoder. The U-shaped architecture has already been

widely used in medical artificial intelligence, which usually builds

U-shaped cascades based on sequential stacking of VGG

architectures. But it has been demonstrated that single-level U-

shaped architectures are susceptible to losing semantic details in

deeper networks (21). Therefore, an UnNet encoder was introduced

to alleviate the gradient loss problem, where n could be set as any

positive integer to achieve multi-level or single-level nesting. Here,

we set n as 2 to build the U2Net encoder. Its exterior is semi-U-

shaped with top-down compression of spatial information into

channel information. Each module internally is independently U-

shaped nested, which can effectively extract intra-stage multi-scale

features and aggregate inter-stage multi-level features.
Frontiers in Oncology 04
3.2 Cascade graph module

We use CGM for fusing high-level semantic information extracted

based on the transformer encoder and CNN encoder, as shown in

Figure 4. We first define two types of nodes: global feature nodes V1 =

ft1, t2,…, tng and local feature nodes V2 = fc1, c2,…, cng, where n

represents the nodes number, ti and ci represents feature node. their

initial feature scales are both t(0)i , c(0)i ∈ Rc�h�w, where c, h,w are the

number of node channels, height, and width, respectively. For

capturing feature information at different receptive fields, 2n nodes

are obtained by using n different dilated convolutions with different

dilated rates applied to two different types of feature maps. The integral

node encoding can be represented as equation (5). where dm denotes

the dilated convolution, m denotes the dilated rate, and ch�w ensures

the spatial dimension of the feature map after interpolation is h� w.
C C

Multi-Head Attention
Height-Axis

Multi-Head Attention
Width-Axis

CC
× ×

× × × × × ×
× ×

C

C

Conv1 1 + Batch Normal

Feature Concat

Feature Add

× × ** × × *

FIGURE 3

The axial attention module is composed by cascading the attention layers in height and width axis. Taking the red point as an example, it performs a
multi-headed self-attention calculation with other points along specific columns and specific rows in sequence. Ultimately, the red point features
contain all the information about the row and column in which it is located. where H, W, C, and N represent the height, width, channel, and
attention head of the feature map, respectively, and C* represents the original input channel.
GAT
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GAT

GAT

U2
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U2
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G

G
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G

GAT
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Progressive Refinement ModuleMain Structure
Gate Axial Transformer Encoder

U2Net Encoder

Cascade Graph Fusion Module

Progressive Refinement Decoder

Generate Module

Patch Merge

Bilinear Interpola�on

Message Delivery of Transformer

Message Delivery of CNN

Message Delivery

FIGURE 2

PCG-Net extracts local features and global contextual information through a parallel encoder, progressive refinement architecture for resolution-by-
resolution spatial information recovery to achieve efficient feature decoding, cascade graph modules embedded in skip-connections adaptively
refine high-level representations between different semantic information to achieve feature fusion and transfer. (The meanings of different modules
represented in the figure are given in the legend).
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t(0)i = ch�w(Conv
m
d (X1; dm))

c(0)i = ch�w(Conv
m
d (X2; dm))

(5)

Then we defined two types of edge e1 and e2 to update node

state. For e1, the relationship function is represented as equation (6),

where ϑ is defined as the aggregation function between the same

type of nodes, which can be represented by ϑ(ti, tj) = ati + btj,
where i and j denote the node numbers. The connection relation

ti ↔ ci was defined as e2, which can be expressed by the function fx ,

with the overall process shown in equation (7), where a , b ∈ R is

the learnable gating unit.

e1 = Convfo
n

i=1
o
n

j=1
ϑ½(ti, tj)or(ci, cj)�g ∈ Rc�h�w (6)

e2 = fx(V1,V2) = Conv½o
n

i=1
o
n

j=1
(ati + bcj)� ∈ Rc�h�w (7)

Finally, we defined two types message passing functionM (same

feature node aggregation M1 and different feature node aggregation

M2) for aggregating information from neighboring nodes to update

the central node, as shown in equation (8), where d is the sigmoid

function. Gated Recurrent Unit (GRU) was used to update the node

state as shown in equation (9). After the t message passing steps,

every node in nodes set contains the feature information from

neighboring nodes to achieve the effect of feature fusion. Finally, all

the updated nodes were merged to generate dense mapping of the

feature map, as shown in equation (10), where Fmerge is the 3 × 3

convolutional layer and XQ is the output after GNN feature fusion.
Frontiers in Oncology 05
M(t−1)
1 =o

2

i=1
Vi½d (e(t−1)1 )�

M(t−1)
2 = V ½d (e(t−1)2 )�

(8)

V (t) = FGRU (V
(t−1),M(t−1)) (9)

XQ = ConvCk (Fmerge(V1,V2)) ∈ RCk�h�w (10)
3.3 Progressive refinement module

The decoder contains a series of up-sampling modules to

gradually recover spatial information. For each decoding block,

the feature map scale resolution increases by a factor of 2 and skip-

connects with the output of CGM, which not only introduces multi-

dimensional spatial information but also alleviates the common

gradient problem in deep learning. Usually, low resolution

compared to high resolution makes reconstruction easier and

focuses more on global features (22). Therefore, PRM was

introduced to gradually add detailed information during decoding

to generate more accurate predictions. Specifically, each

prediction branch of the decoding module contains a generator G

to generate target region contours jG
i of scale ni � ni. Each

generator consists of two successive series gi (convolution, batch
normalization, ReLu activation function) and a feature dimension-

adjusted convolution si. The successive series gi at low resolution,

after bilinear interpolation up-sampling with the scale factor of 2,
GAT

U2

X1
X2

t1

t3

t2

c1

c2

c3

…
…

t1

t3

t2

c1

c2

c3

t1

t3

t2

c1

c2

c3

GR
U

M
essage

Passing

K-th
iteration

t1

t3

t2

c1

c2

c3

C

Node 
generation Propagation

Readout
and

Fusion

Feature
Extraction

FIGURE 4

Our cascade graph module is built on two different categories of feature extractors (CNN and Transformer). Node features are updated by message-
passing functions and gated recurrent neural networks, they enable inference of high-level relationships between different semantic space nodes
and construct more powerful feature representations.
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are fed to the higher scale prediction branch to perform

elementwise addition with the output of successive series gi+1 at

higher resolution, and the targets’ contours jG
i+1 at the current scale

resolution are obtained by dimension-adjusted convolution si+1.

The overall progressive refinement branch is shown in equation

(11), where⊕ is the elementwise addition and U is the up-sampling

operation.

jG
i =

si(g )i, i = 1

si+1(gi+1 ⊕ U(gi)), i = 2, 3, 4

(
(11)
3.4 Loss function

The number of voxels within the small target volume is

considerably fewer than the number of voxels outside, which

means the data distribution is unbalanced and could lead to

difficulty in training. Therefore, small target segmentation has

always been a challenge in semantic segmentation. To address the

above issues, the loss function fusion algorithm was employed to

make the model fit target volume contours more accurately. The

dice loss (23) enables converting the voxels-by-voxels labeling

problem into minimizing the class-level distribution distance,

which can alleviate the shortcoming in small target volume

contributing slightly to the loss function. The focal loss (24) is the

extension based on the cross-entropy loss function, which can

adaptively apply different weights to distinct voxels to further

alleviate the problems of difficulty imbalance in segmentation. In

PCG-Net, the dice loss lDSC was used to reduce the imbalance voxel

problem, focal loss lFocal was used to strengthen the model to focus

on misclassified voxels, in order to design and build the focal-dice

loss function lDF , as shown in equation (12), where FPp(m), FNp(m)

and TPp(m) are the false positives, false negatives and true

positives of class m based on the predicted probabilities,

respectively. pn(m) is the predicted probability that voxel n

belongs to class m, and gn(m) is the ground truth that voxel n

belongs to class m, where m is the total number of OARs structures

plus one (background), and n is the total number of voxels in the

CT image. a = 2 is a weight parameter to balance between lDSC and

lFocal . b = 1 and h = 1 are the trade-offs of penalties for false

negatives and false positives.

TPp(m) = o
N

n=1
pn(m)gn(m)

FNp(m) = o
N

n=1
gn(m)(1 − pn(m))

FPp(m) = o
N

n=1
(1−gn(m))pn(m)

lDF = lDSC + a lFocal

      = M − o
m−1

m=0

TPp(m)

TPp(m) + bFNp(m) + hFPp(m)

           − a 1
No

m−1

m=0
o
N

n=1

gn(m)(1 − pn(m))2 log (pn(m))

(12)
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4 Experiment

4.1 Dataset

In the HN OARs segmentation task, our data include two

publicly available datasets: DATASET 1 (177 samples) consisting

of CT images from four different institutions in Quebec, Canada,

and DATASET 2 (46 samples) consisting of CT images from the

Head-Neck Cetuximab collection, as well as two local datasets:

DATASET 3 (60 samples) provided by the Department of

Radiology, Hubei Cancer Hospital, and DATASET 4 (100

samples) provided by the Radiotherapy Center of Anhui

Provincial Hospital. Each dataset contains five organs: brain stem,

mandible, parotid, optic chiasm, and optic nerve. Please note that

for detailed information on publicly available datasets (DATASET 1

and DATASET 2), please refer to reference (25). The explanations

about the acquisition of local CT datasets (DATASET 3 and

DATASET 4) are as follows: During CT simulation, patients were

immobilized in supine position with a thermoplastic mask and

underwent contrast-enhanced CT scan on the CT scanning system

(Philips Brilliance Big Bore, GE LightSpeed 16, and GE Discovery

CT590 RT). The resolution, and thickness of CT images were 512 ×

512× (0.9766-1.1719mm), and 2.5mm-3 mm, respectively.

The two publicly available datasets contain CT images from five

different institutions, which have significant data complexity.

Therefore, during the contrastive experiments shown in Section

5.3, contrastive learning was performed based on the public dataset

(223 samples) to pre-train the encoder for improving the robustness

and feature extraction capability of the encoder. DATASET 4 was

used as the training dataset for supervised learning to fine-tune the

weight distribution of the neural network. DATASET 3 was used to

validate and test the effectiveness of the algorithm. In particular, the

pre-training process requires only CT images without

corresponding manually delineation, whereas the training and

validation processes both require HN CT images and

corresponding manually delineated OARs. It was ensured that the

above four datasets are not overlapping with each other to avoid any

potential overfitting.

To demonstrate the heterogeneity between the public dataset

and the local dataset, the following features were extracted from

each image using the gray-level co-occurrence matrix: sum entropy,

difference entropy, sum average, correlation, contrast, homogeneity,

sum variance, and variance, then the statistical differences were

analyzed between the datasets. The p-value of each statistic was then

obtained using the Mann-Whitney U test. The results in Table 1
TABLE 1 Analysis of the statistical differences.

Textural Fea-
tures

p-
value

Textural Fea-
tures

p-
value

Sum entropy < 0.001 Difference entropy < 0.001

Sum average < 0.001 Correlation < 0.001

Contrast < 0.001 Homogeneity < 0.001

Sum variance < 0.001 Variance < 0.001
fro
ntiersin.org

https://doi.org/10.3389/fonc.2023.1177788
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luan et al. 10.3389/fonc.2023.1177788
show that eight statistics have p-values less than 0.001, hence there

are serious adaptation issues between the two types of datasets

which require more powerful pre-training methods with

segmentation algorithms to adapt to both datasets.

To further test our algorithm’s efficacy in different downstream

tasks, more datasets were collected, including 1) Liver Tumor

Segmentation Challenge (LITS) liver cancer public dataset, with

131 patient samples, 2) Lung Nodule Analysis 16 (LUNA16) lung

cancer public dataset, with 888 patient samples, and 3) (Blood Cell

Classification Datasets) BCCD blood cell classification public

dataset, containing 12,500 blood cell enhanced images

(JPEG format).
4.2 Evaluation metrics

The segmentation performance was evaluated by calculating the

Dice Similarity coefficient (DSC), which is defined as DSC(p, z) =
2�jp∩zj
jpj+jzj � 100%, where p is the voxel mask predicted by the network

and z is the ground truth. The DSC values are between 0 and 1,

where the closer DSC is to 1, the better the segmentation

performance. In addition, to evaluate the segmentation results

from multiple perspectives, the Hausdorff Distance (HD), the

Average Symmetric Surface Distance (ASSD), and the Jaccard

Coefficient (Jaccard) were further utilized as supplementary

metrics. Generally, the DSC and Jaccard are considered more

sensitive to the voxel details inside the contour which reflects the

segmentation integrity, while the HD and ASSD are more sensitive

to the contour surface which can characterize the segmentation

surface contour accuracy. The four-evaluation metrics complement

each other and enable a comprehensive assessment of segmentation

results. Please note that the p-value of each statistic in our work was

derived by other methods with PCG-Net based on the T-test: Two-

tailed critical value for paired sample mean analysis.
4.3 Experimental details

The neural network using PyTorch was implemented and

experiments were performed on a small NVIDIA RTX3090Ti

workstation equipped with 24GB of RAM. To enhance data

consistency and improve model training efficiency, all CT images

and mask labels were preprocessed in the same way. Using the

linear interpolation method to adjust the pixel spacing of different

institutions’ images, each slice pixel spacing was adjusted to 1mm,

and the original CT images and the masked images were padded to

512×512 uniformly. Image morphing is to rotate, translate, mirror,

and affine transform each CT image with its corresponding label to

enhance the complexity of the data. The grayscale float uses the

current voxel grayscale value superimposed with random

initialization numbers, which in turn generates CT images with

noise, thus effectively improving the model’s anti-interference

capability. Please refer to the Supplementary Material for more

details on about image preprocessing and grayscale float.

For the contrastive learning pre-trained encoder, the SGD

optimizer was used for pre-training. Linear scaling learning rate (26)
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was used with a base lr = 0:05, and the learning rate has a cosine decay

schedule (27). The weight decay was 0.0001 and the SGD momentum

was 0.9. Considering the computational complexity, the batch size was

set to 32 and the epoch size was set to 50. For training PCG-NET,

Adam with a weight decay of 0.0001 was utilized to optimize network

parameters, with the initial learning rate set to 0.0001, and the ‘‘ploy’’

strategy with 0.9 power as adjustment. The batch size was set to 32 and

the epoch size was set to 150 due to hardware limitations.
5 Results

To demonstrate the benefits brought by each module and the

superiority of PCG-Net, the following experiments were performed:

the benefits of gated-axial transformer encoder, cascade graph

feature fusion architecture, and progressive refinement decoder

on PCG-Net through ablation study was demonstrated in Section

5.1; the superiority of PCG-Net’s was verified by comparing it with

three advanced segmentation algorithms, U2Net, CPFNet, and

MedT in Section 5.2; the effectiveness of Siamese contrastive

learning pre-trained encoder was demonstrated in Section 5.3; the

universality and generalization ability of PCG-Net by other medical

tasks was demonstrated in Section 5.4.

It’s worth noting that in Sections 5.1 and Sections 5.2, the

contrastive learning strategy was not utilized to pre-train the PCG-

Net’s encoder, while the overall training method was the supervised

task, with DATASET 4 as the training dataset, and DATASET 3 as

the validation and test dataset. In Section 5.3, in order to discuss the

importance of contrastive learning, the encoder was first pre-

trained by DATASET 1 and DATASET 2, which was an

unsupervised task. Secondly, the pre-trained encoder weights were

transferred to PCG-Net, during which the MLP layer necessary for

the contrastive learning task was removed, and end-to-end training

of the PCG-Net by DATASET 4 was performed based on a

supervised strategy, with DATASET 3 as the validation and

testing dataset. Please note that all the results are the mean values

on the test datasets after ten-fold cross-validation. In addition, the

detailed processing times for all deep learning models handling the

same image can be found in the Supplementary Materials.
5.1 Ablation study

To demonstrate the effectiveness of different modules, ablation

experiments were performed to compare the gains from each

module. Using the U2Net (28) as a baseline, unlike traditional U2

Net which contains 6 encoder/decoder blocks, a 4 encoder/decoder

blocks structure was employed to reduce the computational

complexity. For better performance, the pooling layer was

replaced by the patch merging layer (29) for minimizing the

semantic information loss caused by the traditional pooling layer.

During the ablation study, all competitors were conducted in the

same computing environment and under the same data

enhancement to ensure a fair comparison.

By replacing the corresponding components in the baseline

network with the gated-axial transformer, the cascaded graph
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module, and the progressive refinement decoder, respectively, it was

possible to obtain: level1 (progressive refinement decoder replacing

the baseline decoder), level2 (gated-axial transformer encoder

replacing the baseline encoder), and level3 (parallel encoder

replacing the baseline encoder). Further, the following was

obtained by simultaneous replacement for two or three

components in the baseline network: level4 (parallel encoder

replacing the baseline encoder, cascade graph module replacing

the baseline skip connection), level5 (parallel encoder replacing the

baseline encoder, progressive refinement decoder replacing the

baseline decoder, cascade graph module replacing the baseline

skip connection). Five methods equipped with different modules

were evaluated on the HN dataset, with the segmentation results

shown in Figure 5. Compared with the baseline method, the level1,

level2, and level3 methods have improvements in processing

segmentation tasks. Compared to adding only a single module to

the baseline, the combination based on two or more modules can
Frontiers in Oncology 08
obtain more accurate segmentation results, especially for small

volume OARs. The statistical results are shown in Table 2.

Compared with the baseline network, the mean DSC of the

level1 and level2 methods improved by approximately 0.7% (from

73.2% to 73.9%) and 0.02% (from 73.2% to 73.22%), respectively,

which proved contribution of the progressive refinement module

and the gated-axial transformer module in feature decoding and

feature encoding. Compared with the baseline model and level2, the

mean DSC and mean Jaccard of the level3 method improved by

4.32% (from 73.2% to 77.52%), 4.26% (from 66.0% to 70.26%) and

4.3% (from 73.22% to 77.52%), 4.74% (from 65.52% to 70.26%),

respectively, while the mean DSC and mean Jaccard of the small

volume OARs (optic chiasm and optic nerve) improved by 4.1%

(from 58.85% to 62.95%), 5.3% (from 57.65% to 62.95%) and 2.95%

(from 51.15% to 54.1%), 6.3% (from 47.8% to 54.1%), respectively,

demonstrating that the parallel encoder is superior to the single-

branch encoder in segmentation accuracy, which enables adequate
(a) (b) (c) (d) (e) (f) (g)

FIGURE 5

Visual comparison of three critical modules of the PCG-Net ablation study. (A) Ground truth. (B) Baseline model. (C) The progressive refinement
decoder replaces the baseline decoder. (D) Gated-axial transformer encoder replaces the baseline encoder. (E) The parallel encoder replaces the
baseline encoder. (F) The parallel encoder replaces the baseline encoder and cascade graph module replaces the baseline skip connection. (G) The
parallel encoder replaces the baseline encoder, the progressive refinement decoder replaces the baseline decoder, and the cascade graph module
replaces the baseline skip connection. To facilitate visual representation, we used different color masks to represent different organ-at-risks, where
green mask is the brainstem, red mask is the parotid, blue mask is the mandible, cyan mask is the optic chiasm, and purple mask is the optic nerve.
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extraction of the local information while fitting the global

information. Compared with the level3 method, the segmentation

accuracy for the level4 method further improved, with the mean

DSC and mean Jaccard improving by 1.56% (from 77.52% to

79.08%) and 0.82% (from 70.26% to 71.08%), respectively. For the

small volume OARs (optic chiasm and optic nerve), the mean DSC

and mean Jaccard improved by 1.00% (from 62.95% to 63.95%) and

1.25% (from 54.1% to 55.35%), respectively, revealing the excellent

feature fusion and relationship modeling capabilities of the cascade

graph module. The level5 method, simultaneously integrating three

modules, achieved the best global prediction results, with the mean

DSC and mean Jaccard improving by 6.78% (from 73.2% to 79.98%)

and 5.78% (from 66.0% to 71.78%) compared to the baseline model.

In the small volume OARs segmentation (optic chiasm and optic

nerve), the improvement was particularly significant compared with

the baseline model, with the mean DSC and mean Jaccard for optic
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chiasm improving by 6.05% (from 58.85% to 64.9%) and 4.95%

(from 51.15% to 56.1%).
5.2 Model horizontal comparison

PCG-Net was horizontally compared with three other advanced

segmentation approaches, including U2Net (28), CPFNet (30), and

MedT (31). In the comparison experiments, all competitors were

performing under the same computational environment and the

same data enhancement to ensure a fair comparison. Table 3 depicts

the segmentation results by different methods on the HN OARs.

Our model achieved the most excellent results on most metrics,

with mean DSC, mean Jaccard, mean HD, and mean ASSD of

79.98%, 71.78%, 3.00, and 1.03, respectively. On small volume

OARs segmentation, compared to the MedT, the mean DSC,
TABLE 2 Statistical comparisons of ablation studies for the three main modules in PCG-Net.

Brain Stem Mandible Parotid Optic Nerve Optic Chiasm Mean
Mean (small

volume OARs)

Baseline

84.3% ± 2.6% 85.2% ± 3.1% 78.8% ± 3.7% 65.5% ± 7.8% 52.2% ± 14.3% 73.2% ± 6.3% 58.85% ± 11.05%

77.2% ± 2.1% 76.3% ± 2.7% 74.4% ± 3.1% 58.2% ± 6.9% 44.1% ± 10.2% 66.0% ± 5% 51.15% ± 8.55%

3.123 ± 1.1 3.211 ± 0.9 4.212 ± 1.7 2.979 ± 0.6 4.811 ± 1.2 3.67 ± 1.1 3.895 ± 0.9

1.217 ± 0.4 1.334 ± 0.5 1.899 ± 0.7 0.886 ± 0.3 1.577 ± 0.6 1.38 ± 0.5 1.2315 ± 0.45

Level 1

85.1% ± 2.1% 85.9% ± 2.2% 79.3% ± 3.1% 66.1% ± 7.3% 53.1% ± 12.9% 73.90% ± 5.5% 59.6% ± 10.1%

77.9% ± 1.8% 78.1% ± 2.3% 74.7% ± 3.3% 58.8% ± 7.1% 45.7% ± 11.4% 67.04% ± 5.2% 52.25% ± 9.25%

3.013 ± 1.3 3.313 ± 1.2 3.991 ± 1.9 2.876 ± 0.9 4.792 ± 1.3 3.60 ± 1.3 3.834 ± 1.1

1.155 ± 0.4 1.270 ± 0.4 1.792 ± 0.8 0.878 ± 0.3 1.565 ± 0.6 1.33 ± 0.5 1.221 ± 0.45

Level 2

84.9% ± 2.3% 85.8% ± 2.4% 80.1% ± 3.2% 65.9% ± 7.1% 49.4% ± 16.3% 73.22% ± 6.3% 57.65% ± 11.7%

78.2% ± 2.0% 78.7% ± 2.5% 75.1% ± 2.9% 54.3% ± 9.2% 41.3% ± 14.2% 65.52% ± 6.2% 47.8% ± 11.7%

2.992 ± 0.9 3.172 ± 0.9 3.876 ± 1.5 2.878 ± 0.9 5.137 ± 1.9 3.61 ± 1.22 4.008 ± 1.4

1.143 ± 0.3 1.233 ± 0.5 1.786 ± 0.7 0.924 ± 0.4 1.669 ± 0.9 1.35 ± 0.56 1.296 ± 0.65

Level 3

87.1% ± 2.6% 88.7% ± 1.9% 85.9% ± 2.7% 68.8% ± 6.7% 57.1% ± 9.2% 77.52% ± 4.6% 62.95% ± 7.95%

81.8% ± 2.3% 82.5% ± 1.9% 78.8% ± 3.0% 60.2% ± 5.5% 48.0% ± 8.3% 70.26% ± 4.2% 54.1% ± 6.9%

2.633 ± 1.2 3.017 ± 1.3 3.663 ± 1.6 2.531 ± 0.5 4.331 ± 1.1 3.24 ± 1.1 3.431 ± 0.8

0.983 ± 0.3 1.005 ± 0.5 1.594 ± 0.5 0.775 ± 0.2 1.347 ± 0.4 1.14 ± 0.4 1.061 ± 0.3

Level 4

88.9% ± 1.9% 90.7% ± 2.1% 87.9% ± 2.9% 70.2% ± 6.5% 57.7% ± 10.7% 79.08% ± 4.8% 63.95% ± 8.6%

82.2% ± 2.2% 83.3% ± 2.3% 79.2% ± 2.7% 61.9% ± 6.1% 48.8% ± 9.1% 71.08% ± 4.5% 55.35% ± 7.6%

2.455 ± 0.8 2.967 ± 0.9 3.532 ± 1.3 2.411 ± 0.6 4.299 ± 1.3 3.13 ± 1.0 3.355 ± 0.95

0.916 ± 0.4 1.005 ± 0.4 1.511 ± 0.6 0.701 ± 0.2 1.210 ± 0.5 1.07 ± 0.4 0.955 ± 0.35

Level 5

89.2% ± 1.9% 91.8% ± 2.1% 89.1% ± 2.6% 71.7% ± 6.9% 58.1% ± 12.1% 79.98% ± 5.1% 64.9% ± 9.5%

82.9% ± 1.9% 84.1% ± 2.0% 79.7% ± 2.5% 63.1% ± 5.7% 49.1% ± 7.9% 71.78% ± 4.0% 56.1% ± 6.8%

2.406 ± 0.9 2.655 ± 1.1 3.317 ± 1.4 2.389 ± 0.5 4.221 ± 1.1 3.00 ± 1 3.305 ± 0.8

0.881 ± 0.3 0.993 ± 0.3 1.470 ± 0.6 0.677 ± 0.2 1.112 ± 0.4 1.03 ± 0.4 0.894 ± 0.3
In each ablation experiment, the first and second rows represent the DSC values (mean ± variance) and Jaccard values (mean ± variance) in the test datasets, respectively; the third and fourth
rows represent the HD(mm) values (mean ± variance) and ASSD(mm) values (mean ± variance) in the test datasets, respectively. The results in the table are the mean values on the test datasets after
ten-fold cross-validation.
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mean Recall, mean HD, and mean ASD of our model improved by

1.08%, 1.5%, 3.23%, and 1.90%, respectively.

For visual comparison, the results of different segmentation

algorithms are shown in Figure 6. Significant superiority can be

observed for our algorithm compared to other competitors,
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especially for the more accurate identification of the small volume

OARs. Combining Figure 6 with Table 3, PCG-Net effectively

extracted local features and global context information by parallel

encoder, fused features by cascaded module, and used progressive

refinement decoder gradually refines the spatial dimension.
TABLE 3 Statistical comparison with different state-of-the-art methods.

Brain Stem Mandible Parotid Optic Nerve Optic Chiasm Mean

U2Net(×)

84.3% ± 2.6%* 85.2% ± 3.1%* 78.8% ± 3.7%** 65.5% ± 7.8%* 52.2% ± 14.3%* 73.20% ± 6.30%*

77.2% ± 2.1%** 76.3% ± 2.7%* 74.4% ± 3.1%* 58.2% ± 6.9%# 44.1% ± 10.2%*** 66.04% ± 5.00%#

3.123 ± 1.1* 3.211 ± 0.9* 4.212 ± 1.7** 2.979 ± 0.6* 4.811 ± 1.2* 3.67 ± 1.10*

1.217 ± 0.4* 1.334 ± 0.5** 1.899 ± 0.7*** 0.886 ± 0.3* 1.577 ± 0.6* 1.38 ± 0.50#

CPFNet(×)

88.1% ± 2.4%** 88.7% ± 2.7%# 85.1% ± 2.9%** 70.3% ± 7.1%* 56.2% ± 13.3%* 77.68% ± 5.68%**

80.5% ± 2.1%* 83.1% ± 2.3%* 77.2% ± 3.7%* 61.1% ± 6.2%* 47.8% ± 8.0%*** 69.94% ± 4.46%*

2.662 ± 0.8* 2.932 ± 0.9** 3.636 ± 1.5* 2.377 ± 0.6** 4.667 ± 1.1* 3.25 ± 0.98**

1.003 ± 0.3* 1.113 ± 0.3* 1.517 ± 0.6** 0.689 ± 0.2** 1.225 ± 0.4* 1.11 ± 0.36#

MedT(×)

89.5% ± 1.7%* 90.6% ± 1.9%*** 88.6% ± 3.1%* 68.1% ± 8.8%* 57.7% ± 12.9%* 78.90% ± 5.68%***

82.2% ± 2.1%* 83.7% ± 2.2%* 78.3% ± 2.9%* 59.2% ± 6.7%* 48.0% ± 7.5%* 70.28% ± 4.28%*

2.513 ± 0.9* 2.717 ± 1.1# 3.379 ± 1.4* 2.511 ± 0.5* 4.375 ± 1.2** 3.10 ± 1.02**

0.879 ± 0.2* 1.059 ± 0.4* 1.447 ± 0.5* 0.703 ± 0.4* 1.169 ± 0.3* 1.05 ± 0.36*

PCG-Net
(×)

89.2% ± 1.9% 91.8% ± 2.1% 89.1% ± 2.6% 71.7% ± 6.9% 58.1% ± 12.1% 79.98% ± 5.12%

82.9% ± 1.9% 84.1% ± 2.0% 79.7% ± 2.5% 63.1% ± 5.7% 49.1% ± 7.9% 71.78% ± 4.00%

2.406 ± 0.9 2.655 ± 1.1 3.317 ± 1.4 2.389 ± 0.5 4.221 ± 1.1 3.00 ± 1.00

0.881 ± 0.3 0.993 ± 0.3 1.470 ± 0.6 0.677 ± 0.2 1.112 ± 0.4 1.03 ± 0.36

U2Net(√)

84.7% ± 2.3%*
77.9% ± 1.6%*

85.6% ± 3.0%* 79.3% ± 3.5%* 66.7% ± 6.8%* 53.7% ± 11.9%* 74.00% ± 5.50%*

76.9% ± 2.5%* 74.9% ± 3.2%* 59.5% ± 5.4%*** 45.3% ± 8.8%* 66.90% ± 4.30%***

3.112 ± 1.2* 3.157 ± 0.7* 4.106 ± 1.5** 2.858 ± 0.5* 4.551 ± 1.1* 3.56 ± 1.00**

1.179 ± 0.3* 1.298 ± 0.4* 1.847 ± 0.7* 0.831 ± 0.2** 1.436 ± 0.3* 1.32 ± 0.38*

CPFNet(√)

88.3% ± 2.2%* 89.1% ± 2.7%** 85.8% ± 2.3%* 71.2% ± 6.7%* 58.3% ± 10.7%# 78.54% ± 4.92%*

81.2% ± 2.0%* 83.6% ± 2.3%# 77.9% ± 3.5%* 63.3% ± 6.1%* 48.2% ± 8.2%# 70.84% ± 4.42%*

2.636 ± 0.8* 2.919 ± 0.7* 3.596 ± 1.2* 2.290 ± 0.5** 4.544 ± 0.9* 3.20 ± 0.82**

0.997 ± 0.2** 1.107 ± 0.3* 1.403 ± 0.5* 0.676 ± 0.2* 1.193 ± 0.3* 1.08 ± 0.30#

MedT(√)

89.9% ± 1.6%* 91.2% ± 1.8%* 89.1% ± 2.7%** 69.4% ± 7.9%* 58.6% ± 10.9%* 79.64% ± 4.98%**

82.7% ± 2.0%* 84.2% ± 1.9%* 78.9% ± 2.6%* 60.1% ± 6.8%* 49.3% ± 8.1%** 71.04% ± 4.28%*

2.479 ± 0.8# 2.699 ± 1.0* 3.293 ± 1.5* 2.410 ± 0.7# 4.132 ± 1.5* 3.00 ± 1.10**

0.873 ± 0.3* 1.016 ± 0.3* 1.431 ± 0.4*** 0.688 ± 0.3* 1.027 ± 0.4* 1.01 ± 0.34*

PCG-Net
(√)

90.1% ± 2.2% 92.3% ± 1.9% 89.9% ± 2.4% 73.2% ± 7.3% 59.9% ± 11.3% 81.08% ± 5.02%

83.3% ± 1.7% 84.7% ± 1.8% 80.2% ± 2.1% 64.6% ± 6.1% 50.7% ± 7.2% 72.70% ± 3.78%

2.377 ± 0.8 2.613 ± 1.0 3.288 ± 1.1 2.157 ± 0.4 4.023 ± 1.3 2.89 ± 0.92

0.868 ± 0.3 0.986 ± 0.3 1.436 ± 0.5 0.619 ± 0.3 1.013 ± 0.3 0.98 ± 0.34
In each comparison experiment, the first and second rows represent the DSC values (mean ± variance) and Jaccard values (mean ± variance) in the test datasets, respectively; the third and fourth
rows represent the HD (mm) values (mean ± variance) and ASSD (mm) values (mean ± variance) in the test datasets, respectively. The symbols at the bottom of the models in the first column
represent with/without contrastive pre-training strategy, where (×) indicates without contrastive learning pre-training strategy and (√) indicates with contrastive learning pre-training strategy.
The black bold font indicates the optimal value among the four models without the contrastive learning pre-training strategy. The black bold italic font indicates the optimal value among the four
models with the contrastive learning pretraining strategy. Please note that “***” to indicate p< 0.05, “**” for p< 0.01, “*” for p< 0.001, and “#” for p > 0.05.
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Therefore, our segmentation accuracy was superior compared with

other competitors, especially in the case of small volume OARs and

blurred foreground and background boundaries.
5.3 Contrastive learning evaluation

The unsupervised strategy of contrastive learning was applied to

the current main segmentation algorithms, including U2Net (28),

CPFNet (30), andMedT (31). All competitors were performing under

the same computing environment and the same data enhancement

throughout the experiment to ensure fair comparisons. The

experimental algorithms were classified into two categories: one

using contrastive learning pre-training strategy and the other

without contrastive learning pre-training strategy. The overall

results of the comparison of the gain of the four different main

segmentation algorithms with difference in whether contrastive

learning was imposed are shown in Table 3. After applying the

contrastive learning strategy, the models showed slightly improved

segmentation accuracy for large volume OARs. For example, for the

brainstem andmandible, the mean DSC of the four models improved

by 0.45% and 0.475%, respectively. The segmentation accuracy

significantly improved for small volume OARs. For example, for

optic nerve and optic chiasm, the mean DSC of the four models
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improved by 1.225% and 1.575% after using contrastive learning,

respectively. This may be because the unsupervised paradigm of

contrastive learning enables effective extraction of the similar features

from large amounts of data to improve the neural network’s weight

distribution. The mean DSC values versus epoch for different OARs

based on contrastive learning strategies using supervised tasks to fine-

tune the four neural network weights is plotted in Figure 7. The

accuracy of each algorithm reached the optimal value of the

contrastive-free learning strategy after about 40 epochs. This fully

demonstrated the feasibility of using contrastive learning to perform

unsupervised training on large medical unlabeled samples and

transferring the pre-trained model to supervised tasks for weight

fine-tuning. This strategy greatly solved the problem of medical tasks

with few annotated data. The experiment results further verified that

contrastive learning has a strong generalization ability, which can find

common-solution in distinct datasets with statistically significant

differences to optimize feature extraction module weights. With the

epoch gradually increasing, the accuracy of MedT and U2Net

gradually stabilizes, while the accuracy of CPFNet slightly

decreases, which is probably caused by model overfitting.

Compared with the competitors, the accuracy of PCG-Net has

been steadily improving, and its mean DSC always remains at the

highest level, which fully verifies the advanced performance of

PCG-Net.
(a) (b1) (c1) (d1) (e1) (b2) (c2) (d2) (e2)

FIGURE 6

Horizontal visual comparison of PCG-Net with different state-of-the-art algorithms. Where the red box represents the segmentation result without a
contrastive learning pre-training strategy, and the blue box represents the segmentation result with a contrastive learning pre-training strategy. (A)
Ground truth. (B) U2Net. (C) CPFNet. (D) MedT. (E) PCG-Net. To facilitate visual representation, we used different color masks to represent different
organ-at-risks, where green mask is the brainstem, red mask is the parotid, blue mask is the mandible, cyan mask is the optic chiasm, and purple
mask is the optic nerve.
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5.4 Other medical assignments

The contrastive-learning-based PCG-Net achieved excellent

results on the HN segmentation task, which can not only

accurately delineate large volume OARs such as parotid gland

and brainstem, but also accurately identify small volume samples

such as optic chiasm and optic nerve. However, the HN

segmentation tasks alone cannot fully demonstrate the superiority

of PCG-Net. Therefore, three different medical image challenge

tasks were chosen, including segmentation, classification, and object

detection, to further validate the generalization ability of PCG-Net.

For different downstream tasks, different decoders were used while

ensuring the feature extraction module remaining constant. For

example, in classification tasks, the progressive refinement decoder

was replaced by the fully connected layer, and the final output was

the mapping of category numbers. To perform the object detection

task, the progressive refinement decoder was replaced by the

YOLOV3 decoder, and output was in three different scales of

detection windows to achieve object detection for different sizes.

All experiments were performed in the same computing

environment and data enhancement to ensure fairness.

5.4.1 Liver tumor segmentation
A horizontal comparison experiment for liver tumor

segmentation was performed on the LiTS dataset, where the

training, validation, and testing sets were divided with the ratio of

7:2:1, using SGD optimizer with momentum of 0.9 and linear
Frontiers in Oncology 12
scaling learning rate with weight decay of 0.0001, with focal-dice

loss as loss function, batch size set to 32, epoch set to 150, using

DSC, VOE, and ASSD as evaluation metrics. The LiTS dataset

includes primary and secondary liver tumors with strong

heterogeneity and diffuseness. Therefore, it can be fully verified

whether the algorithm can effectively extract features from the

region of interest to achieve end-to-end mapping under the

circumstances of blurred boundaries, complex structure, diverse

distribution, and grayscale diversity.

PCG-Net was compared with four currently popular

segmentation methods, including SFF-Net (32), H-Dense UNet

(33), and FAT-Net (34). The segmentation results of applying

different algorithms on the LiTS dataset are shown in Table 4,
FIGURE 7

Mean DSC versus epoch for automatic head and neck organ-at-risks segmentation of the test datasets by different neural network models based on
contrastive learning strategy. DSC(A) represents the mean DSC value of the head and neck organs-at-risks in the test datasets when different models
were trained to the 40_th epoch under the contrastive pre-training strategy. DSC(B) represents the mean DSC values of the head and neck organ-
at-risks in the test datasets when different models were trained to the end (150_th epochs) without the contrastive pre-training strategy.
TABLE 4 Horizontal comparison experiment of liver tumor
segmentation based on Lits dataset, where ↑ indicates the larger value
the better, and ↓ indicates the smaller value the better.

DSC (%)↑ VOE (%)↓ ASSD (mm) ↓

SFF-Net 61.3% ± 11.8%* 39.8% ± 14.3%** 1.885 ± 0.5*

H-Dense
UNet

71.3% ±
10.9%**

25.7% ± 13.6%# 1.331 ± 0.3*

FAT-Net 72.3% ±
15.2%**

24.26% ±
14.1%***

1.371 ± 0.2*

PCG-Net 73.6% ± 7.8% 21.19% ± 9.7% 1.118 ± 0.2
Please note that “***” to indicate p< 0.05, “**” for p< 0.01, “*” for p< 0.001, and “#” for p > 0.05.
The bold values denote the optimal result.
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including accuracy and computational complexity evaluation

metrics. The SFF-Net based on a multi-scale feature pyramid and

feature fusion module obtained relatively accurate results for the

large tumor (diameter larger than 10 mm) segmentation problem.

However, the performance was unsatisfactory for the segmentation

of small tumors (diameter less than 5 mm) and multiple tumors.

The H-Dense UNet, which relies on the fusion of 2D features with

3D features to increase the spatial region of interest, achieved

comparable performance to the FAT-Net method. However, both

methods underperformed in edge-complex multi-tumor semantic

segmentation problems. On the contrary, PCG-Net based on a

parallel encoder, cascade graph module, and progressive refinement

decoder can effectively reconstruct the dependencies between

different features and achieve end-to-end mapping by layer-by-

layer refinement. PCG-Net performed better than other

competitors in general, with the highest mean DSC of 73.6%, and

mean VOE and mean ASSD metrics of 21.19% and 1.118,

respectively. Meanwhile, the parametric number of PCG-Net was

lower than average, indicating PCG-Net reduced the computational

complexity without losing segmentation accuracy. In addition, the
Frontiers in Oncology 13
visualization of comparison of segmentation results between

different algorithms is demonstrated in Figure 8. For most

samples with extremely complex blurred boundaries and diverse

grayscales, PCG-Net still obtained the best segmentation results.

5.4.2 Lung nodule object detection
A horizontal comparison experiment for lung nodule object

detection was performed on the LUNA16 dataset, where the

training, validation, and testing sets were divided in 7:2:1, using

an SGD optimizer with a momentum of 0.9 and linear scaling

learning rate with weight decay of 0.0001, using EIoU as the loss

function (35), with batch size set to 32 and epoch size set to 150. The

model performance was evaluated by CPM competitive

performance metrics. The LUNA16 lung nodule dataset is

challenging for object detection because of the extremely complex

brightness distribution and blurred boundaries. The YOLOV3

encoder was replaced with the PCG-Net encoder, Att-UNet

encoder (36), U2Net encoder (28), ViT encoder (37), and Swin

(29) encoder, respectively, to demonstrate the feature extraction

capability of the PCG-Net encoder. The results of object detection
(a) (b) (c) (d) (e)

FIGURE 8

Visual comparison of PCG-Net on the LiTS dataset with different state-of-the-art methods. (A) Ground truth. (B) U2Net. (C) SFF-Net. (D) H-Dense
UNet. (E) PCG-Net. Three different types of tumors were selected to fully demonstrate PCG-Net’s effectiveness: small tumors (purple mask), large
tumors (red mask), and multiple tumors (green mask). The blue arrow highlights PCG-Net’s ability to accurately identify the irregular boundary
contours of small tumors compared to other algorithms, and the red box highlights PCG-Net’s ability to correctly capture multiple tumors.
TABLE 5 Horizontal comparison experiment for lung nodule object detection based on the LUNA16 dataset.

Model
Number of FPs/scan (%)

CPM(%)↑
A (%) B (%) C (%) D (%) E (%) F (%) G (%)

Att-UNet Encoder 71.2% 81.1% 85.7% 88.6% 91.2% 93.3% 94.1% 86.5%

U2Net Encoder 68.8% 72.6% 81.3% 86.5% 89.9% 93.0% 94.7% 83.8%

ViT Encoder 78.8% 87.3% 91.7% 92.2% 92.9% 93.6% 94.5% 90.1%

Swin Encoder 79.5% 87.8% 92.1% 92.6% 93.1% 93.7% 94.6% 90.4%

PCG-Net Encoder 80.3% 87.9% 90.2% 93.2% 96.2% 97.7% 98.5% 92.0%
f

In the table, A, B, C, D, E, F, and G represent the sensitivity of detection at an average number of false positives of 0.125, 0.25, 0.5, 1, 2, 4, and 8 in each group of CT images, respectively. For a fair
comparison, we deploy the opponent’s model locally, and train them employing the same preprocessing, optimizer, loss function, and training epochs, where ↑ indicates that the larger value the better.
The bold values denote the optimal result.
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applying different encoders on the LUNA16 dataset, including the

sensitivity to the seven average number of false positives per scan

and the corresponding computational complexity evaluation

metrics, are shown in Table 5. The U2Net, which introduced U-

shaped nested architecture with multi-level and multi-scale feature

extraction modules, achieved more accurate object recognition

results than AttU-Net. The ViT based on long-distance feature

modeling had significantly higher computational complexity and

slightly lower detection accuracy compared to the traditional

feature extraction modules AttU-Net and U2Net. Swin alleviated

the high computational complexity of ViT through the shift-

window mechanism, hierarchical structure, and window self-

attention. However, the results in Table 5 demonstrate that Swin

still performed poorly on few-sample medical object detection tasks.

PCG-Net can effectively solve the latter three problems by trainable

positional bias and gated-axial transformer encoder, and alleviate

the first problems by the parallel encoder. Therefore, through the

parallel encoder and cascaded graph neural networks, it is capable

to accurately capture and model local features and global context

information, meanwhile reducing overfitting risks. It is observed

from Table 5 that our algorithm performed better than other

competitors, with the highest mean CPM at 92.0%.

5.4.3 Classification of blood cells
A horizontal comparison experiment for blood cell

classification was performed on the BCCD dataset. The BCCD

dataset includes four different types of cells: neutrophils,

monocytes, lymphocytes, and eosinophils. Blood disease diagnosis

usually involves classifying blood cell subtypes, having very

important clinical significance. A four-classified fully connected

layer was used as decoder, using ResNet50 (38), RepLKNet (39),

ViT (36), and ConvNeXt (40) as encoder to verify the feature

extraction capability of PCG-Net. Because of the few samples of the

BCCD dataset, it is prone to overfitting when the BCCD dataset was

directly used for training. Therefore, contrastive learning was

employed to pre-train the encoder of five different models on the

LIDC-IDRI dataset, then the BCCD dataset was used to fine-tune

encoder weights. The training, validation, and testing sets were

divided in the ratio of 7:2:1, using an SGD optimizer with a

momentum of 0.9 and linear scaling learning rate with a weight

decay of 0.0001, using cross entropy as the loss function, with batch
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size set to 32 and epoch size set to 150. The results of the blood cell

classification task applying different encoders on the BCCD dataset

are shown in Table 6, including accuracy and computational

complexity evaluation metrics. Using large convolutional kernels

enabled RepLKNet and ConvNeXt to increase the receptive field

more efficiently than ResNet50, while avoiding optimization

difficulties caused by the increase of model depth, therefore, the

classification accuracy was significantly improved. However, large

convolution kernels increased the computational complexity, which

cannot balance accuracy and speed. The ViT, which is the classical

classification architecture of the transformer, had mediocre

performance, with no improvement in classification accuracy

despite the increase in computational complexity. Our structure

utilized small convolutional kernels of CNN to efficiently extract

local semantic information, gated axial self-attention architecture to

reduce computational complexity without losing receptive fields,

and cascaded graph module as feature fusion architecture to achieve

efficient information aggregation. It can be observed in Table 6 that

PCG-Net achieved the highest scores under most evaluation

metrics, especially the two major metrics, Accuracy and Spec,

which reached 98.6% and 99.0%, respectively.
6 Discussion

In this study, a Siamese-contrastive learning strategy was used

to pre-train encoder weights on public datasets and transfer them to

local tasks for fine-tuning. It can be seen from the results that this

pre-training strategy can be used to fit local tasks by using prior

knowledge of public datasets, which can be crucial in the case of

sparse annotation samples. The essence of deep learning is

extraction and generalization for large amounts of features.

Annotated samples enable the model to extract more reliable

information from datasets, however medical data require manual

annotation by numerous professional physicians, which is

extremely costly. Therefore, learning efficient visual representation

without annotated samples is the focus of the medical task.

Currently, the unsupervised tasks were mainly based on

generative or contrastive learning. Generative learning,

represented by self-encoders (41), generates or models pixels in

the input space (42), yet the pixel-level generation consumes

considerable computational resources. The contrastive learning

method (43) uses the loss function similar to supervised tasks to

optimize the weight distribution, which can autonomously learn the

mapping relationships among large amounts of data and ignore the

complex details of instances, therefore the optimization of model

becomes simpler (44).

Encoder-decoder architectures have been widely used in

medical artificial intelligence tasks, but most algorithms used a

single type codec to extract features, such as UNet (45) for pure

CNN architectures and MedT (31) for pure transformer

architectures, thereby not being able to simultaneously capture

local features and global contextual information. Fused CNN and

transformer architectures such as Confomer (46) and CoTNet (47)

are difficult to be applied directly in local datasets, although they

have achieved state-of-the-art results in their fields, both requiring
TABLE 6 Horizontal comparison experiment of blood cell classification
based on BCCD dataset.

ACC(%)↑ Spec(%)↑ Sens(%)↑

ResNet50 93.6% ± 1.9%* 79.3% ± 6.3%* 98.8% ± 1.3%**

RepLKNet 98.0% ± 0.8%*** 97.1% ± 2.3%** 98.4% ± 1.3%*

ViT 94.3% ± 1.7%* 96.6% ± 5.5%* 92.1% ± 1.1%**

ConvNext 98.3% ± 0.7%# 98.3% ± 0.9%* 98.2% ± 1.2%*

PCG-Net 98.6% ± 0.3% 99.0% ± 1.0% 98.3% ± 0.7%
For a fair comparison, we deploy the opponent’s model locally, and train them employing the same
preprocessing, optimizer, loss function, and training epochs, where ↑ indicates that the larger value the
better. Please note that “***” to indicate p< 0.05, “**” for p< 0.01, “*” for p< 0.001, and “#” for p > 0.05.
The bold values denote the optimal result.
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pre-training with large amounts of data to fit the neural network.

Other parallel encoding algorithms such as FAT-Net (34) have

achieved state-of-the-art results in dermatological segmentation.

However, FAT-Net does not employ an effective feature fusion

method, only stacking the CNN’s and transformer’s high-

dimensional semantic features at the bottom of the encoder,

which ignores the importance of features under parallel encoders

of different scales. In summary, those methods still failed to

effectively fuse local features and global long-term dependencies.

Furthermore, traditional transformer algorithms require enormous

data, making it difficult for direct application to medical few-sample

tasks. Therefore, most available methods still failed to accurately

infer the small volume OARs of the lesion areas with blurred

boundaries. To obtain better feature extraction capability, balance

local information with global context information, and applicability

to few-sample datasets, we integrated CNN and axial transformer

branches for a parallel encoder, making local and global

information supplement each other to achieve accurate feature

extraction, where the transformer branch adopts cascaded axial

architecture, which can alleviate the computational complexity (48)

without losing spatially distant features, and effectively solve the

problems of heavy expenses and resource consumption of

traditional self-attention mechanism. The advantages were clearly

demonstrated by the ablation studies and comparison experiments

conducted in Section 5.1.

Although abundant local features and global contextual

information were extracted by a parallel encoder, accurate target

segmentation is impossible if they cannot be aggregated by an

effective message-passing method. Therefore, a cascaded graph

neural network model was used to refine the high-level

relationship between two different feature spaces to improve the

model representation. Extensive work have been done to improve

segmentation performance by fusing semantic information under

different feature spaces. For instance, DCA (49) directly stacked and

spliced two features to improve the semantic representation, and

FSSD (50) extracted various scale features from a different layer of

the model for contact. However, these methods only focused on

information transfer and ignored modeling and reasoning between

different features, which makes them difficult to fully utilize features

of different spatial resolutions or different semantic categories to

overcome complex medical tasks. Numerous experiments have

demonstrated GNNs to be sensitive to relational modeling and

feature inference (51–53), so the cascaded graph neural network

model used in this study enabled aggregating different feature

information by learning powerful and dense feature embeddings.

It is proved that this cascade graph model can capture detailed

regions and overcome ambiguities by employing the

complementary information of multi-level features.

Finally, a novel parallel multiscale progressive refinement graph

neural network PCG-Net was proposed to achieve accurate OARs

segmentation in the presence of unbalanced data and few annotated

samples to assist physicians clinically. To evaluate the contribution

of each module to the PCG-Net, ablation studies were performed

for each module to demonstrate their effectiveness. Comparing with

the advanced segmentation algorithms U2Net (28), SFF-Net (32),
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H-Dense UNet (33), and FAT-Net (34), PCG-Net showed stronger

feature extraction capability and robustness. To verify PCG-Net’s

fitting ability for different tasks, the encoder of PCG-Net was

applied to the three main vision downstream tasks respectively. In

the context of head and neck segmentation tasks, when compared to

the commonly used medical image segmentation algorithm, MedT,

PCG-Net demonstrates notable improvements in the segmentation

of small organs, specifically the optic nerve and optic chiasm. PCG-

Net achieves a 1.08% increase in DSC, a 1.5% improvement in

Recall, a 1.5% reduction in HD, and a 1.9% decrease in ASD.

Furthermore, in various downstream medical image tasks, PCG-

Net consistently delivers outstanding results. For instance, in the

context of liver cancer segmentation, PCG-Net outperforms all

listed models, achieving a DSC, VOE, and ASSD of 73.6%, 21.19%,

and 1.118, respectively. In comparison to SSF-Net, PCG-Net

exhibits substantial improvements of 16%, 46.7%, and 40.6%,

significantly enhancing liver cancer recognition capabilities. The

results proved that PCG-Net had strong generalization ability for

different tasks. Note that the encoder of PCG-Net can be used as a

backbone feature extraction module for different medical tasks in

different datasets. Meanwhile, the pre-training approach based on

contrastive learning can effectively overcome the weakness of

insufficient annotated data in medical tasks, and this may be the

priority method for processing medical tasks in the future.

The PCG-Net proposed in this study still has limitations.

Similar to most existing neural network models, PCG-Net can

only be trained for specific tasks due to local computing power

and algorithmic constraints. In practical applications, it requires

pre-trained models with different data to handle different

downstream tasks, which greatly increases resource consumption

and workload. In addition, contrastive learning can significantly

reduce the amount of annotated data required by neural networks,

however, during the model training process, it still requires fine-

tuning model weights with annotated samples to fit the ground

truth, which cannot completely achieve unsupervised training. In

the future work, we will focus on the study of model generalization

and unsupervised tasks.
7 Conclusion

A PCG-Net was proposed to solve the problems of few clinical

medical images, lack of annotated data, and difficulty in segmenting

small volume OARs. Using the contrastive learning pre-training

strategy, the local task was fitted by prior knowledge from large

unannotated datasets, which greatly alleviates the model robustness

problem caused by sample scarcity. Unlike traditional single-branch

encoders, our parallel encoder can infer semantic features from two

different dimensions, effectively extracting global contextual

information while preserving local receptive fields. In addition,

the cascade graph architecture could allow better utilization of

abundant complementary information in multi-level features

compared to traditional fusion methods. Extensive experiments

were conducted to evaluate PCG-Net on different medical tasks and

compare it horizontally with the current main approaches in
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different downstream tasks, further demonstrating the excellent

inference performance and generalization capability of PCG-Net. It

is believed that the novel design in this paper could be effectively

used for clinical applications and treatment.
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