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Background: Previous genetic-epidemiological studies considered TERT

(rs2736100), CCDC26 (rs4295627), CDKN2A/B (rs4977756) and RTEL1

(rs6010620) gene polymorphisms as the risk factors specific to glioma.

However, the data samples of previous genetic-epidemiological studies are

modest to determine whether they have definite association with glioma.

Method: The study paid attention to systematically searching databases of

PubMed, Embase, Web of Science (WoS), Scopus, Cochrane Library and

Google Scholars. Meta-analysis under 5 genetic models, namely recessive

model (RM), over-dominant model (O-DM), allele model (AM), co-dominant

model (C-DM) and dominant model (DM) was conducted for generating odds

ratios (ORs) and 95% confidence intervals (CIs). That was accompanied by

subgroup analyses according to various racial groups. The software STATA 17.0

MP was implemented in the study.

Result: 21 articles were collected. According to data analysis results, in four

genetic models (AM, RM, DM and C-DM) TERT gene rs2736100 polymorphism,

CCDC26 gene rs4295627 polymorphism, CDKN2A/B gene rs4977756

polymorphism and RTEL1 gene rs6010620 polymorphisms increased the risk

of glioma in Caucasians to different degrees. In Asian populations, the CCDC26

gene rs4295627 polymorphism and CDKN2A/B gene rs4977756 polymorphism

did not exhibit a relevance to the risk of glioma. It is suggested to cautiously

explain these results as the sample size is small.
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Conclusion: The current meta-analysis suggested that the SNP of TERT

(rs2736100), CCDC26 (rs4295627), CDKN2A/B (rs4977756) and RTEL1

(rs6010620) genes in glioma might increase risk of glioma, but there are ethnic

differences. Further studies evaluating these polymorphisms and glioma risk are

warranted.
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1 Introduction

Gliomas, which occupy more than 80% primary malignant

tumors of central nervous system, are presumably caused by the

aberrant growth of glial cells, mostly in the brain and spinal cord

(1). Based on the cell type from which they originate, gliomas may

be divided into several categories such astrocytomas,

oligodendrogliomas, and ependymomas. The World Health

Organization first used molecular pathology in the diagnostic

classification of gliomas in 2016(2). Adult diffuse glioma currently

has 3 molecular subtypes, according to the most recent 2021

vers ion : g l iob las toma mul t i forme (GBM), i soc i t ra te

dehydrogenase-wild-type (IDH-W-T); astrocytoma, IDH-mutant;

and oligodendroglioma, IDH-mutant and 1p/19q-codeleted (3).

Major current treatment of glioma is the combination of surgery

with radiotherapy and chemotherapy, and for certain patients,

immunotherapy and targeted therapy were implemented

additionally (4–8). Nevertheless, the median survival time for

gliomas is approximate 12 to 15 months merely, and both

mortality and morbidity are tremendous (9).

Glioma occurs due to both environmental factors and genetic

factors, and its precise pathogenesis remains opaque (10, 11). Risk

factors for glioma may include smoking, nitrosamines, race,

ionizing radiation, and brain injuries (12). Single nucleotide

polymorphisms (SNPs) in genetic variables partially increase

glioma risk to some extent (10). Genome-related studies have

materialized some advancements in the identification of the risk

of glioma with the development of genomic research, which reveal

the link between numerous SNPs and glioma risk, including

5p15.33 (rs2736100, TERT), 8q24.21 (rs4295627, CCDC26),

9p21.3 (rs4977756, CDKN2A/B), and 20q13.33 (rs6010620,

RTEL1) (10, 13, 14). Telomerase reverse transcriptase (TERT) is

crucial for telomerase activity in preserving telomeres and cellular

immortality (15). In contrast, coiled-coil domain containing 26

(CCDC26) downregulates telomerase activity and increases

apoptosis. Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B)

can partially control the cell cycle. Regulator of telomere elongation

helicase 1 (RTEL1), as a DNA helicase, can inhibit homologous

recombination for directly maintaining the genomic stability (16).

These genes all have varied degrees of influence on glioma

pathogenesis. Due to limited sample sizes or relatively

homogeneous ethnicities, current literature investigating the
02
relationship between glioma and SNPs susceptibility frequently

resulted in inconsistent findings.

In this meta-analysis, we expanded sample size by enrolling up

21 articles and used five genetic models to examine the relationship

between glioma and SNPs of TERT (RS2736100), CCDC26

(RS4295627), CDKN2A/B (RS497756), and RTEL1 (rs6010620).
2 Materials and methods

The meta-analysis in the study was performed as per the

Preferred Reporting Items for Systematic reviews and Meta-

Analysis version.
2.1 Literature retrieval

Literature search was carried out comprehensively in eight

databases, namely PubMed, Embase, WoS, Scopus, Cochrane

Library, and Google Scholars. The MeSH term were as follows:

“( (Nucleot ide Polymorphism, Single) OR (SNP) OR

(Polymorphisms, Single Nucleotide) OR (SNP) OR (SNP) OR

(SNPs) OR (variation) OR (mutation)) AND ((Gliomas)

OR (Glioma) OR (Glial Cell Tumors) OR (Glial Cell Tumor) OR

(Tumor, Glial Cell) OR (Tumors, Glial Cell) OR (Mixed Glioma)

OR (Glioma, Mixed) OR (Malignant Glioma) OR (Glioma,

Malignant) OR (Astrocytoma) OR (Glioblastoma) OR (Diffuse

Intrinsic Pontine Glioma) OR (Ependymoma) OR (Glioma,

Subependymal) OR (Ganglioglioma) OR (Medulloblastoma) OR

(Oligodendroglioma) OR (Optic Nerve Glioma)) AND (rs

xxxxxxx)”. In addition, we screened relevant reviews and

references from previous meta-analyses to increase the number of

other eligible studies. The retrieval process was performed by two

researchers independently. Any discrepancy was adjudicated by a

senior investigator.
2.2 Inclusion criteria
(1) case-control or cohort study and genome-related study

regarding the association of rs2736100 polymorphism of
frontiersin.org
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TERT gene, rs4295627 polymorphism of CCDC26 gene,

rs4977756 polymorphism of CDKN2A/B gene and

rs6010620 polymorphism of RTEL gene with glioma

susceptibility;

(2) studies containing allelic and genotypic data or ORs and

95% CIs for susceptibility;

(3) appropriate statistical methods and reliable data with clear

and unambiguous expression of results, allowing

calculation of the ORs and 95% CIs;

(4) no overlapped data, and studies involving the same data or

overlapped by the same authors, only the one that had the

largest sample size or the most recently published.
2.3 Exclusion criteria
(1) review, commentary, abstract, and case report types;

(2) articles with original literature content did not involve

TERT (rs2736100), CCDC26 (rs4295627), CDKN2A/B

(rs4977756) and RTEL1 (rs6010620);

(3) articles were unrelated to glioma research;

(4) articles with insufficient data, such as those lacking gene

frequency information or ORs with 95% CIs;

(5) articles with non-human study subjects.
2.4 Data extraction and literature quality
evaluation

Each study covered the data of: the first author’s name,

publication year, ethnicity (Caucasian, Asian, Multiple), number

of cases and controls with relevant genotypes, ORs and 95% CIs. In
tiers in Oncology 03
addition, the genetic model used in the article was checked. We

applied the Newcastle-Ottawa Scale for evaluating the literature

quality. Two researchers performed independent data extraction

and evaluated the literature quality. A senior investigator took

charge of discrepancy arbitration.
2.5 Statistical analysis

STATA 17.0 MP was implemented for all statistical analyses in

this study. First, we performed the Hardy-Weinberg Equilibrium

(HWE) test (p<0.05 reported statistical significance). Second, we

measured the association degree of TERT (rs2736100), CCDC26

(rs4295627), TERT (rs2736100) and RTEL1 (rs6010620) with

glioma risk under five genetic models using the ORs and 95%

CIs, which were the RM, O-DM, AM, C-DM and DM.

We merged the ORs and 95% CIs that satisfied the criteria

under the same models. In addition, in all genetic models, subgroup

analyses were carried out according to ethnic differences and the I2

values were adopted for evaluating study heterogeneity. When I2 ≤

50%, a fixed effects model served for data analysis; when I2 =50%-

75%, a random effects model served for data analysis; and when

I2>75%, the Galbraith plot method was used to attenuate the

heterogeneity of the study. In order to statistically analyze

publication bias, we applied the Egger ’s Test (p<0.05:

statistical significance).
3 Result

3.1 Literature retrieval and quality
evaluation

We initially searched 640 literature and eventually enrolled 21

eligible articles covering Caucasian, Asian, and others (10, 17–36).
TABLE 1 Main characteristics of the studies that provided genotype frequencies and were included in the meta-analysis.

SNP Author Year Ethnicity
Case Control

P (HWE)
TT TG GG TT TG GG

rs2736100

Shete(French) 2009 Caucasian 225 686 441 383 807 371 balanced

Shete(German) 2009 Caucasian 91 240 160 133 269 163 balanced

Shete(Sweden) 2009 Caucasian 120 326 177 212 367 185 balanced

Shete(UK) 2009 Caucasian 115 316 200 349 676 409 unbalanced

Shete(USA) 2009 Caucasian 230 645 372 546 1103 584 balanced

Chen 2011 Asian 244 515 194 334 542 160 unbalanced

Pandith 2020 Caucasian 32 32 42 122 52 36 unbalanced

Wrensch 2009 Multiple 95 354 242 1021 1904 1056 unbalanced

Safaeian 2013 Multiple 164 402 244 789 1511 780 balanced

Wang 2011 Caucasian 91 172 69 217 401 197 balanced

Schoemaker(Demark) 2010 Caucasian 22 58 39 31 74 41 balanced

(Continued)
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TABLE 1 Continued

SNP Author Year Ethnicity
Case Control

P (HWE)
TT TG GG TT TG GG

Schoemaker(Finland) 2010 Caucasian 8 56 33 23 53 19 balanced

Schoemaker(Sweden) 2010 Caucasian 29 107 57 101 171 90 balanced

Schoemaker(UK-North) 2010 Caucasian 59 198 118 143 317 175 balanced

Schoemaker(UK-South) 2010 Caucasian 53 105 74 86 202 107 balanced

rs4295627

Wang 2011 Caucasian 187 121 24 556 242 19 balanced

Safaeian 2013 Caucasian 483 284 43 2025 935 123 balanced

Shanqu 2012 Asina 121 92 12 127 102 25 balanced

Di Stefano 2013 Caucasian 532 278 45 877 286 27 balanced

Carl Wibom 2015 Caucasian 350 174 36 391 163 6 unbalanced

Viana-Pereira 2020 Caucasian 79 35 0 128 42 4 balanced

Shete(French) 2009 Caucasian 885 418 71 1133 421 25 unbalanced

Shete(German) 2009 Caucasian 283 185 30 414 144 13 balanced

Shete(Sweden) 2009 Caucasian 393 223 27 492 247 36 balanced

Shete(UK) 2009 Caucasian 386 216 29 976 410 48 balanced

Shete(USA) 2009 Caucasian 735 451 60 1496 667 72 balanced

Schoemaker(Demark) 2010 Caucasian 76 40 7 98 46 3 balanced

Schoemaker(Finland) 2010 Caucasian 47 34 16 58 31 6 balanced

Schoemaker(Sweden) 2010 Caucasian 130 63 6 241 117 14 balanced

Schoemaker(UK-North) 2010 Caucasian 237 122 16 434 156 27 balanced

Schoemaker(UK-South) 2010 Caucasian 137 83 12 266 119 11 balanced

rs4977756

Wang 2011 Caucasian 113 151 68 303 389 125 balanced

Di Stefano 2013 Caucasian 303 409 137 516 531 143 balanced

Safaeian 2013 Multiple 248 383 179 1112 1460 509 balanced

Fahmideh 2015 Caucasian 29 73 29 164 223 90 balanced

Li 2012 Asian 139 72 15 152 84 15 balanced

Sibin 2016 Asian 73 48 7 79 50 11 balanced

Viana-Pereira 2020 Caucasian 34 58 26 82 72 22 balanced

Shete(French) 2009 Caucasian 474 639 239 651 723 209 balanced

Shete(German) 2009 Caucasian 151 240 108 211 265 90 balanced

Shete(Sweden) 2009 Caucasian 150 325 157 223 379 168 balanced

Shete(UK) 2009 Caucasian 189 604 138 501 662 270 balanced

Shete(USA) 2009 Caucasian 377 594 276 782 1083 370 balanced

Schoemaker(Demark) 2010 Caucasian 37 55 29 54 64 27 balanced

Schoemaker(Finland) 2010 Caucasian 26 51 18 36 38 22 balanced

Schoemaker(Sweden) 2010 Caucasian 42 97 57 110 177 80 balanced

Schoemaker(UK-North) 2010 Caucasian 108 182 85 216 301 110 balanced

Schoemaker(UK-South) 2010 Caucasian 70 113 70 141 181 68 balanced

rs6010620 Stefano 2013 Caucasian 21 234 582 48 377 765 balanced

(Continued)
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TABLE 1 Continued

SNP Author Year Ethnicity
Case Control

P (HWE)
TT TG GG TT TG GG

Wang 2011 Caucasian 15 99 218 49 296 472 balanced

Safaeian 2013 Caucasian 26 245 539 148 1014 1921 balanced

Fahmideh 2015 Caucasian 6 38 88 35 168 272 balanced

Chen 2011 Asian 411 454 93 547 438 55 unbalanced

Viana-Pereira 2020 Caucasian 2 33 86 10 56 113 balanced

Wrensch 2009 Caucasian 44 409 978 213 1383 2395 balanced

Jin 2013 Asian 204 181 48 236 202 24 unbalanced

Li 2013 Asian 293 261 75 337 267 40 balanced

Shete(French) 2009 Caucasian 34 386 912 59 508 978 balanced

Shete(German) 2009 Caucasian 16 147 336 28 177 352 balanced

Shete(Sweden) 2009 Caucasian 20 195 430 54 264 456 balanced

Shete(UK) 2009 Caucasian 26 179 426 82 533 818 balanced

Shete(USA) 2009 Caucasian 46 405 796 123 785 1327 balanced

Schoemaker(Demark) 2010 Caucasian 1 38 83 8 56 83 balanced

Schoemaker(Finland) 2010 Caucasian 4 22 69 3 30 63 balanced

Schoemaker(Sweden) 2010 Caucasian 4 52 144 25 116 230 balanced

Schoemaker(UK-North) 2010 Caucasian 18 106 252 44 212 376 balanced

Schoemaker(UK-South) 2010 Caucasian 8 65 159 28 129 233 balanced
F
rontiers in Onco
logy
 05
 fr
TABLE 2 Characteristics of the literature providing ORs and 95% CIs under the correlated genetic model.

SNP Author Year Ethnicity Contrast models
Odds ratio

ORs [95% CIs]

rs2736100

Rajaraman 2012 Caucasian

G allele vs. T allele
(Allele model)

1.295 1.188 1.412

Egan 2011 Caucasian 1.37 1.18 1.61

Melin 2013 Caucasian 1.41 1.05 1.89

Egan 2011 Caucasian GG vs. TT
(Co-dominance model)

1.96 1.41 2.70

Melin 2013 Caucasian 1.87 1.06 3.30

Egan 2011 Caucasian GT vs. TT
(Co-dominance model)

1.25 0.97 1.61

Melin 2013 Caucasian 1.10 0.64 1.88

rs4295627

Rajaraman 2012 Caucasian

G allele vs. T allele
(Allele model)

1.137 1.022 1.265

Egan 2011 Caucasian 1.18 0.96 1.45

Melin 2013 Caucasian 1.23 0.87 1.72

Wei 2014 Asian 0.95 0.64 1.43

Chen 2011 Asian 0.94 0.82 1.09

Egan 2011 Caucasian GG vs. TT
(Co-dominance model)

1.05 0.55 2.00

Melin 2013 Caucasian 1.58 0.67 3.71

Egan 2011 Caucasian
GT vs. TT

(Co-dominance model)
1.27 1.00 1.63

(Continued)
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Twenty-one articles covered Caucasian, Asian, and multiracial

studies. 15 out of the 21 studies were able to extract the complete

genotype frequencies regarding the two groups, and we performed

the HWE test on the control group (Table 1). Six studies were able

to extract only ORs and 95% CIs under the correlation genetics

model, as shown in Table 2. Figure 1 displays the entire search

process. The included articles have a moderate quality (Table 3).
3.2 Meta-analysis results

3.2.1 rs2736100
In the TERT gene rs2736100 polymorphism, allele G is the risk

gene (Figure 2). According to the meta-analysis analysis, the TERT

gene rs2736100 polymorphism led to increased glioma risk in 5

genetic models (AM (G vs T): OR=1.29, 95% CI: 1.25 to 1.34; RM

(GG vs TT+TG): OR=1.31, 95% CI: 1.18 to 1.44; DM (TG+GG vs

TT): OR=1.52, 95% CI: 1.34 to 1.73; C-DM (GG vs TT): OR=1.69,

95% CI: 1.56 to 1.82; C-DM (GT vs TT): OR=1.40, 95% CI: 1.31 to

1.49; O-DM (TT+GG vs TG): OR=0.93, 95% CI: 0.88 to 0.98).
Frontiers in Oncology 06
When stratifying the analysis according to ethnicity, we obtained

similar results in Caucasians, although in the O-DM results only

showed a trend of association with glioma (AM (G vs T): OR=1.28,

95% CI: 1.23 to 1.33; RM (GG vs TT+TG): OR=1.29, 95%CI: 1.13 to

1.47; DM (TG+GG vs TT): OR=1.51, 95% CI: 1.29 to 1.76; C-DM

(GG vs TT): OR=1.64, 95% CI: 1.50 to 1.80; C-DM (GT vs TT):

OR=1.37, 95% CI: 1.27 to 1.49; O-DM (TT+GG vs TG): OR=0.93,

95% CI: 0.87 to 1.00). Among Asians, we included only one study,

and the results were similar to those of Caucasians. In the study of a

multi-ethnic population, we included the study of Wrensch and

Safaeian which revealed the relevance of the TERT gene rs2736100

polymorphism to increased glioma risk.

3.2.2 rs4295627
In the CCDC26 gene rs4295627 polymorphism, allele T was the

risk gene (Figure 3). Among Caucasians, according to the meta-

analysis results: AM (G vs T): OR= 1.32; 95% CI: 1.26 to 1.38; RM

(GG vs TT+TG): 1.86; 1.40 to 2.48; DM (TG+GG vs TT): 1.41; 1.33

to 1.49; C-DM (GG vs TT): 1.88; 1.63 to 2.17; C-DM (GT vs TT):

1.34; 1.26 to 1.42; O-DM (TT+GG vs TG): 0.77; 0.73 to 0.82.
TABLE 2 Continued

SNP Author Year Ethnicity Contrast models
Odds ratio

ORs [95% CIs]

Melin 2013 Caucasian 1.20 0.78 1.85

rs4977756

Rajaraman 2012 Caucasian

G allele vs. A allele
(Allele model)

1.283 1.177 1.398

Egan 2011 Caucasian 1.16 0.98 1.37

Melin 2013 Caucasian 1.40 1.04 1.88

Chen 2011 Asian 1.06 0.91 1.23

Egan 2011 Caucasian GG vs. AA
(Co-dominance model)

1.29 0.92 1.80

Melin 2013 Caucasian 2.10 1.11 3.95

Egan 2011 Caucasian GA vs. AA
(Co-dominance model)

1.32 1.02 1.71

Melin 2013 Caucasian 2.01 1.15 3.52

rs6010620

Rajaraman 2012 Caucasian

G allele vs. A allele
(Allele model)

1.427 1.280 1.590

Egan 2011 Caucasian 1.37 1.12 1.67

Melin 2013 Caucasian 2.564 1.639 4

Egan 2011 Caucasian

GG vs. AA
(Co-dominance model)

1.92 1.09 3.45

Melin 2013 Caucasian 0.09 0.01 0.66

Yang 2015 Asian 8.22 3.11 21.72

Egan 2011 Caucasian

GA vs. AA
(Co-dominance model)

1.37 1.06 1.75

Melin 2013 Caucasian 0.43 0.26 0.70

Yang 2015 Asian 1.13 0.64 2.01

Yang 2015 Asian
GG+AA vs.GA

(Overdominance model)
1.220 0.709 2.083

Yang 2015 Asian
GG+AG vs.AA

(Dominance model)
1.54 0.90 2.63
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In Asians, in the Shanqu, Wei and Chen AM (G vs T): OR=0.92,

95% CI: 0.81 to 1.03. In one study, the RM (GG vs TT+TG): 0.52;

0.25~1.05; DM (TG+GG vs TT): 0.86; 0.60 to 1.23; C-DM (GG vs

TT): 0.50; 0.24 to 1.05; C-DM (GT vs TT): 0.95; 0.65 to 1.38; O-DM

(TT + GG vs TG): 0.97; 0.67 to 1.40.

3.2.3 rs4977745
In the CDKN2A/B gene rs4977756 polymorphism, allele T was

the risk gene (Figure 4). Among Caucasians, according to the meta-

analysis results: AM (G vs A): OR=1.26, 95% CI: 1.22 to 1.31; RM

(GG vs AA+AG): 1.32; 1.15 to 1.51; DM (AG+GG vs AA): 1.44; 1.29

to 1.60; C-DM (GG vs AA): 1.56; 1.43 to 1.70; C-DM (GA vs AA):

1.35; 1.27 to 1.45; O-DM (AA+GG vs AG): 0.95; 0.89 to 1.01.

In Asians, in the Li, Sibin and Chen AM (G vs A): OR=1.03,

95% CI: 0.91 to 1.17. In one study, the RM (GG vs AA+AG): 1.12;

0.53 to 2.34; DM (AG+GG vs AA): 0.96; 0.66 to 1.39; C-DM (GG vs

AA): 1.09; 0.52 to 2.32; C-DM (GA vs AA): 0.94; 0.63 to 1.38; O-

DM (AA+GG vs AG): 1.08; 0.73 to 1.58. In other study, RM (GG vs

AA+AG): 0.68; 0.25 to 1.81; DM (AG+GG vs AA): 0.98; 0.60 to

1.58; C-DM (GG vs AA): 0.69; 0.25 to 1.87; C-DM (GA vs AA):

1.04; 0.63 to 1.73; O-DM (AA+GG vs AG): 0.93; 0.56 to 1.52.

3.2.4 rs6010620
In the RTEL1 gene rs6010620 polymorphism, allele T was the

risk gene (Figure 5). Among Caucasians, according to the meta-

analysis: AM (G vs A): OR=1.34, 95% CI: 1.28 to 1.39; RM (GG vs

AA+AG): 1.34; 1.27 to 1.41; DM (AG+GG vs AA): 1.65; 1.44 to

1.89; C-DM (GG vs AA): 1.78; 1.56 to 2.03; C-DM (GA vs AA):

1.30; 1.15 to 1.46; O-DM (AA+GG vs AG): 1.24; 1.17 to 1.31.

In Asians, based on the meta-analysis results: AM (G vs A):

OR=1.35, 95% CI: 1.22 to 1.48; RM (GG vs AA+AG): 2.04; 1.61 to

2.57; DM (AG+GG vs AA): 1.35; 1.20 to 1.52; C-DM (GG vs AA):
Frontiers in Oncology 07
2.41; 1.09 to 3.04; C-DM (GA vs AA): 1.22; 1.07 to 1.38; O-DM (AA

+GG vs AG): 0.93; 0.83 to 1.05.
3.3 Publication bias

Our study adopted Egger’s Test for evaluating the literature

publication bias and the results are shown in Table 4. P > 0.05

indicates that publication bias did not exist.

In rs2376100, there was publication bias in AM (p=0.469). In

rs4295627, publication bias existed in dominant, co-dominant and

O-DM (DM (TG+GG vs TT): p=0.426; C-DM (GT vs TT): p=0.436;

O-DM (TT+GG vs TG): p=0.427). In rs4977756, publication bias

existed in O-DM (p=0.111). In rs6010620, publication bias existed

in the recessive, dominant and O-DM (RM (GG vs AA+AG):

p=0.010; DM (AG+GG vs AA): p=0.014; O-DM (AA+GG vs

AG): p= 0.461).
4 Discussion

Our study is one of the first ones with conducting the first meta-

analysis with the largest sample size as far as we concern and we

performed detailed analyses of multiple associated SNPs under five

genetic models. Besides, stratified analyses were carried out

considering ethnicity. This indicates reliable meta-analysis results.

From the meta-analysis, allele G in the SNP at the rs2736100 locus

differentially elevated glioma risk, which conforms to studies by Di

Stefano (24). In particular, in the C-DM (GG vs TT), it elevated the

risk by 69% (95%CI: 1.56 to 1.82). However, in the O-DM (TT+GG vs

TG), the risk of glioma was reduced by 7% (95% CI: 0.88 to 0.98). We

obtained basically identical results in Caucasians after stratification by

ethnicity. Nevertheless, in the Asian O-DM, the risk of glioma was not

associated with the SNP of the gene. Nevertheless, there is only one

study on Asian populations and it is necessary to cautiously interpret

the obtained results. Caucasians and Asians showed significant

differences in the SNPs at the rs4295627 locus versus the rs4977756

locus. In the allele, recessive, dominant and C-DMs, all increased the

risk of glioma. But in Asian populations, SNPs at both loci did not

present relevance to glioma risk. This suggests the existence of

significant racial differences. However, the amount of research

literature on Asian populations is too small and further studies are

needed to verify this conclusion. Among the SNPs at the rs6010620

locus, according to analysis of all five models, allele G elevated the risk,

with the C-DM (GG vs AA) increasing the risk by 92% (95% CI: 1.71

to 2.15). However, in Chen’s study, the risk of glioma was reduced by

19% (95% CI: 0.68 to 0.96) in the O-DM, which was possibly because

the sample size in Chen’s study was small (19).

Telomere refers to a small fragment of DNA-protein complex

located at the end of eukaryotic chromosome, consisting of a six-

base repeat sequence -TTAGGG- and binding proteins, which have

important roles in localizing, replicating and protecting

chromosome and controlling cell growth, and exert a close

relevance to apoptosis, transformation and immortalization of

cells. Telomere shortening may also increase susceptibility to
FIGURE 1

Flow chart of the study selection and exclusion criteria from this
meta-analysis.
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cancer (37). TERT is the most important component in regulating

telomerase activity. A few scholars found the relevance of TERT

expression to glioma grade and patients’ prognosis (38). Located in

intron 2 in TERT, the SNP can impact the telomerase activity or

clearly relates to a functional variant in TERT (39). In the study by

Codd, people who possessed TT genotype (hTERT rs2736100 T >

G) presented shorter telomeres relative to people who possessed TG

genotype (40). Oppositely, a larger number of cell divisions may be

supported at long telomeres, which makes it easier to achieve

abnormalities and thereby contributes to the development of

cancers (41). However, in our study, in the SNP of TERT

rs2736100, allele G increases the risk of developing glioma. This

implicates that telomere length possibly plays a double-edged role

in cancer development. In 2019, Yuan conducted a detailed review

of TERT mutation-related cancers, with the highest frequency of
Frontiers in Oncology 09
TERT mutation reaching 80% in glioma, and more than a dozen

tumors such as hepatocellular carcinoma, thyroid cancer, and skin

melanoma are also closely related to this gene mutation (42). Hence,

it is necessary to conduct deep investigations on relevant function

mechanisms in order to better treat clinical patients.

CCDC26 can be found on chromosome 8q24.21, and the

rs4295627 single nucleotide polymorphism can only be found in

the intron 3 region regarding the CCDC26 gene, where a G-T base

mutation can increase glioma disease risk (31). This is consistent

with the meta-analysis in the study. The explanation can be

attributed to that retinoic acid phosphorylates cAMP response

element binding proteins for the induction of caspase 8

transcription and downregulates the telomerase activity for

enhancing the apoptosis in neuroblastoma and glioblastoma cells

under death stimuli (43). In addition, clinical studies employ
B

C D

E F

A

FIGURE 2

Forest plots of meta-analyses for correlation of glioma and rs2736100 SNP under all models. (A) allele model; (B) recessive model; (C) co-dominant
model (Homozygote); (D) co-dominant model (Heterozygote); (E) dominant model; (F) over-dominant model.
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CCDC26 to predict glioma patients’ diagnosis and prognosis (22).

Jenkins found that CCDC26 variants could remarkably elevate the

risk of low-grade gliomas that underwent IDH1 or IDH2mutations,

suggesting the interaction between CCDC26 and IDH mutations

and/or the downstream effects regarding above mutations for

promoting glioma development (44). Wang studies showed that

lncRNA CCDC26 silencing inhibits glioma cell growth and

migration by targeting miR-203. It revealed the regulatory

mechanism of CCDC26/miR-203 pathway in glioma pathogenesis

and provided a new target for glioma treatment (45). In addition to

gliomas, Homer-Bouthiette found that deletion of the gene reduced

breast cancer incidence in a mouse model of breast cancer (46). This

chromosomal region has also been studied in prostate, bladder and

rectal cancers (47–50).
Frontiers in Oncology 10
CDKN2A/B is a representative altered genes in human cancers,

and expression deletion facilitates malignant behavior by

dysregulating cell cycle and promoting cell proliferation (51).

CDKN2A/B is localized at 9p21, encoding p14, p16 (CDKN2A)

and p15 (CDKN2B) oncoproteins which play multiple roles in

cellular stress recognition, senescence regulation, differentiation as

well as apoptosis in the developmental and proliferative phases of

cells (51, 52). As reported, an unknown antisense lncRNA is

encoded at human CDKN2A/B locus at 9p21.3, i.e. ANRIL, which

crucially impacts disease development. The rs4977756’s 59 kb

telomere is also mapped to CDKN2B in the 122 kb region

regarding LD 9p21.3. Based on the meta-analysis, the G allele

elevates the glioma risk. It is suspected that this SNP alters the

expression level of ANRIL and thus affects cell proliferation,
B

C D

E F

A

FIGURE 3

Forest plots of meta-analyses for correlation of glioma and rs4295627 SNP under all models. (A) allele model; (B) recessive model; (C) co-dominant
model (Homozygote); (D) co-dominant model (Heterozygote); (E) dominant model; (F). over-dominant model.
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apoptosis and metastasis to promote tumorigenesis (53).

Interestingly, type 2 diabetes and cardiovascular disease also

appear to be linked to this gene (54, 55).

RTEL1 is involved in deoxyribonucleic acid repair, regulation of

replication and transcription, and maintenance of telomere length.

RTEL1 can both promote and suppress tumorigenesis. RTEL1 SNPs

associated with gliomas are mainly found in the non-coding

(intron) regions of genes. Intron SNPs possibly facilitate aberrant

exon inclusion or deletion by altering mRNA splicing and the

formation and addition regarding nonsense transcripts (56, 57).

The RTEL1 gene rs6010620 on 20q13.33 is a vital candidate genetic

variant that has been widely reported (58). As reported by previous

studies, mutations in the rs6010620 gene may cause gliomas, but

these findings have not been confirmed. According to meta-
Frontiers in Oncology 11
analysis, in the five genetic models, rs6010620 increased glioma

susceptibility, most significantly in the C-DM (GG vs AA), which

increased the susceptibility by 92% (OR: 1.92; CI (1.71, 2.15). Also,

miR-4530 underwent downregulation in glioma tissues as well as

cell lines, and overexpression inhibited malignant biological

behaviors like glioma cell migration, proliferation, invasion and

colony formation. RTEL1 was a direct target of miR-4530. The

abnormal expression of RTEL1 could lead to obvious reversion of

the miR-4530 overexpression in glioma cell lines. The miR-4530/

RTEL1 axis acts as a latent treating target specific to gliomas (59).

Not only glioma, but also mutated RTEL1 has been linked to the

development of astrocytoma and Hoyeraal-Hreidarsson syndrome

(60). Although recent in-depth studies have confirmed that RTEL1

can maintain genomic stability by studying its ability to maintain
B

C D

E F

A

FIGURE 4

Forest plots of meta-analyses for correlation of glioma and rs4977756 SNP under all models. (A) allele model; (B) recessive model; (C) co-dominant
model (Homozygote); (D) co-dominant model (Heterozygote); (E) dominant model; (F) over-dominant model.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1180099
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1180099
B

C D

E F

A

FIGURE 5

Forest plots of meta-analyses for correlation of glioma and rs6010620 SNP under all models. (A) allele model; (B) recessive model; (C) co-dominant
model (Homozygote); (D) co-dominant model (Heterozygote); (E) dominant model; (F). over-dominant model.
TABLE 4 Publication bias results of glioma SNPs under five genetic models.

SNP Allele
model

Recessive
model

Dominance
model

Co-dominance
model

(Homozygote)

Co-dominance
model

(Heterozygote)

Overdominance
model

rs2736100 0.469 0.666 0.581 0.530 0.622 0.663

rs4295627 0.949 0.926 0.426 0.924 0.436 0.427

rs4977756 0.984 0.812 0.633 0.893 0.511 0.111

rs6010620 0.081 0.010 0.014 0.674 0.604 0.461
F
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telomere homeostasis and promote DNA replication, there are still

a lot of questions that shall be highlighted. Nowadays, researches

have not confirmed the regulation of RTEL1 and its recruitment to

impact the replication forks and telomeres (60).

Studying the association between the risk of glioma and SNPs is

definitive, because it could help clinicians use such polymorphisms as

pragmatic molecular biomarkers of glioma risk, assist drug developers

innovate relevant targeted therapeutic agents for the benefit of

patients, and allow for basic researchers to explore the molecular

mechanisms of glioma pathogenesis and accurately regulate glioma

progression. According to meta-analysis results, racial differences

exist in the risk of glioma, but there is a paucity of studies on Asian

ethnicity, which requires researchers to conduct relevant studies.

Exploration of SNPs at other loci and risk of glioma is also necessary.
5 Limitations

Some limitations should be noted when interpreting the current

results. The study also presents some limitations, which shall be

noted during the interpretation of current studies.

First, there were scarce studies on Asian populations. Studies on

results in Asian populations should be interpreted with caution.

In addition, the absence of more specific individual information

about interaction within genes and that between gene and

environment prohibited us from conducting a more precise analysis.

Finally, some unavoidable publication bias in the results of

meta-analysis should also be taken into account.
6 Conclusion

In summary, our study suggested that the TERT gene rs2736100

polymorphism, CCDC26 gene rs4295627 polymorphism, CDKN2A/

B gene rs4977756 polymorphism and RTEL1 gene rs6010620

polymorphism might all increase the risk of glioma development,

but there are ethnic differences. It is necessary to well develop case-

control studies with large sample sizes and a focus on more races or

glioma types to overcome the limitations described earlier to make

the conclusions more accurate.
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