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The genomic landscape of
sensitivity to arsenic trioxide
uncovered by genome-wide
CRISPR-Cas9 screening

Jun-Zhu Chen, Li-Na Wang, Xue-Qun Luo and Yan-Lai Tang*

Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou,
Guangdong, China
Introduction: Arsenic trioxide (ATO) is a promising anticancer drug for

hematological malignancy. Given the dramatic efficacy of acute promyelocytic

leukemia (APL), ATO has been utilized in other types of cancers, including solid

tumors. Unfortunately, the results were not comparable with the effects on APL,

and the resistance mechanism has not been clarified yet. This study intends to

identify relevant genes and pathways affecting ATO drug sensitivity through

genome-wide CRISPR-Cas9 knockdown screening to provide a panoramic view

for further study of ATO targets and improved clinical outcomes.

Methods: A genome-wide CRISPR-Cas9 knockdown screening system was

constructed for ATO screening. The screening results were processed with

MAGeCK, and the results were subjected to pathway enrichment analysis using

WebGestalt and KOBAS. We also performed protein-protein interaction (PPI)

network analysis using String and Cytoscape, followed by expression profiling

and survival curve analysis of critical genes. Virtual screening was used to

recognize drugs that may interact with the hub gene.

Results: We applied enrichment analysis and identified vital ATO-related

pathways such as metabolism, chemokines and cytokines production and

signaling, and immune system responses. In addition, we identified KEAP1 as

the top gene relating to ATO resistance. We found that KEAP1 expression was

higher in the pan-cancer, including ALL, than in normal tissue. Patients with

acute myeloid leukemia (AML) with higher KEAP1 expression had worse overall

survival (OS). A virtual screen showed that etoposide and eltrombopag could bind

to KEAP1 and potentially interact with ATO.

Discussion: ATO is a multi-target anticancer drug, and the key pathways

regulating its sensitivity include oxidative stress, metabolism, chemokines and

cytokines, and the immune system. KEAP1 is the most critical gene regulating

ATO drug sensitivity, which is related to AML prognosis and may bind to some

clinical drugs leading to an interaction with ATO. These integrated results

provided new insights into the pharmacological mechanism of ATO and

potentiate for further applications in cancer treatments.
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1 Introduction

Arsenic trioxide (ATO) is an established agent in treating acute

promyelocytic leukemia (APL), a hematological malignancy with the

unexpected fusion promyelocytic leukemia-retinoic acid receptor a
(PML-RARa) as molecular characterization (1). ATO degrades the

existing PML-RARa and triggers cell death by apoptosis (2) and

autophagy (3–6). Another target, Fms-like tyrosine kinase 3 gene

internal tandem duplication (FLT3-ITD), has been confirmed to be

downregulated by ATO, resulting in autophagic degradation and cell

cytotoxicity (7–9). Apart from targeting these abnormal fusions or

mutated proteins, ATO has been proven with a pro-oxidant effect

(10) in treating cancer cells and can rescue structural p53 mutations

(11), providing a promising anticancer therapy in other

hematological diseased and solid tumors. However, the current

trials revealed that ATO was less effective in other types of cancers

compared with its above 90% cure rate in APL (12–22). This

unsatisfactory result may be related to the insufficient

concentration in solid tumor sites and the primary or acquired

resistance to ATO. The solutions for the former problem mainly

focus on improving the drug delivery system by nanoparticles from

exogenous materials (23, 24) or biomimetic nanocarriers such as

ferritin (25). As for the resistance caused by genetic events, most

studies have recognized PML mutations as a primary resistant

mechanism (1, 26), and treatments targeting PML-RARa fusion

protein showed a synergistic antileukemic effect in combination

with ATO (27, 28). The epigenetic changes induced by ATO also

made them valuable targets for overcoming resistance (29).

Unfortunately, these results cannot explain the resistance in other

cancers which do not harbor such mutations. Furthermore, the

current combination methods of ATO concentrate more on

regulating the reactive oxygen species (ROS) contents to overcome

resistance with limited effect (26, 30–33). Therefore, a more

systematic landscape to describe genetic events and identify

potential targets or entrances of ATO is required to gain a fully

comprehensive understanding of the pharmacology of ATO and

further overcome resistance.

Genome-wide CRISPR-Cas9 screening is a revolutionary method

appearing in biomedicine in the last decade. Based on the CRISPR-

Cas9 system, this screening system effectively creates a genome-wide

knockout cell library, and the cells are further challenged with certain

drugs, toxins, or virals. The depleted genes will contribute to a specific

phenotype, such as cell death or survival, and thus are selected as

essential targets of chemical and biological agents. Taking advantage

of its high throughput (nearly 20,000 genes at one time) and unbiased

nature, the CRISPR-Cas9 screening has emerged as a handy

technique for identifying the genes or pathways relevant to the

sensitivity or resistance of existing treatments. The determinants of

cell response to a list of anticancer drugs have been identified

successfully through this method, including traditional chemo

agents [Ara-C (34), etoposide (35), lenalidomide (36), and cisplatin

(37), e.g.] or small molecular-targeted drugs such as vemurafenib

(38–40), panobinostat (41), alisertib (42), ceralasertib (43), olaparib

(44–46), selumetinib (47), and trametinib (47).

The Kelch-like ECH-associated protein 1 (KEAP1) is the central

cellular defense module against oxidative stresses. As a cysteine
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thiol-rich sensor of redox stress, KEAP1 binds to and represses NF-

E2-related factor 2 (NRF2) through the ubiquitin-26S proteasome

pathway in quiescent but releases it on exposure to stress. NRF2

then induces the transcription of several cytoprotective genes to

defend against redox insults such as ROS (48). Notably, the

production of ROS contributes to the cytotoxicity of cancer cells,

indicating the significant role KEAP1 plays in therapeutic

resistance. The loss-of-function mutations in KEAP1 confer

radiation resistance in non-small cell lung cancer (NSCLC) (49,

50). Several studies have confirmed that the KEAP1–NRF2 complex

renders chemoresistance in treatments for colorectal cancer,

esophageal squamous cancer, and pancreatic cancer (51–53). The

underlying mechanism of resistance relates to the robust

production of detoxification molecules, including NAD(P)H

quinone dehydrogenase 1 (NQO1), glutathione-S-transferase

(GST), and glutathione (GSH), which conjugate chemo agents

like cisplatin and then excreted (54, 55). Therefore, KEAP1 is a

crucial regulator in cell response to cancer therapy.

In this study, we performed a genome-wide CRISPR-Cas9 loss-

of-function screening on ATO to identify the essential genes and

pathways in cell response to ATO. The enriched screening results

showed that the genes related to metabolism, chemokines and

cytokines production and signaling, and immune system

responses might contribute to cell death induced by ATO in

addition to the effect of ROS. These findings provided a thorough

understanding of mechanistic effects and a broader view of the

potential application of ATO.
2 Materials and methods

2.1 Cells and plasmids

The 293T and HAP1 cells used in screening were kept in our

laboratory. Dulbecco’s Modified Eagle Medium (DMEM, HyClone)

was used for 293T maintenance, and Iscove’s Modified Dulbecco’s

Medium (IMDM, HyClone) for HAP1 cells. The mediums were

supplemented with 10% fetal bovine serum (FBS, NEWZERUM)

and 1% penicillin/streptomycin (HyClone). All cells were

maintained in a humidified, 5% CO2 incubator at 37°C. The

plasmids psPAX2 (RRID: Addgene_12260) and pMD2.G (RRID:

Addgene_12259) were obtained via Addgene. Human Brunello

CRISPR knockout pooled library was a gift generously provided

by David Root and John Doench (RRID: Addgene_73179) (40).
2.2 Genome-wide CRISPR-Cas9 screening

We followed the protocol published by Zhang Feng et al. (56) to

conduct the experiments. We utilized the sgRNA library from

David Root and John Doench (40), the Brunello library. The

plasmid library contains 76,441 gRNAs targeting 19,114 human

genes. We used 293T cells, helper plasmids (psPAX2 and pMD2.G),

and the plasmid library to generate a lentivirus pool. The culture

media of HAP1 cells were replaced with fresh media containing 8

mg/ml polybrene (Beyotime) before lentivirus transfection. To
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maintain the representativity of the library, we transfected the

HAP1 cells at a representation of 500 cells per sgRNA. The

multiplicity of infection (MOI) was 0.3 in this study to ensure

that each cell obtained one sgRNA. Cells were then cultured under 1

mg/ml puromycin (Beyotime) for 7 days and split into two groups

with ATO (2 mM, SLPHARM) or vehicle (DMSO) treatment for 14

days. After propagating to identify sgRNAs enriched or depleted,

the genomic DNAs of harvested cells were extracted by TIANamp

Genomic DNA Kit (#DP304, TIANGEN) and PCR amplified. The

PCR fragments were gel-purified utilizing E.Z.N.A.®Gel Extraction

Kit (#D2500, OMEGA) and sequenced by Novogene (Beijing,

China). The genes enriched or depleted were identified by the

model-based analysis of genome-wide CRISPR-Cas9 knockout

(MAGeCK) software (https://sourceforge.net/projects/mageck/)

with default parameters. The MAGeCK-RRA algorithm counted

each gene’s Robust Rank Aggregation (RRA) score. Essential genes

were identified at p < 0.05 and |log2 fold change| ≥1 by comparing

ATO-treated sgRNA with vehicle-treated sgRNA. Sequencing data

are deposited at Gene Expression Omnibus (GSE218982).
2.3 Functional enrichment analysis

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt, v.2019,

RRID: SCR_006786) is a widely used functional enrichment analysis

web tool (57–60). In this study, WebGestalt was used to conduct

Gene Ontology (GO) enrichment analysis (daily build accessed on

01/14/2019), including biological process (BP), cellular component

(CC), and molecular function (MF) categories. KEGG Orthology

Based Annotation System (KOBAS, v.3.0, RRID: SCR_006350) is a

web server for gene functional annotation and enrichment (61). The

enrichment analysis is based on the ORA (overrepresentation

analysis) method, a simple and frequently used gene set

enrichment method using the Hypergeometric test and Fisher’s

exact test. False discovery rate (FDR) correction (Q-value) was

performed by Benjamini and Hochberg method. In this study, we

used KOBAS and chose three databases, namely, REACTOME (62),

Protein ANalysis THrough Evolutionary Relationships (PANTHER)

(63, 64), and Kyoto Encyclopedia of Genes and Genomes (KEGG)

(65), for cell informative pathway enrichments. The cutoff value was

indicated in figure legends.
2.4 Construction of the protein–protein
network

The Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING, v.11.5, RRID: SCR_005223) database (66) and Cytoscape

(v.3.9.1, RRID: SCR_003032) software (67) were used to establish

and visualize a protein–protein interaction (PPI) network of

depleted and enriched genes identified by the genome-wide

CRISPR-Cas9 screening of ATO. The plugin Molecular COmplex

DEtection (MCODE) (68) in Cytoscape was applied to calculate the

degree of each protein and recognized the key modules and hub

genes with default parameters (degree cutoff at 2, node score cutoff

at 0.2, K-core at 2, and max depth at 100). The hub genes of the top
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cluster identified by MCODE were then analyzed by the plugin

Cluego (69) and CluePedia (70) for REACTOME pathway

enrichment (25.05.2022 version).
2.5 Gene expression profiles, correlation
analysis, and survival analysis

TNMplot (https://tnmplot.com/analysis) is a web analysis tool

focused on differential gene expression in tumor, normal, and

metastatic tissues (71). This database utilizes RNA-seq and

clinical data from GTex, TCGA, and TARGET databases to

analyze gene expression comparison in a selected tumor or pan-

cancer. This study applied this tool to investigate the KEAP1 gene

expression in acute lymphoblastic leukemia (ALL) compared with

normal tissues utilizing TARGET (https://ocg.cancer.gov/

programs/target), a database with comprehensive molecular

characterization and clinical prognosis of childhood cancers. We

also used TNMplot to generate the KEAP1 gene expression profiles

in pan-cancer.

GEPIA2 (RRID: SCR_018294) is a newly developed interactive

web server for analyzing the RNA-seq data of samples from the

GTex and TCGA projects and is widely used for patient survival

analysis (72). This research used this web tool to identify whether

the KEAP1 gene expression was related to prognosis in acute

myeloid leukemia (AML) patients.

The half maximal inhibitory concentration (IC50) values of

ATO in different cell lines were collected from our former study (8)

and Cellminer (NCI-60 project) (73). The KEAP1 expression per

kilobase per million reads log2(FPKM + 1) values were collected

from the NCI-60 project (74) and Depmap expression public 22Q4

(https://depmap.org/portal/). The correlation analyses were

performed using Pearson correlation.
2.6 Virtual screening

A total of 2,506 FDA-approved drugs from DRUGBANK (RRID:

SCR_002700) were involved in the virtual screening. The ligand

database was energy minimized using MMFF force field (steepest

descent) in the open-source OpenBabel software package (http://

openbabel.org/) and saved in mol2 format. The compound library is

then pre-processed and saved in pdbqt format using

prepare_ligand4.py from AutoDock tools (https://ccsb.scripps.edu/

mgltools/).

The crystal structure of the human KEAP1 BTB domain and

Kelch domain was obtained from RCSB PDB (RRID: SCR_012820,

https://www.rcsb.org, PDB ID: 7EXI, 6TYM) (75). Proteins were

pre-processed in PyMol (http://pymol.org/2/, RRID: SCR_000305)

(76) to remove waters and ligands and in AutoDock tools to add

polar hydrogens, charges by Kollman charge, and saved in pdbqt

format. The grid box of the KEAP1 kelch domain was defined by

ligand in 6TYM. The binding pocket of the KEAP1 BTB domain

was predicted by DeepSite (https://www.playmolecule.com/

deepsite/). The grid box was defined by employing AutoDock

tools’ Grid setting feature.
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We used Smina for molecular docking, an open-source

molecular docking software based on AutoDock Vina (https://

vina.scripps.edu) (77–79). Molecular docking parameters in this

study are as follows: exhaustiveness = 8, num_modes = 10,

energy_range = 3, min_rmsd_filter = 1. After the complete

execution of docking, the top 20 minimized affinity ligands were

obtained. Subsequently, the neural-network-based scoring function

(NNScore2) of those 20 ligands was calculated, and the top 10

compounds for each domain with predictive IC50 value were

selected as potential candidates targeting KEAP1 (80). We used

PyMol to visualize the docking position.
2.7 Data visualization and statistical
analysis

Figures 1B, 2B, and 4A were plotted by ImageGP (http://

www.ehbio.com/ImageGP/index.php/Home) (81). The other

figures were visualized as indicated in figure captions. The

methods for the significance test were described in related texts or

figure legends.
3 Results

3.1 Genome-wide CRISPR-Cas9 screening
of arsenic trioxide in HAP1 cells

To recognize the essential genes and pathways related to the

sensitivity or resistance of ATO, we performed a genome-wide

CRISPR-Cas9 knockout loss-of-function screen in the HAP1 cell

line (Figure 1A). We chose this cell model according to its haploid

nature, so that the integrity sister chromatid would not mask the

knockout effect. The Brunello sgRNA library has been previously
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described and targets 19,114 human genes with 76,441 distinct

sgRNAs (40). The transduced cell library was then exposed to 2

mM ATO (IC50 of HAP1 cells to ATO) or DMSO as a control

group. The genomic DNAs were collected, PCR amplified, and

sequenced. Using the MAGeCK tool (82), we examined the data to

determine the relative enrichment or depletion of each sgRNA

compared with the control groups. We mapped the genes whose

deletion resulted in ATO sensitivity (results shown in

Supplementary Table S1). Nine hundred eighty-four genes were

recognized as contributors to the sensitivity to ATO with |log2 fold

change| ≥1 and p < 0.05 (Figure 1B). Among these genes, we

identified 970 positively selected genes whose deletion contributed

to the resistance to ATO or were potential targets as the entrance

of cell responses to ATO (Figure 1B, red dots). The top genes

ranked by RRA score were listed and plotted (Figure 1C). These

genes included Kelch ECH associating protein 1 (KEAP1), a

sensor of oxidative stress, which has been confirmed to

contribute to the progression and resistance to chemo- and

radiotherapy in many types of cancers (83, 84). BBC3, coding

BCL2-binding component involved in p53 signaling apoptosis,

was also highly selected. Genes involved in the endoplasmic

reticulum (ER) stress were also found in the top-ranked

candidates, PRKCSH and EIF2AK1. Other genes positively

selected in this study, including C19orf43, PIGA, NTN1,

UBALD1, and G6PC, have not yet been related to cell response

to ATO. Meanwhile, we recognized 15 negatively selected genes

under the treatment of ATO (Figure 1B, green dots). The deletion

of this group of genes can improve the sensitivity to ATO and are

potential targets in combination with ATO to overcome the

resistance to ATO. The top 10 selected genes ranked by RRA

score were listed in Figure 1D. The genes involved in cell cycle

regulation should be identified in negativity selection, because the

deletions of this group of genes were bound to induced

cytotoxicity. In this study, we recognized FAM110A, localized to
B C D

A

FIGURE 1

Genome-wide CRISPR-Cas9 screening identified key modulators attributing to ATO sensitivity. (A) The schematic outline of the genome-wide
CRISPR-Cas9 screening. (B) The volcano plot of genes significantly enriched (red dots) or depleted (green dots) in ATO treatment groups compared
with vehicle. The cutoff threshold was |log2 fold change| ≥1 and P < 0.05. (C) The positively selected genes in ATO treatment groups compared with
vehicle. (D) The negatively selected genes in ATO treatment groups compared with vehicle.
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centrosomes and accumulated at the microtubule organization

center, and AFAP1L2, regulating the mitotic cell cycle, as cell

cycle–related genes in response to ATO. We also identified several

genes functioning in cell adhesion. GNA14, encoding a member of

the guanine nucleotide binding, or G protein family, was a well-

known target in hepatocellular carcinoma and vascular tumors

(85, 86). The protein encoded by NLGN4Y (Neuroligin 4 Y-

Linked) is presented at the postsynaptic side of the synapse (87).

Another vital cell surface adhesion molecule, SELL (Selectin L, or

LAM-1), mediated cell adhesion by binding to glycoproteins on

neighboring cells in a calcium-dependent manner, a key regulator

in viral infection (88–91). In addition, a tumor suppressor

negatively regulating MYC function in lung cancer, MXI1, was

also identified in the selection (92). The exact function of the other

genes in the top rank, FAM174A, ARRDC2, and ARMS2,

remained unknown in ATO or cancer research.

3.2 Enrichment analysis of pathways
relating to arsenic trioxide sensitivity

To understand the overview mechanism of cell response in

sensitivity to ATO, we performed enrichment analysis on the 984
Frontiers in Oncology 05
genes recognized with |log2 fold change| ≥1 and P < 0.05 in

screening. First, we applied WebGestalt for GO analysis to

annotate genes products and characteristics (Figure 2A). GO

terms with a P < 0.05 were displayed. The top GO enrichment

items were classified into three functional categories, namely, BP

(12 items, Figure 2A, red panel), CC (21 items, Figure 2A, blue

panel), andMF (18 items, Figure 2A, green panel). These genes were

mainly enriched in biological regulation, metabolic process,

response to stimulus, multicellular organismal process, and

developmental process referring to BP. The most enriched CC

annotations included membrane, nucleus, protein-containing

complex, cytosol, and membrane-enclosed lumen. As for MF,

these genes were significantly involved in protein binding, ion

binding, nucleic acid binding, hydrolase activity, and

transferase activity.

Next, we utilized KOBAS and performed the pathway

enrichment analysis. We chose three databases (REACTOME,

PANTHER, and KEGG) for their enriched tactics and annotations

(Figure 2B). REACTOME focused on the reactions and grouped

entities into a network based on their reaction participation. Most

of the enriched pathways in this study were linked with

metabolism, including glucagon signaling in metabolic
BA

FIGURE 2

The enrichment analysis of depleted and enriched genes was identified by screening. (A) The bar charts of Gene Ontology (GO) enriched terms. The
enrichment analysis was performed and plotted by WebGestalt. The top most relevant GO terms with an adjusted P < 0.05 were shown in the
charts. (B) Pathway enrichment analysis. The enrichment analysis was performed by KOBAS. REACTOME, PANTHER, and KEGG-enriched terms were
presented separately. The color demonstrated the Q-value of each pathway, and the size of the dots demonstrated the count of genes related to
the pathway.
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regulation and metabolism of proteins, followed by GPCR

downstream signaling events, cytokine signaling, immune

system, and transcription events. PANTHER clustered proteins

through evolutionary and functional relationships. The

enrichment study using this database revealed that the cell

response to ATO was significantly relevant to pyrimidine

metabolism, Hedgehog signaling pathway, and interferon

−gamma signaling pathway. In addition, the pathways involving

the metabotropic glutamate receptor groups and a broad spectrum

of chemokine and cytokine signaling (p38 MAPK, Ras, TGF−beta,

FGF, and Wnt) were also enriched. It should be noted that the

oxidative stress response and apoptosis signaling pathway were

also included, which were consistent with the top-rank gene result

in this study and the known mechanism. KEGG signaling pathway

annotations, one of the most frequently used open databases

integrating genomic and systemic functional information, were

also analyzed. The enriched pathways were associated with a series

of metabolism processes, including carbohydrate digestion and

absorption, adipocytokine, insulin, estrogen signaling pathways,

and Cushing syndrome. The immune-related pathways (Fc

epsilon RI signaling, Fc gamma R−mediated phagocytosis, and

neurotrophin signaling pathway) and chemokine and cytokine

signals (TGF−beta, cGMP−PKG, Rap1, MAPK, and PI3K-Akt)

were also included. Therefore, these results demonstrated that the

sensitivity of ATO could be affected by varied cell responses

relating to metabolism, chemokines and cytokines, and the

immune system, indicating that ATO was an anticancer

candidate with broad targets and functions.
3.3 Hub genes recognized by a protein–
protein interaction network

To understand the relationship between genes recognized in

the screening, we performed a PPI network analysis. PPI assessed

the physical and functional connections between the proteins of

target genes to provide new aspects of the selected genes. The PPI

network was illustrated using the STRING website and visualized
Frontiers in Oncology 06
in Cytoscape software (Figure 3A, left). The stability of the entire

network mostly depends on nodes (genes in this context) with a

higher degree of connectivity, that is, the core module. To

recognize the significant gene modules in this network, we used

the plugin MCODE with default parameters and identified a

cluster with the highest hub score of 6.24 (Figure 3A, right). This

essential module contained 26 hub genes, including important

transcription factors (ATF2 and E2F4) and kinases (FLT3 and

AKT1). To explore the functional relationships between hub

genes, we performed REACTOME pathway enrichment analysis

with the plugins Cluego and CluePedia (Figure 3B). The hub

genes were mainly enriched in CREB1 phosphorylation by

activating Adenylate Cyclase, FOXO-mediated transcription,

and RUNX1 interactions. These results revealed that ATO was

significantly related to transcription factor activity.
3.4 KEAP1 as a critical modulator in
sensitivity to arsenic trioxide

A similar genome-wide CRISPR-Cas9 screening focused on

ATO has been performed by Amin Sobh et al. They utilized a

different sgRNA library (GeCKO v2 sgRNA library containing

65,383 sgRNA targeting approximately 19,000 human genes) and

cell lines [K562, a Chronic Myelogenous Leukemia (CML) cell line

derived from human bone marrow] and identified a total of 151

genes with significance (93). We speculated that the essential genes

relating to ATO sensitivity should be recognized in these two

screens and compared the enriched or depleted genes in our

study with the another. The Venn diagram showed that the

overlapping genes were KEAP1, ZNF844, SLC22A18AS, CCNL2,

and EIF2AK1 (Figure 4A). Among these five genes, KEAP1 was top

ranked in both two studies. It seemed that the deletion of KEAP1

significantly damaged the cell death to ATO and may be a key

entrance target of ATO to trigger cell responses. We reviewed the

counts of sgRNAs targeting KEAP1 in different groups and found

that three of four sgRNAs were significantly enriched in ATO-

treated groups (Figure 4B). In addition, the IC50 values of ATO

were negatively correlated with KEAP1 expression in leukemic cell
BA

FIGURE 3

Protein–protein interaction (PPI) network among depleted or enriched genes. (A) The hub genes of the PPI. The PPI network was generated by the
STRING database with default settings and was built by Cytoscape. The cluster of hub genes within the red frame was calculated using MCODE in
Cytoscape with the default setting. (B) The top enriched REACTOME pathways of the hub genes. The enrichment analysis was performed and
visualized by Cytoscape using the plugin Cluego and CluePedia. The sector graphs indicated the portion of related genes compared with all the
enriched pathway genes.
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lines (Figure 4C). These results illustrated that KEAP1 did play a

role in cell sensitivity to ATO.

We then investigated the clinical prognosis effect of KEAP1. Given

that ATO was primarily used in hematological malignance instead of

another disease, we first assessed the KEAP1 expressions in leukemia

patients from the TARGET database, which contained genetic

characteristics and clinical information of pediatric acute ALL
Frontiers in Oncology 07
patients. We found that the KEAP1 expression was higher in acute

leukemias of ambiguous lineage (ALAL) patients compared with

normal (p < 0.05) (Figure 4D). However, the expression did not

affect the overall survival (OS) or disease-free survival (DFS) (data

not shown). In addition, no expression difference was shown in other

types of leukemia fromTARGET (data not shown). Then, we tested the

effect on AML from the TCGA database utilizing GEPIA2. The high
B C

D E

F

G

A

FIGURE 4

KEAP1 was a vital target of ATO with clinical significance in pan-cancer. (A) The Venn diagram of overlapping genes between two studies plotted by
ImageGP. (B) The read counts of sgRNAs targeting KEAP1 in screening. (C) The correlation analysis of KEAP1 gene expression and sensitivity to ATO.
Gene expression showed the log2 (FPKM + 1) values. The correlation analyses were performed using Pearson correlation. (D) The box plot derived
from KEAP1 expressions data for acute leukemias of ambiguous lineage (ALAL) compared with normal samples from non-cancerous pediatric
tissues. The plot was generated by TNMplot. Significant differences were tested by the Mann-Whitney U test. (E) The Kaplan–Meier survival plot
comparing overall survival (OS) with high and low KEAP1 expression in AML patients generated using GEPIA2. Significance was tested by log-rank
test. (F) The pan-cancer gene expression profiles of KEAP1 generated by TNMplot. Significant differences (P < 0.05) by the Mann-Whitney U test
were marked with red*. (G) The docking poses of two drugs. The yellow dot lines indicate hydrogen bonds. The blue sticks represent residues.
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expression of KEAP1 predicted poor OS in AML patients (Figure 4E).

Finally, we examined the expression in pan-cancer from TCGA and

found that all the tumors except for the testis were of higher KEAP1

expression compared with normal tissues (Figure 4F). These results

suggested that ATO may be a potential therapy in treating pan-cancer

through a mechanism involving KEAP1.

Considering that anticancer therapy was usually performed in

combination, we were interested in what drugs may interact with

KEAP1 and be a potential sensitizer or inhibitor when combined with

ATO. To uncover these drug-gene interactions, we performed virtual

screening for KEAP1 and screened for 2,506 FDA-approved drugs

from DRUGBANK. The drugs with the highest affinity to the domain

of KEAP1 were listed (Table 1). Among these drugs, we were

particularly interested in etoposide and eltrombopag. Etoposide

(VP-16) is a topoisomerase II inhibitor and an essential

chemotherapeutic agent. It is the frontline drug used against several

types of cancer, including pediatric ALL (94) and AML (95).

Moreover, eltrombopag is a thrombopoietin (TPO) receptor

agonist for the treatment of aplastic anemia (96) and

chemotherapy-induced thrombocytopenic patients (97, 98).

Therefore, these drugs may interfere with the therapeutic effect of

ATO during cancer treatment. The docking poses of these two drugs

with the KEAP1 BTB domain were shown in Figure 4G. These results

indicated a potential interaction with ATO through KEAP1.
Frontiers in Oncology 08
4 Discussion

Our work uncovered a vast landscape on which genetic

perturbations attributed to the sensitivity to ATO. ATO

attenuates the induction of ROS (99). The ability of ATO to

promote ROS formation and ER-mitochondria cross-response has

been confirmed by a series of experimental evidence in normal cells

or cancer cells (100, 101), eventually leading to apoptosis or

autophagy. KEAP1, the top-ranked gene in this study, was a key

regulator in response to oxidative stress. It interacts with NRF2 and

dissociates after sensing redox, leading to the transportation of

NRF2 from the cytoplasm to the nucleus. This reaction results in a

cascade of events against the redox stress. Our result suggested that

KEAP1 is the most vital regulator in response to ATO instead of

other genes involved in oxidative reactions. The loss-of-function of

KEAP1 causes robust transportation of NRF2 and activates the

antioxidant reactions, defending cells against ATO. Previous studies

have also clarified that the NRF2-associated activation and

downstream GSH biosynthesis accelerated arsenic efflux and

ameliorated the cytotoxicity of ATO (83). The exact underlying

mechanism remained to be explored. As indicated in this study,

KEAP1 was differently expressed in tumors and related to the

prognosis of certain types of cancers. It seems that ATO can be

potentially applied to other cancers as a candidate therapy.
TABLE 1 The results of the virtual screening of KEAP1.

Domain Drugbank
ID

Name CAS_number Minimized Affinity NNS2_SCORE

Kelch domain DB00278 Argatroban 74863-84-6 -11.0561628 12.05 nM

DB00966 Telmisartan 144701-48-4 -10.573246 2.49 nM

DB01126 Dutasteride 164656-23-9 -10.6675119 1.84 nM

DB09074 Olaparib 763113-22-0 -11.1431427 7.96 nM

DB09280 Lumacaftor 936727-05-8 -10.7092714 10.16 nM

DB09372 Tannic acid 1401-55-4 -10.780798 17.21 nM

DB11262 Bisoctrizole 103597-45-1 -10.5385208 4.29 nM

DB11986 Entrectinib 1108743-60-7 -10.8520021 488.86 pM

DB14703 Dexamethasone metasulfobenzoate 16978-57-7 -11.2371359 2.74 nM

DB15982 Berotralstat 1809010-50-1 -11.0051241 25.75 nM

BTB domain DB00444 Teniposide 29767-20-2 -7.10783052 7.76 µM

DB00759 Tetracycline 60-54-8 -6.6632781 23.28 µM

DB00773 Etoposide 33419-42-0 -6.87911749 4.51 µM

DB00820 Tadalafil 171596-29-5 -6.69839001 8.29 µM

DB06210 Eltrombopag 496775-61-2 -6.55944538 913.0 nM

DB08995 Diosmin 520-27-4 -6.6483264 17.11 µM

DB09280 Lumacaftor 936727-05-8 -6.80042887 2.33 µM

DB12001 Abemaciclib 1231929-97-7 -6.57445669 829.46 nM

DB14703 Dexamethasone metasulfobenzoate 16978-57-7 -6.78505754 516.76 nM

DB15690 Fluoroestradiol F-18 94153-53-4 -6.6101265 8.64 µM
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The other enriched pathways in this study were consistent with

the current understanding of sensitivity and resistance to ATO. The

metabolic process was enriched in GO and pathway analysis. ATO

has been identified with an inhibitory effect on the glycolytic

pathway (102). Lower glucose uptake and the distinct metabolical

pattern were recognized in ATO-resistant cell lines (33, 103). Abu

Bakar Noraini et al. found that ATO altered lipids metabolites,

particularly arachidonic acid and docosahexaenoic acid (104). We

also linked chemokines and cytokines productions with ATO. The

chemokine-induced differentiation syndrome is one of the most

common causes of death in APL patients, formerly known as a

retinoic acid syndrome (105). Nevertheless, further evidence

showed that ATO could induce chemokine production as a single

agent (106). Considering that ATO-induced apoptosis is mediated

by PI3K/Akt signaling pathway (107–109), which was also

identified in our study, the involvement of ATO in regulating

chemokine and cytokine may be of wide spectrum and related to

chemoattraction and inflammation. Another vital pathway enriched

in this study was the immune system. We performed enrichment

analysis in three different databases. REACTOME and PANTHER

enriched the immune system pathway, and we identified interferon-

gamma and CCKR as immune-related signaling pathways. Fc

epsilon RI signaling and Fc gamma R−mediated phagocytosis

were enriched by KEGG as well. The cross talk between ATO and

the immune system has not been clarified yet. Srivastava, Ritesh K

et al. reported that ATO regulated macrophage innate immune

function via unfolded protein response (UPR) signaling and

activating transcription factor 4 (ATF4) (110, 111). ATO also

exerts its efficacy on regulatory T cells (112–114). Chen Jinfeng

et al. recently demonstrated that ATO was highly immunogenic and

increased antigenicity and adjuvanticity after preconditioning ex

vivo (115). These corroborated observations shed light on the

correlation between ATO and cancer immunity and a promising

therapeutic agent for autoimmune diseases (116).

The haploid cells that we used as cell models in this study,

HAP1 cells, suit the aim of genetics research. The HAP1 cell line

contains only one copy of the genome and shows the unmasked

phenotype of different variants. In addition, it has a rapid doubling

time and is sensitive to transfection, making it a handy and

revolutionary model for gene editing. It has been applied in

screens on resistance to a spectrum of anticancer drugs (117–

120). The screens in HAP1 cells draw drug-specific conclusions

instead of a cell type–specific character, making the interpretation

easier in pan-caner. As mentioned, Amin Sobh et al. screened ATO

using a different sgRNA library and CML cell lines (93). Although

both studies identified that the disruption of KEAP1 markedly

increased ATO tolerance, the genes involved in selenocysteine

metabolism were recognized and confirmed to be resistant in

their study but not ours. These differences may partly be due to

the different cell lines and thresholds that we employed.

Our research showed that CRISPR-based functional genomics

screening could be utilized to understand the molecular processes

influencing sensitivity to ATO. The results may have implications

for using ATO in chemotherapy in situations other than treating

APL. However, further studies are needed to validate the relevance

of this study, especially in cell-specific contexts.
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71. Bartha Á, Győrffy B. TNMplot.com: a web tool for the comparison of gene
expression in normal, tumor and metastatic tissues. Int J Mol Sci (2021) 22(5):2622. doi:
10.3390/ijms22052622

72. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for
large-scale expression profiling and interactive analysis. Nucleic Acids Res (2019) 47
(W1):W556–w60. doi: 10.1093/nar/gkz430

73. Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, et al.
CellMiner: a web-based suite of genomic and pharmacologic tools to explore
transcript and drug patterns in the NCI-60 cell line set. Cancer Res (2012) 72
(14):3499–511. doi: 10.1158/0008-5472.CAN-12-1370

74. Reinhold WC, Varma S, Sunshine M, Elloumi F, Ofori-Atta K, Lee S, et al. RNA
Sequencing of the NCI-60: integration into CellMiner and CellMiner CDB. Cancer Res
(2019) 79(13):3514–24. doi: 10.1158/0008-5472.CAN-18-2047

75. Ma B, Lucas B, Capacci A, Lin EY, Jones JH, Dechantsreiter M, et al. Design,
synthesis and identification of novel, orally bioavailable non-covalent Nrf2 activators.
Bioorganic medicinal Chem letters. (2020) 30(4):126852. doi: 10.1016/
j.bmcl.2019.126852

76. Schrodinger LLC. The PyMOL molecular graphics system, version 1.8. 2015.

77. Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring
with smina from the CSAR 2011 benchmarking exercise. J Chem Inf modeling. (2013)
53(8):1893–904. doi: 10.1021/ci300604z

78. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock vina 1.2.0: new
docking methods, expanded force field, and Python bindings. J Chem Inf modeling
(2021) 61(8):3891–8. doi: 10.1021/acs.jcim.1c00203

79. Trott O, Olson AJ. AutoDock vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and multithreading. J
Comput Chem (2010) 31(2):455–61. doi: 10.1002/jcc.21334

80. Durrant JD, McCammon JA. NNScore 2.0: a neural-network receptor-ligand
scoring function. J Chem Inf modeling (2011) 51(11):2897–903. doi: 10.1021/ci2003889

81. Chen T, Liu Y-X, Huang L. ImageGP: an easy-to-use data visualization web
server for scientific researchers. iMeta (2022) 1(1):. doi: 10.1002/imt2.5

82. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust
identification of essential genes from genome-scale CRISPR/Cas9 knockout screens.
Genome Biol (2014) 15(12):554. doi: 10.1186/s13059-014-0554-4

83. Nishimoto S, Suzuki T, Koike S, Yuan B, Takagi N, Ogasawara Y. Nrf2 activation
ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells
through increased glutathione levels and arsenic efflux from cells. Toxicol Appl
Pharmacol (2016) 305:161–8. doi: 10.1016/j.taap.2016.06.017

84. Baird L, Kensler TW, Yamamoto M. Novel NRF2-activated cancer treatments
utilizing synthetic lethality. IUBMB Life (2022) 74(12):1209–31. doi: 10.1002/iub.2680

85. Ye J, Lin Y, Gao X, Lu L, Huang X, Huang S, et al. Prognosis-related molecular
subtypes and immune features associated with hepatocellular carcinoma. Cancers
(2022) 14(22):5781. doi: 10.3390/cancers14225721

86. Jansen P, Müller H, Lodde GC, Zaremba A, Möller I, Sucker A, et al. GNA14,
GNA11, and GNAQ mutations are frequent in benign but not malignant cutaneous
vascular tumors. Front Genet (2021) 12:663272. doi: 10.3389/fgene.2021.663272

87. Nguyen TA, Lehr AW, Roche KW. Neuroligins and neurodevelopmental
disorders: X-linked genetics. Front synaptic Neurosci (2020) 12:33. doi: 10.3389/
fnsyn.2020.00033

88. Alon R, Chen S, Puri KD, Finger EB, Springer TA. The kinetics of l-selectin
tethers and the mechanics of selectin-mediated rolling. J Cell Biol (1997) 138(5):1169–
80. doi: 10.1083/jcb.138.5.1169

89. Segura J, He B, Ireland J, Zou Z, Shen T, Roth G, et al. The role of l-selectin in
HIV infection. Front Microbiol (2021) 12:725741. doi: 10.3389/fmicb.2021.725741

90. Watany MM, Abdou S, Elkolaly R, Elgharbawy N, Hodeib H. Evaluation of
admission levels of p, e and l selectins as predictors for thrombosis in hospitalized
COVID-19 patients. Clin Exp Med (2022) 22(4):567–75. doi: 10.1007/s10238-021-
00787-9

91. Bennett TA, Edwards BS, Sklar LA, Rogelj S. Sulfhydryl regulation of l-selectin
shedding: phenylarsine oxide promotes activation-independent l-selectin shedding
from leukocytes. J Immunol (Baltimore Md: 1950). (2000) 164(8):4120–9. doi:
10.4049/jimmunol.164.8.4120

92. Huang Y, Yang X, Lu Y, Zhao Y, Meng R, Zhang S, et al. UBE2O targets Mxi1 for
ubiquitination and degradation to promote lung cancer progression and
radioresistance. Cell Death differentiation. (2021) 28(2):671–84. doi: 10.1038/s41418-
020-00616-8
frontiersin.org

https://doi.org/10.1038/s41586-018-0291-z
https://doi.org/10.1038/s41586-018-0291-z
https://doi.org/10.1038/s41467-020-19961-w
https://doi.org/10.1186/s13073-018-0600-z
https://doi.org/10.1152/physrev.00023.2017
https://doi.org/10.1021/acschembio.6b00651
https://doi.org/10.1021/acschembio.6b00651
https://doi.org/10.1158/2159-8290.CD-20-0282
https://doi.org/10.1158/2159-8290.CD-20-0282
https://doi.org/10.1038/s41418-019-0303-z
https://doi.org/10.1593/neo.11750
https://doi.org/10.1097/MPA.0b013e3181c31314
https://doi.org/10.1371/journal.pone.0081162
https://doi.org/10.1016/S0021-9258(20)80702-9
https://doi.org/10.1038/nprot.2017.016
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1093/nar/gkx356
https://doi.org/10.1093/nar/gkt439
https://doi.org/10.1093/nar/gki475
https://doi.org/10.1093/nar/gkab447
https://doi.org/10.1093/nar/gkab1028
https://doi.org/10.1093/nar/gks1118
https://doi.org/10.1002/pro.4218
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1093/bioinformatics/btt019
https://doi.org/10.3390/ijms22052622
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.1158/0008-5472.CAN-12-1370
https://doi.org/10.1158/0008-5472.CAN-18-2047
https://doi.org/10.1016/j.bmcl.2019.126852
https://doi.org/10.1016/j.bmcl.2019.126852
https://doi.org/10.1021/ci300604z
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1021/ci2003889
https://doi.org/10.1002/imt2.5
https://doi.org/10.1186/s13059-014-0554-4
https://doi.org/10.1016/j.taap.2016.06.017
https://doi.org/10.1002/iub.2680
https://doi.org/10.3390/cancers14225721
https://doi.org/10.3389/fgene.2021.663272
https://doi.org/10.3389/fnsyn.2020.00033
https://doi.org/10.3389/fnsyn.2020.00033
https://doi.org/10.1083/jcb.138.5.1169
https://doi.org/10.3389/fmicb.2021.725741
https://doi.org/10.1007/s10238-021-00787-9
https://doi.org/10.1007/s10238-021-00787-9
https://doi.org/10.4049/jimmunol.164.8.4120
https://doi.org/10.1038/s41418-020-00616-8
https://doi.org/10.1038/s41418-020-00616-8
https://doi.org/10.3389/fonc.2023.1178686
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1178686
93. Sobh A, Loguinov A, Yazici GN, Zeidan RS, Tagmount A, Hejazi NS, et al.
Functional profiling identifies determinants of arsenic trioxide cellular toxicity.
Toxicological sciences: an Off J Soc Toxicology. (2019) 169(1):108–21. doi: 10.1093/
toxsci/kfz024

94. Stutterheim J, Sluis I, Lorenzo Pd, Alten J, Ancliffe P, Attarbaschi A, et al.
Clinical implications of minimal residual disease detection in infants with KMT2A-
rearranged acute lymphoblastic leukemia treated on the interfant-06 protocol. J Clin
Oncol (2021) 39(6):652–62. doi: 10.1200/JCO.20.02333

95. Elsayed AH, Cao X, Mitra AK, Wu H, Raimondi S, Cogle C, et al. Polygenic ara-
c response score identifies pediatric patients with acute myeloid leukemia in need of
chemotherapy augmentation. J Clin Oncol (2022) 40(7):772–83. doi: 10.1200/
JCO.21.01422

96. Peffault de Latour R, Kulasekararaj A, Iacobelli S, Terwel SR, Cook R, Griffin M,
et al. Eltrombopag added to immunosuppression in severe aplastic anemia. New Engl J
Med (2022) 386(1):11–23. doi: 10.1056/NEJMoa2109965

97. Mittelman M, Platzbecker U, Afanasyev B, Grosicki S, Wong RSM,
Anagnostopoulos A, et al. Eltrombopag for advanced myelodysplastic syndromes or
acute myeloid leukaemia and severe thrombocytopenia (ASPIRE): a randomised,
placebo-controlled, phase 2 trial. Lancet Haematology. (2018) 5(1):e34–43. doi:
10.1016/S2352-3026(17)30228-4

98. Zhu Q, Yang S, ZengW, Li M, Guan Z, Zhou L, et al. A real-world observation of
eltrombopag and recombinant human thrombopoietin (rhTPO) in lymphoma patients
with chemotherapy induced thrombocytopenia. Front Oncol (2021) 11:701539. doi:
10.3389/fonc.2021.701539

99. Hoang DH, Buettner R, Valerio M, Ghoda L, Zhang B, Kuo YH, et al. Arsenic
trioxide and venetoclax synergize against AML progenitors by ROS induction and
inhibition of Nrf2 activation. Int J Mol Sci (2022) 23(12):6568. doi: 10.3390/
ijms23126568

100. Cantoni O, Zito E, Guidarelli A, Fiorani M, Ghezzi P. Mitochondrial ROS, ER
stress, and Nrf2 crosstalk in the regulation of mitochondrial apoptosis induced by
arsenite. Antioxidants (Basel Switzerland) (2022) 11(5):1034. doi: 10.3390/
antiox11051034

101. Masciarelli S, Capuano E, Ottone T, Divona M, De Panfilis S, Banella C, et al.
Retinoic acid and arsenic trioxide sensitize acute promyelocytic leukemia cells to ER
stress. Leukemia (2018) 32(2):285–94. doi: 10.1038/leu.2017.231

102. Zhang T, Lu H, Li W, Hu R, Chen Z. Identification of arsenic direct-binding
proteins in acute promyelocytic leukaemia cells. Int J Mol Sci (2015) 16(11):26871–9.
doi: 10.3390/ijms161125994

103. Balasundaram N, Ganesan S, Chendamarai E, Palani HK, Venkatraman A,
Alex AA, et al. Metabolic adaptation drives arsenic trioxide resistance in acute
promyelocytic leukemia. Blood advances. (2022) 6(2):652–63. doi: 10.1182/
bloodadvances.2021005300

104. Abu Bakar N, Wan Ibrahim WN, Che Abdullah CA, Ramlan NF, Shaari K,
Shohaimi S, et al. Embryonic arsenic exposure triggers long-term behavioral
impairment with metabolite alterations in zebrafish. Toxics (2022) 10(9):493. doi:
10.3390/toxics10090493

105. de la Serna J, Montesinos P, Vellenga E, Rayón C, Parody R, León A, et al.
Causes and prognostic factors of remission induction failure in patients with acute
promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood
(2008) 111(7):3395–402. doi: 10.1182/blood-2007-07-100669

106. Luesink M, Pennings JL, Wissink WM, Linssen PC, Muus P, Pfundt R, et al.
Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute
Frontiers in Oncology 12
promyelocytic leukemia: triggering the differentiation syndrome. Blood (2009) 114
(27):5512–21. doi: 10.1182/blood-2009-02-204834

107. Bashash D, Delshad M, Riyahi N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A,
Momeny M. Inhibition of PI3K signaling pathway enhances the chemosensitivity of
APL cells to ATO: proposing novel therapeutic potential for BKM120. Eur J Pharmacol
(2018) 841:10–8. doi: 10.1016/j.ejphar.2018.10.007

108. Chen QY, Costa M. PI3K/Akt/mTOR signaling pathway and the biphasic effect
of arsenic in carcinogenesis. Mol Pharmacol (2018) 94(1):784–92. doi: 10.1124/
mol.118.112268

109. Li Y, Qu X, Qu J, Zhang Y, Liu J, Teng Y, et al. Arsenic trioxide induces
apoptosis and G2/M phase arrest by inducing cbl to inhibit PI3K/Akt signaling and
thereby regulate p53 activation. Cancer letters. (2009) 284(2):208–15. doi: 10.1016/
j.canlet.2009.04.035

110. Srivastava RK, Li C, Chaudhary SC, Ballestas ME, Elmets CA, Robbins DJ, et al.
Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated
macrophage innate immune function disruption. Toxicol Appl Pharmacol (2013) 272
(3):879–87. doi: 10.1016/j.taap.2013.08.004

111. Srivastava RK, Li C, Wang Y, Weng Z, Elmets CA, Harrod KS, et al. Activating
transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated
impairment of macrophage innate immune functions. Toxicol Appl Pharmacol
(2016) 308:46–58. doi: 10.1016/j.taap.2016.07.015

112. Gao Q, Jiang J, Chu Z, Lin H, Zhou X, Liang X. Arsenic trioxide inhibits tumor-
induced myeloid-derived suppressor cells and enhances T-cell activity. Oncol letters.
(2017) 13(4):2141–50. doi: 10.3892/ol.2017.5679

113. Xu W, Li X, Quan L, Yao J, Mu G, Guo J, et al. Arsenic trioxide decreases the
amount and inhibits the function of regulatory T cells, which may contribute to its
efficacy in the treatment of acute promyelocytic leukemia. Leukemia lymphoma. (2018)
59(3):650–9. doi: 10.1080/10428194.2017.1346253

114. Wang L, Wang R, Fan L, Liang W, Liang K, Xu Y, et al. Arsenic trioxide is an
immune adjuvant in liver cancer treatment. Mol Immunol (2017) 81:118–26. doi:
10.1016/j.molimm.2016.12.001

115. Chen J, Jin Z, Zhang S, Zhang X, Li P, Yang H, et al. Arsenic trioxide elicits
prophylactic and therapeutic immune responses against solid tumors by inducing
necroptosis and ferroptosis. Cell Mol Immunol (2022) 20(1):51–64. doi: 10.1038/
s41423-022-00956-0
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