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Heterogeneity in clinical
prognosis, immune infiltration
and molecular characteristics
of three glycolytic subtypes in
lower-grade gliomas

Shenglian Wu, Lulu Sheng, Shucai Fan, Xi Guo, Biao Zhu*,
Cheng Wu* and Bing Lei*

Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital Affiliated to
Hangzhou Medical College, Hangzhou, ZheJiang, China
Background and purpose: Lower-grade gliomas (LGG) exhibit a wide range of

metabolic pathway changes, and metabolic reprogramming can be largely seen

as a result of oncogenic driving events. Glycolysis, an important pathway of

tumor energy source, has been poorly studied in gliomas. The aim of this article is

to analyze the relationship between glycolysis and lower-grade glioma

development and prognosis in order to explore the heterogeneous relevance

of glycolysis in lower-grade gliomas.

Methods and results: Our study searched the TCGA database and identified

three glycolytic subtypes with significant prognostic differences by unsupervised

clustering analysis of core glycolytic genes, named C1, C2, and C3. By analysis of

clinical prognosis, somatic cell variation, and immune infiltration, we found that

C3 had the best prognosis withmolecular features of IDHmut-codel, followed by

C1 with major molecular features of IDHmut-non-codel, G -CIMP high subtype,

while C2 had the worst prognosis, mainly exhibiting IDHwt, G-CIMP low and

mesenchymal-like subtypes with seven important CNV features, including

CDKN2A/B deletion, chr7 gain and chr10 deletion, chr19/20 co-gain, EGFR

amplification and PDGFRA/B deletion phenotypes were significantly increased,

with the highest level of stemness and significant T-cell depletion features.

Finally, to quantify the level of abnormal glycolysis and its impact on prognosis,

we developed GlySig to reflect the glycolytic activity of LGG and integrated

molecular features to construct nomogram that can be independently assessed

to predict prognosis.

Conclusions:Our study analyzed the tumor characteristics of different glycolytic

states, and our findings explain and describe the heterogeneity of glycolytic

metabolism within diffuse LGGs.

KEYWORDS

glycolysis, metabolism, stemness, immunity, lower-grade glioma
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1180662/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1180662/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1180662/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1180662/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1180662/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1180662&domain=pdf&date_stamp=2023-05-18
mailto:leibing9326@163.com
mailto:5177054@qq.com
mailto:zhubiao6915@qq.com
https://doi.org/10.3389/fonc.2023.1180662
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1180662
https://www.frontiersin.org/journals/oncology


Wu et al. 10.3389/fonc.2023.1180662
1 Introduction

Diffuse lower-grade gliomas are defined as WHO grade 2 and

WHO grade 3 gliomas (hereafter referred to as lower-grade

gliomas) (1), with a median survival of 78.1 months for WHO

grade 2 gliomas and 37.6 months for WHO grade 3 gliomas (2). For

many years, the prognosis of lower-grade gliomas has not been

significantly improved after standardized treatment using surgery

with chemo-radiotherapy, posing a major challenge to human

health. In recent years, immunotherapy has brought light to the

treatment of tumors, but there is no definite efficacy in glioma,

which has been shown to be closely related to the cold tumor

phenotype mediated by the immunosuppressive microenvironment

(3), so an intensive study of the immunosuppressive micro-

environment is the main way to achieve a major breakthrough in

the treatment of glioma.

Tumor glycolysis is the phenomenon whereby cancer cells tend

to generate energy through glycolysis rather than mitochondrial

oxidative phosphorylation even in the presence of sufficient oxygen,

known as the Warburg effect (4). Enhanced glycolysis rapidly

produces large amounts of ATP and also promotes the synthesis

of macromolecules (nucleotides, fatty acids, proteins) required for

tumor proliferation (5). In addition, tumor cells have a direct

immunosuppressive effect on the tumor microenvironment

through competition with effector T cells for glucose uptake as

well as hypoxia and lactate accumulation due to rapid glucose

utilization (6–8). Studies have shown that increased glycolysis

promotes an aggressive phenotype of gliomas (9, 10). Therefore,

targeting glycolysis has become a therapeutic direction for glioma,

but glioma is a complex tumor microenvironment with metabolic

differences between different cell subpopulations of the same glioma

(11), and the potential metabolic differences between glioma

subtypes remain unclear (12). Therefore, further understanding of

the metabolic differences between different gliomas is crucial for

individualized treatment of gliomas.

In this article, we identified five sets of genes associated with

glycolytic processes enriched in LGG from MSiDB data, performed

unsupervised clustering analysis based on 26 of these differential

genes, classified glycolytic types in lower-grade gliomas into three

subtypes, and analytically described clinical prognosis, genetic

variation, immune infiltration, and tumor phenotype for the three

subtypes, and used core prognostic genes. A lasso risk model was

developed for the prognosis of lower-grade gliomas. Our findings

demonstrated the metabolic heterogeneity of lower-grade gliomas

and describe the clinical significance, molecular differences and

immunological features of three different glycolytic subtypes,

providing new targets for personalized treatment of glioma.
2 Material and methods

2.1 Collection and preprocessing of data

The RNA-seq matrices, copy number variation (CNV) profile,

clinical data, and somatic mutation profiles (Varscan) for all LGG
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samples were downloaded from the TCGA database (https://

portal.gdc.cancer.gov/). The gene sets for evaluating the glycolytic

metabolic processes were downloaded from the MSigDB database

of the GSEA (http://www.gsea-msigdb.org/gsea/index.jsp). The

supervised DNA methylation clusters, molecular subtypes, and

immunophenotype profiles of TCGA samples were obtained from

the supplementary material of previous studies (1, 13, 14). Also, we

have chosen three cohorts, including mRNA-array_301,

mRNAseq_325, and mRNAseq_693 from the CGGA database

(http://www.cgga.org.cn/). Normal samples were obtained from

the GTEx database (https://gtexportal.org/).

Next, we consolidated data from the same sources. A total of

509 TCGA samples simultaneously have clinical data, RNA-seq

information, and mutational information. As for the CGGA cohort,

592 LGG samples had both gene expression and overall survival

(OS) information. In the GTEx cohort, 207 normal samples were of

cortical origin.
2.2 Methods for identifying glycolysis-
related subtypes

Firstly, we evaluated the differences in the enrichment of 17

glycolysis-related pathways between normal cortical samples and the

TCGA LGG cohort with the GSEA software (version 4.3.2). After 1000

iterations, a total of 5 pathways were found to be highly enriched in the

TCGA LGG cohort. Next, the expression of the genes contained in the

five signaling pathways was extracted, and the “edgeR” method was

used to find differentially expressed genes (DEGs). A total of 26 DEGs

were identified as key genes. Glycolysis-related subtypes were identified

based on the consistent clustering method and the expression matrices

of these 26 DEGs. Consistent clustering analysis was implemented

based on the “clusterProfiler” package.
2.3 ssGSEA and evaluation of the
immune microenvironment

The ssGSEA allows the assignment of enrichment levels for

selected gene sets in each sample within the given data sets. Our

study involves multiple genes sets about immune functions,

metabolism, epithelial-mesenchymal transition (EMT) process,

extracellular matrix (ECM), and cancer signaling pathways. These

gene sets were obtained from public databases or published works

(http://matrisome.org/. https://www.immport.org/. https://

www.rndsystems.com/) (15–17). With the “GSVA” package, we

calculated the ssGSEA score levels for these gene sets in

LGG samples.

As for the assignment of immune cell infiltration, The

CIBERSORT algorithm was used to forecast the infiltration of 22

kinds of immune cells. The main package was named

“CIBERSORT”, and it was obtained from GitHub (https://

github.com/) (18). ESTIMATE algorithm is based on the “

estimate “ package for evaluating the condition of the immune

microenvironment (19). In addition, we utilized the ImmuCellAI
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algorithm to assess the lymphocyte infiltration levels (http://

bioinfo.life.hust.edu.cn/web/Imm-uCellAI/) (20). The TIDE

algorithm was used to assess the T-cell exhaustion levels (http://

tide.dfci.harvard.edu./) (21). The TIP algorithm was used to

evaluate the immune cycle in LGG samples (22).
2.4 Genetic variation analysis

This part is mainly based on the “maftools” package (23).

Waterfall plots were plotted with the “oncoplot” function. The

lollipop plots were painted with the “lollipopPlot” function.

Correlations of 30 top mutated genes were obtained by Fisher’s

exact test with the CoMEt algorithm provided by the

“somaticInteractions” function. The enrichment levels and

activities of cancer signaling pathways were visualized by the

“OncogenicPathways” function.
2.5 GlySig construction with
LASSO regression

Based on 26 key genes, OS time, and OS status, GlySig was

constructed with the least absolute shrinkage and selection operator

(LASSO) regression. The “createDataPartition” function in the

“caret” package equally and randomly divided the TCGA LGG

cohort into the train and test sets. After being examined by the chi-

square analysis, there was no difference in the distribution of clinical

traits between the train and test sets. Next, based on the train set, the

10-fold cross-validation was used to determine the best penalty

coefficient (log (l) = -3.3). With this l value and 11 of 26 key genes

had nonzero Coef value. After being validated by univariate Cox

analysis, all these genes retained prognostic significance. Therefore,

these 11 key genes were determined as lasso genes, and the GlySig

was constructed according to the following equation: ). In the

CGGA cohort, we calculated the GlySig with the identical

formula and Coef value.
2.6 Construction of nomogram and DCA
analysis

The construction of the nomogram was based on Cox

regression and relied on the “rms” and “regplot” packages.

Finally, age, GlySig, and grade were identified as independent

prognostic factors, and nomograms were constructed on this

basis. The comparison of net clinical benefit was based on

decision curve analysis (DCA). Operation and visualization of

DCA were based on the “ggDCA” package.
2.7 Functional enrichment analysis

The “org.Hs.eg.db” package could convert the gene symbols

into ensemble IDs, which could be identified by the algorithm. The

“clusterProfiler” package was used to perform the Gene Ontology
Frontiers in Oncology 03
(GO) and the Kyoto Protocol Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analyses (24). Only GO and KEGG

pathways with p<0.05 were retained. The visualization of these

results was implemented based on the “enrichplot” and

“ggplot2” packages.
2.8 Statistical methods, algorithms,
and software

The Kruskal-Wallis test was used to compare differences

between subtypes or subgroups. Co-expression analysis was

performed with the Spearman correlation analysis. The Kaplan-

Meier (K-M) method and the log-rank test were used for evaluating

prognostic differences. The univariate Cox analysis was used to

detect whether the variables were risk factors for prognosis, while

the multivariate Cox analysis was used to determine whether the

variables were independent prognostic biomarkers. The accuracy of

prognostic prediction was examined with ROC curves, and the area

under the curves (AUC) reflects the accuracy of biomarkers. The

identification of DEGs was based on the “edgeR” package.

This study was performed mainly based on R version 4.0.4. The

“pheatmap” package was used for plotting heatmaps. “ggplot2”,

“ggpubr”, “ggExtra”, “plyr”, and “reshape2” packages could be used

for plotting multiple figures, such as box plots, bar plots, and scatter

diagrams. Forest plots were painted with the “forestplot” package,

and ROC curves were plotted by the “timeROC” program. Principal

component analysis (PCA) was implemented with the “ limma”

package and could be visualized with the “ggplot2” package. K-M

curves were plotted by the “survival” and “survminer” packages. In

addition, some Perl scripts participated in the pre-processing of

data (Strawberry-Perl-5.32.1.1).
3 Results

3.1 Identification of glycolysis-related
subtypes

To better understand the mechanism involved in the abnormal

glycolytic metabolism in LGG samples, we collected 17 glycolysis-

related alternative gene sets from the MSigDB database in the GSEA

platform. By comparing with the normal cortical cohort, we found that

five of the 17 alternative gene sets (including GOBP_FRUCTOSE_

1_6_BISPHOSPHATE_METABOLIC_PROCESS; HALLMARK_

GLYCOLYSIS; REACTOME_GLYCOLYSIS; REGULATION_OF_

GLYCOLYSIS_BY_FRUCTOSE_2_6_BISPHOSPHATE_

METABOLISM; and GLYCOLYSIS_IN_SENESCENCE) were highly

enriched in the TCGA LGG cohort (Supplementary Figures S1A–E).

These five selected gene sets contained a total of non-duplicated 231

genes, 26 of which were significantly differentially expressed between

normal cortical and LGG samples (|logFC|>1, FDR<0.05, Figure 1A).

Therefore, these 26 DEGs were identified as key genes of the glycolysis

process in LGG samples.

Next, glycolysis-related subtypes were identified with the

consistent clustering method and the expression of 26 key genes.
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The most significant change in the CDF value was observed when

the number of clusters was three. Also, the mutual interference

between different clusters is minimized in this condition

(Figures 1A–D). Therefore, the TCGA LGG cohort was finally

clustered into three subtypes, named C1, C2, and C3, respectively.

Encouragingly, significant differences in principal components were

observed between these three subtypes (Supplementary Figures

S1F). Also, both OS and DSS-dependent K-M curves suggested

that C3 had the best prognosis, followed by C1, while the worst

prognosis was observed for C2 (Figures 1E, F). Therefore, our

clustering strategy was reliable, and the glycolysis-related subtypes

have the potential to be applied in the prognostic stratification

of LGG.
3.2 Correlation of molecular profiles with
glycolysis-related subtypes

We noted that there was extensive molecular profile

heterogeneity among these three glycolysis-related subtypes,

which might be related to the variation in prognosis (Figure 2A).

In terms of clinical traits, gender was evenly distributed among

these three subtypes (Figure 2B). However, 44% of C2 patients were

senior (>52 years), much higher than the 18% in C1 and 28% in C3

(Figure 2C). Similarly, 90% of C2 was in G3, significantly higher

than 45% in C1 and 41% in C3 (Figure 2D). At the molecular

subtype level, IDHwt, IDHmut-non-codel, and IDHmut-codel

subtypes were mainly concentrated in samples with C2, C1, and

C3 (Figure 2E). It is well known that IDH mutation and 1p19q co-

deletion are favorable factors for the prognosis of gliomas. Also,
Frontiers in Oncology 04
WHO 2021 indicates that the IDHwt corresponds to the newWHO

grade 4, IDHmut-non-codel corresponds to oligodendroglioma,

and IDHmut-codel corresponds to oligodendroglioma (25). The

prognosis of the latter of these three molecular subtypes is

sequentially better than that of the former (1). In fact, in terms of

histological distribution, the C2 subtype has the highest percentage

of astrocytic origin, while the C3 subtype has the highest percentage

of oligodendroglioma (Supplementary Figure S2A). Furthermore,

among the supervised DNA methylation clusters, the codel and G-

CIMP high subtypes were mainly concentrated in C3 and C1,

whereas the G-CIMP low and the mesenchymal-like subtypes

were almost exclusively present in C2 (Figure 2F). The original

study showed that the codel subtype had the best prognosis,

followed by the G-CIMP high subtype. However, the G-CIMP

low subtype is more inclined to be observed in GBM, and the

mesenchymal-like subtype is associated with high invasiveness (13).

Both of these two subtypes generally have the worst prognosis.

Secondly, some specific gene copy number variation (CNV)

events have also been associated with poor prognosis in gliomas.

We calculated the probability of occurrence of seven CNV events,

including CDKN2A/B deletion, chr7 gain & chr10 loss, chr19/20

co-gain, EGFR amplification, and PDGFRA/B deletion. We note

that the proportion of these CNV events was much higher in C2

than it was in C1 and C3 (Supplementary Figures S2B–H). Evidence

suggests that CDKN2A/B deletion is one of the characteristics of

astrocytomas and that chr7 gain & chr10 loss and EGFR

amplification are characteristics of glioblastomas (25). Thus, these

results were consistent with the histological and molecular subtype

characteristics observed above. In summary, abnormal glycolytic

metabolism was often accompanied by changes in molecular profile.
B C

D E F

A

FIGURE 1

The heatmap presented the differential expressed genes (DEGs) between normal cortical samples in the GTEx cohort and LGG samples in the TCGA
cohort (A). Consensus heatmap of clustering similarity between three glycolysis-related subtypes (B). Correlation of the CDF value with the
consensus index. In this figure, different colors represented the varied k (cluster number) value (C). Correlation of k value with relative changes in the
area under the CDF value (D). Overall survival (OS) (E) and disease-specific survival (DSS) (F) dependent K-M curves between three glycolysis-related
subtypes.
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The unbalanced accumulation of multiple risk factors eventually led

to the heterogeneity of prognosis among different glycolysis-

related subtypes.
3.3 The immune landscape of the
glycolysis-related subtypes

Previous studies have shown that abnormalities in glycolytic

metabolism are associated with the generation of tumor immune

escape (26). To verify this in LGG samples, we further depicted the

immune landscape of different glycolysis-related subtypes.

Firstly, the ESTIMATE score increased sequentially among C3,

C1, and C2 (Supplementary Figure S3A). This implied that the

degree of immunosuppression and the complexity of the

microenvironment might be sequentially increased. Next, we

found that typical pro-tumor cells, such as M2 macrophages,

memory CD4 T cells resting, and mast cell resting were

significantly highly infiltrated in C2 (Figure 3A).

Interestingly, the proportion of anti-tumor effector cells, such as

CD8 T cells and NK cells, was also highest in C2. Similarly, multiple

pro- and anti-tumor immune signatures were simultaneously exhibited

with the highest enrichment levels in C2, followed by C1, and the

lowest in C3 (Figure 3B). Also, with the ImmuCellAI algorithm, we

noted that not only anti-tumor signatures such as MAIT and Tfh, but

also pro-tumor signatures like Th2, nTreg, and iTreg were most highly

activated in the C2 (Figure 3C). Notably, C2 has the highest exhaustion

signature. We speculated that T-cell exhaustion might be involved in

the formation of this unique immune cell infiltration pattern. To
Frontiers in Oncology 05
explain this result, we further explored the differences in cancer

immune cycles between samples with the TIP algorithm. As shown

in Figure 3D, the cancer immune cycle in C2 is limited mainly by two

processes: infiltration of T cells into the tumor and killing of cancer

cells. In addition, the C2 subgroup had the highest immune

dysfunction and exclusion levels in the TIDE algorithm-based

assessment. The exclusion level in C1 was not remarkably distinct

from that in C3, but its dysfunction level was much higher than that in

C3 (Supplementary Figures S3B, C). Also, the expression of immune

checkpoints, including CTLA4, PD-1, PD-L1, and PD-L2, increased

sequentially among C3, C1, and C2 (Supplementary Figure S3D). ICPs

are closely related to T-cell exhaustion. For example, PD-1 and its

ligands PD-L1 & PD-L2 can suppress the function of effector T cells,

and CTLA4 can bind CD80 and CD86 molecules to transduce T cell

suppressive signatures and enhance the immunosuppressive ability of

Tregs. Finally, we explored the distribution status of TCGA immune

subtypes between the glycolysis-related subtypes. Immunologically

quiet (IC5) and lymphocyte depleted (IC4) were dominant in LGG

samples, while IC4 was predominantly distributed in the C2 subtype.

Also, the proportion of IC4 was 22% in C1, which was significantly

higher than that of 11% in C3 (Supplementary Figure S3E). The

original study has illustrated that the immunological profile of IC4 is

more confounded and has a worse prognosis compared to IC5 (14).

The T-cell exhaustion level is higher in IC4 compared to IC5, which

reasonably supports our results (14). In summary, the anti-tumor

immunity decreased sequentially between C3, C1, and C2.

Abnormalities in glycolytic metabolism might be associated with

alterations in the immune regulation process of LGG, which finally

manifested as diverse clinical outcomes.
B C D E F

A

FIGURE 2

Overall review of the differential distribution of molecular profiles between three glycolysis-related subtypes (A). Differential distribution of gender
(B), age (C), grade (D), molecular subtypes (E), and supervised DNA methylation clusters (F) between three glycolysis-related subtypes. p<0.05 was
presented with “*”, p<0.01 was presented with “**”, p<0.001was presented with “***”.
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3.4 Correlation of glycolysis-related
subtypes with stemness, EMT, and energy
metabolic features

In addi t ion to immunolog ica l a l te ra t ions , o ther

microenvironmental features such as stemness and EMT

processes are strongly associated with oncogenesis, progression,

invasion, metastasis, and poor prognosis of cancers. Also, abnormal

glycolytic metabolism is essentially a consequence of cancer cells

responding to impaired energy metabolism. Therefore, we

speculated that the heterogeneity in prognosis among different

subtypes might be equally related to the alteration of these

malignant features.

Firstly, we evaluated the differences in stemness features

between glycolysis-related subtypes. Based on OCLR machine

learning, two stemness indices, methylated DNA-based stemness

index (mDNAsi), and mRNA expression-based stemness index

(mRNAsi), were obtained (27). We noted that C2 had the highest

mDNAsi levels, whereas C3 had the highest mRNAsi levels

(Figure 4A). mRNAsi did not significantly vary between C1 and

C2, whereas C1 and C3 had no significant difference in mDNAsi

levels (Figure 4B). In the context of glioma, mDNAsi was negatively

correlated with prognosis, whereas mRNAsi was positively

correlated with prognosis (27). Therefore, altered stemness

features might be related to abnormal glycolytic metabolism and

affect the prognosis of samples with different subtypes.

Furthermore, among the glioma stem cell markers, C2 had the

highest overall expression level, followed by C1, and the lowest in

C3 (Figure 4C). These results suggested that the stemness levels

might decrease sequentially between C2, C1, and C3.

The EMT process is often accompanied by changes in the

stemness feature of cancers and is closely correlated with the
Frontiers in Oncology 06
invasion and metastasis of cancer. EMT-related signaling

pathways (Pan-F-TBRS and WNT) and three groups of EMT

level signatures were most enriched in C2 subtypes and least

enriched in C3 (Figure 4D). Also, EMT transcription factors were

highly expressed in C2 and presented the most pronounced

inversion of CDH1/2 expression (Figure 4E). In addition, MMPs

and VIM, which were closely associated with extracellular matrix

remodeling, were equally highly expressed in C2 subtypes

(Figure 4E). Also, ECM, cell cycle, and angiogenic signaling-

related pathways were highly enriched in the C2 subtype

(Figures 4D, F). In summary, EMT processes might be most

active in C2 and could be widely involved in the development of

poor prognosis in samples with C2.

Finally, we discussed the abnormalities of substance and energy

metabolism among glycolysis-related subtypes. Figure 4G presented

the activity of metabolism-related molecular functions between

these three subtypes. Similarly, hyper-metabolism of nucleotides

might be associated with the hyper-proliferation of cells. In

contrast, the score levels of tricarboxylic acid (TCA) cycle and

energy metabolism were the lowest in C2, which was

disproportionate to the hyper-metabolism of carbohydrates. The

rapid proliferation of tumor cells can lead to an increased degree of

hypoxia, which in turn manifests as the activation of aerobic

glycolysis and decreased glucose utilization and ATP generation

rates (28). The expression of HIF1A decreased sequentially in C2,

C1, and C3, and the expression of its repressor HIF1AN

sequentially increased (Figure 4H). Above all, increased stemness

and EMT levels contributed to the highly active invasion and

proliferation of LGG cells. This could lead to increased hypoxia

and restricted energy metabolism within the tumor, which

eventually exhibited the generation and activation of

aerobic glycolysis.
B

C D

A

FIGURE 3

Variation in immune cell infiltration between three glycolysis-related subtypes evaluated by the CIBERSORT (A) and ImmuCellAI (B) algorithms.
Variation in ssGSEA score levels of immune signatures between three glycolysis-related subtypes (C). Differences in the activity of seven steps in the
immune cycle between three glycolysis-related subtypes (D). In this figure, variance analysis was performed with the K-S test. p<0.05 was presented
with “*”, p<0.05 was presented with “**”, p<0.05 was presented with “***”. ns, not statistically significant.
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3.5 Genetic heterogeneity among
glycolysis-related subtypes

Alteration of genetic characteristics is one of the hallmarks of

cancer (29). To elucidate whether abnormal glycolytic metabolism

was related to the genetic heterogeneity of LGG, we next depicted

mutational profiles.

We noted that the mutation rates of ATRX and TP53 were

significantly higher in C1 than in the other two subtypes, while the

IDH1 mutation rate was not significantly different from C3

(Figures 5A–C). Evidence suggested that the IDH1 could

co-mutate with ATRX and TP53 in gliomas. In our study,

Figures 5D–F was consistent with this point of view. However,

there is no absolute necessary correlation for this co-mutation

relationship. Thus, the higher TP53 mutation rate in the C1

subtype may still have an adverse prognostic impact, manifesting

as a worse prognosis in C1 than in C3. In addition, among the top 4

genes, there were large differences in the type, site, and frequency of
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mutations among the different subtypes except for IDH1

(Supplementary Figures S4A–D). This might be attributed to the

conservative mutation type and site of IDH1. Also, these results

implicated that distinct genetic heterogeneity existed among

different subtypes, which might have an impact on the biological

properties of LGG. Figures 5G–I presented the results of the

functional enrichment analysis based on mutational profiles. The

enrichment levels of these cancer signaling pathways were highest

in C2, followed by C1, and lowest in C3. Among them, the WNT,

NOTCH, PI3K, and TGF-b signaling pathways are closely related to
EMT and cancer stem cell generation, and the RTK-RAS and PI3K

signaling pathways can regulate cancer progression (30–33). In

addition, the Hippo and WNT signaling pathways are associated

with the acquisition of stem cell features, and the activation of the

NOTCH signaling pathway can contribute to the formation of an

immunosuppressive microenvironment (34–36). In addition, the

PI3K/AKT pathway can promote the establishment of aerobic

glycolysis through mTOR/HIF1a signaling, which performs a
B C

D
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A

FIGURE 4

Differences in mDNAsi (A) and mRNAsi (B) between three glycolysis-related subtypes. Differential expression of glioma stem cell markers between
three glycolysis-related subtypes (C). Variation in ssGSEA score levels of hallmark cancer signaling pathways between three glycolysis-related
subtypes (D). Variation in the expression of epithelial-mesenchymal translation (EMT) central genes between three glycolysis-related subtypes (E).
Variation in the ssGSEA score levels of extracellular matrix (ECM) organization-related signaling pathways between three glycolysis-related subtypes
(F). Differential expression of HIF1A and HIF1AN between three glycolysis-related subtypes (G). Differential expression of HIF1A and HIF1AN between
three glycolysis-related subtypes (H). In this figure, variance analysis was performed with the K-S test. p<0.05 was presented with “*”, p<0.01 was
presented with “**”, p<0.001was presented with “***”. ns, not statistically significant..
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variety of biological functions (37). Therefore, cancer signaling

pathways might serve as a bridge between the malignant features

and glycolytic metabolic processes of LGG. Finally, we noted that

oncogenes in C1 and C3 were mainly manifested as mutually

exclusive mutations, while C2 was dominated by co-occurrence

mutations (Figures 5D–F). his indicated that C2 might have higher

genomic instability levels. The C2 subgroup had a median somatic

mutation count of 48, much higher than 28 and 25 in C1 and C3

(Supplementary Figures S4E). Elevated genomic instability is a

hallmark of poor prognosis in gliomas. In summary, variations in

cancer signaling pathway activity accompanied by genetic

heterogeneity might be closely related to the different biological

features among glycolysis-related subtypes. The abnormal glycolytic

metabolism levels were positively correlated with the malignancy

of LGG.
3.6 Construction of the GlySig risk models

To quantify the abnormal glycolytic metabolism level and its

prognostic impact, we constructed a prognostic model based on

LASSO regression and the expression of 26 key genes. In the TCGA

cohort, LGG samples were equally divided into the train (n = 256)

and test (n = 253) sets. The chi-square test demonstrated that there

was no significant bias in clinical traits between the train and test

sets (Supplementary Table 1). After evaluation, the optimal penalty

coefficient (log(l)) was -3.3, at which point 11 genes had non-zero

Coef values (Figures 6A, B). Furthermore, all these 11 genes had

significant prognostic significance in LGG (Figure 6C). Therefore,
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these 11 genes were finally identified as lasso genes for the

construction of GlySig (Supplementary Table 2).

Next, we validated the prognostic significance of GlySig. The K-

M curves showed that the high GlySig subgroup had a worse

prognosis (Figure 6D). Meanwhile, the AUC values of GlySig

predicting 1-, 3-, and 5-year OS were more stable in the TCGA

cohort, at 0.84, 0.83, and 0.78 (Figure 6E). Similarly, GlySig was also

a risk factor for prognosis in the CGGA cohort, and its

corresponding AUC values for 1-, 3-, and 5-year OS were

0.76,0.79, and 0.79 (Figures 6F, G). Thus, GlySig maintained a

stable and accurate prognostic predictive capability across different

databases, patient sources, and ethnographic conditions. In

addition, GlySig was a significant prognostic risk factor in both

univariate and multivariate Cox analyses (Figures 6H, I). Also, the

prognosis of the low GlySig subgroup was significantly better than

that of the high GlySig subgroup in all three-sample stratification

based on the new WHO 2021 glioma grades (Supplementary

Figures S4F–H). In summary, GlySig could be competent as an

independent prognostic biomarker for LGG.

Finally, we attempted to identify the relationship between

GlySig and glycolysis-related subtypes . As shown in

Supplementary Figures S4I, GlySig was increased sequentially

among C3, C1, and C2. Also, we noted that 99% of samples in C2

were simultaneously located in the high GlySig subgroup

(Figure 6J). These results suggested that the biological properties

of the high GlySig subgroup might be more inclined to samples in

C2. In addition, glycolysis-related pathways such as aerobic

glycolysis and Feeder pathways were highly enriched in high

GlySig, while electron transport, tricarboxylic acid (TCA) cycle
B C
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FIGURE 5

Overview of mutation rates and sites of 20 top mutated genes in C1 (A), C2 (B), and C3 (C). Interaction of 30 top mutated genes in C1 (D), C2 (E),
and C3 (F). Functional annotation of the mutation profile in C1 (G), C2 (H), and C3 (I). In this figure, the interaction of mutated genes was evaluated
with Fisher’s exact test. p<0.05 was presented with “*”, p<0.05 was presented with “**”, p<0.05 was presented with “***”.
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and gluconeogenic signatures were relatively underactive in the

high GlySig subgroup (Supplementary Figures S4J). In addition, we

verified the expression of lasso gene by PCR experiments

(Figures 7A–K) This implied that GlySig was positively correlated

with glycolytic metabolic activity. Above all, GlySig was a reliable

biomarker that could independently predict prognosis and reflect

the glycolytic metabolic activity in LGG, which had potential

clinical applicability.
3.7 Co-expression and functional
annotation of LASSO genes

To further reveal the functions of lasso genes and their

mechanisms affecting the malignant progression of LGG, we

further constructed the co-expression network and annotated

their function. Firstly, a total of 878 DEGs were identified

between the high and low GlySig subgroups with the |logFC|>1

and FDR<0.05 as thresholds (Supplementary Figures S5A). Next, by

Spearman correlation analysis, we examined the correlations

between the expression of lasso genes and DEGs. With a

correlation coefficient (Cor) >0.5 and p<0.05 as thresholds, 485

interaction relationships were retained, which contained 217

nonreplicated DEGs (Supplementary Figures S5B). Finally, we
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performed the GO and KEGG functional enrichment analysis on

the nodes of the coexpression network. The results indicated that

these nodal genes were mainly enriched in pathways related to cell

cycle regulation . These nodal genes regulated some

immunoregulatory signaling pathways, such as the MHC II

signaling pathway (Supplementary Figures S5C, D). Thus, apart

from being a prognostic marker the lasso genes were also

extensively involved in the malignant progression of LGG. These

findings partially revealed the mechanism by which abnormal

glycolytic metabolism affects the malignant features of LGG and

further supported the reliability of GlySig as a biomarker.
3.8 The nomogram construction

The results of multivariate Cox analysis indicated that GlySig

was a prognostic risk factor independent from clinical and

molecular traits (Figure 6I). To achieve higher clinical benefits for

LGG patients, we constructed the nomogram by integrating

molecular profiles and GlySig (Figure 8A). The ROC curves

showed that the AUC values for the 1-,3-, and 5-year OS

prediction by the nomogram were 0.874, 0.856, and 0.814

(Figure 8B). Meanwhile, the calibration curve revealed that the

error in the prognostic prediction of the nomogram was within an
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FIGURE 6

The relationship between penalty coefficient (log(l)) values and partial likelihood deviance. The point with the lowest partial likelihood of deviance
corresponds to the best log(l) value (A). Relationship between the weight coefficients (Coef) corresponding to the GlySig in the LASSO regression
and log(l) value (B). Univariate-Cox regression analysis of lasso genes in the TCGA LGG cohort (C). OS-dependent K-M curves between the high
and low GlySig subtypes in the TCGA cohort (D). 1-, 3- and 5-year OS-dependent ROC curves for the GlySig in the TCGA cohort (E). OS-dependent
K-M curves between the high and low GlySig subtypes in the CGGA cohort (F). 1-, 3- and 5-year OS-dependent ROC curves for the GlySig in the
TCGA cohort (G). Univariate (H) and multivariate (I) Cox analysis of GlySig with clinical and molecular traits. Differential distribution of GlySig-related
subgroups between three glycolysis-related subtypes (J).
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acceptable range (Figure 8C). These results indicated that the

prognostic predictive capability of the nomogram was reliable. In

addition, in the OS-dependent ROC curves, the nomogram had the

highest AUC value (Figure 8D). Finally, we performed the decision

curve analysis (DCA). The DCA curves showed that the nomogram

had the highest net clinical benefit compared to a single-indicator

prognostic evaluation strategy (Figure 8E). In summary, the

prognostic predictive capability of the nomogram in LGG was

more accurate than GlySig. At the same time, nomograms could
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bring higher net clinical benefits and have broader clinical

applications. The analysis and design flow chart of this article is

placed in the Supplementary Figures S6.
4 Discussion

Our findings demonstrated the metabolic heterogeneity of

lower-grade gliomas and describe the clinical significance,
B C D
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A

FIGURE 7

Quantitative analysis of GlySig-related genes using qRT-PCR: (A–K). Relative differences in gene expression of GlySig-related genes between normal
and astrocytic glioma cell lines. In this figure, p<0.05 was presented with “*”, p<0.01 was presented with “**”, p<0.001 was presented with “***”.
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molecular differences and immunological characteristics of three

different glycolytic subtypes. The three different glycolytic subtypes,

named C1, C2 and C3, were identified, with C3 having the best

prognosis, followed by C1, and C2 having the worst prognosis. They

corresponded to IDHmut-non-model, IDHwt and DHmut-model,

respectively. where the C2 type showed distinct T-cell failure

features. In addition, we developed GlySig to reflect the glucose

metabolic activity of LGG, suggesting that high levels of our glucose

metabolism are closely associated with poor prognosis. Our findings

explained and characterized the heterogeneity of glucose

metabolism within diffuse LGG and provide new ideas for the

treatment of glioma.

We noted extensive molecular profiling heterogeneity among

the three glycolysis-related subtypes, with C1, C2, C3 subtypes

enriched in IDHmut-non-codel, IDHwt, and IDHmut-codel

subtypes, respectively. In the DNA methylation cluster, G-CIMP

low and mesenchymal-like subtypes are almost exclusively present

in C2, where C1 and C3 are enriched in G-CIMP high and codel

subtypes, respectively. With the analysis of cancer metabolism and

genetics over the past two decades, IDH1 mutations not only lead to

the accumulation of 2-hydroxyglutaric acid, but also to extensive

changes in metabolic strategies, and metabolic reprogramming can

be largely seen as a result of oncogenic driving events (38). IDH

mutations not only affect amino acid metabolism but also lower

glucose oxidation through inhibitory phosphorylation of pyruvate

dehydrogenase (PDH). In addition, IDH1 mutant glioma cells show

greater flux through pyruvate carboxylase leading to greater
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production of oxaloacetate. These results suggest that IDH1

mutant glioma cells adaptively run the Kreb’s Cycle backwards,

perhaps to produce sufficient succinate to power the electron

transport chain (38–40). In contrast, for the IDHwt mesenchymal

subtype glioma promoter region is hypermethylated, resulting in

increased glycolytic enzyme gene expression (41). Consistent with

our results, the IDHwt type accounted for the highest C2 subtype

with higher levels of glycolysis.

Studies have shown that exposure to different oxygen gradients

leads to different metabolism in glioma cells. The transcription

factor HIF-1a is activated and stabilized under hypoxic conditions,

leading to a shift towards glycolysis and angiogenesis (42, 43). The

Warburg effect is a key contributor to the adaptation of tumor cells

to metabolic stress (5). Our results show that the expression of

HIF1A decreases sequentially in C2, C1 and C3, while the

expression of its suppressor HIF1AN increases sequentially.In

addition, increased hypoxia and aerobic glycolysis ultimately lead

to increased lactate production. HIF-1a activates aldolase,

g l y ce ra ldehyde -3 -phospha t e dehydrogenase , l a c t a t e

dehydrogenase, membrane lactate transporter protein (MCT4),

and carbonic anhydrase 9 and 12, all of which stimulate glycolytic

fluxes and facilitate lactate shuttling to the extracellular space (5).

Lactate can be used to acidify the microenvironment and promote

invasion (28). Tumor acidification has been shown to promote the

expression of GSC markers and self-renewal of GSC in gliomas, and

the GSC itself promotes the paracrine loop, thereby facilitating

further expression of HIF1/2a in the stem compartment. In vitro
B
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FIGURE 8

The nomogram constructed with the GlySig, grade, and age with the Cox regression for the prognostic prediction of LGG samples in the TCGA
cohort (A). 1-, 3-, and 5-year OS-dependent ROC curves for the nomogram (B). Calibration curves for the 1-, 3-, and 5-year OS prediction of the
nomogram (C). Comparison of OS-dependent ROC curves for the nomogram with other single-trait prognostic prediction strategies (D). Decision
curves for the nomogram and other single-trait prognostic prediction strategies (E). In this figure, p<0.01 was presented with “**”, and p<0.00 1 was
presented with “***”.
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studies have also shown that modulating pH can affect HIF2a

expression and subsequently reduce GSC self-renewal capacity,

suggesting that keeping lower PH is beneficial for tumors to

maintain the depots of their GSCs and ultimately maintain tumor

growth and resistance (44). Consistent with our findings, hypoxia

levels in different glycolytic subtypes were consistent with stemness

levels, with the C2 subtype having the highest stemness levels, EMT

levels and high expression of HIF-1a, contributing to the highly

active invasive behavior of LGG cells.

Aerobic glycolysis in tumors is an important cause of the

immunosuppressive microenvironment in tumors. Rapid glucose

utilization and increasing oxygen demand in tumors lead to hypoxia

and induction of hypoxia-inducible factor 1a, which increases

transforming growth factor (TGF)-b production, thereby further

suppressing NK cells and stimulating immunosuppressive CD4+ T

cells (6), In addition, lactate accumulation due to aerobic glycolysis

also has direct immunosuppressive effects at many levels, including

inhibition of monocyte differentiation to DCs and suppression of T

cell responses (7, 8). Among our results, it is noteworthy that the C2

subtype has the highest depletion profile. the cancer immune cycle

in C2 is limited by two main processes: T cell infiltration into the

tumor and killing of cancer cells, and we speculate that T cell

depletion may be involved in the formation of this unique pattern of

immune cell infiltration. It has been shown that the need for

effective T cell activation is met by upregulation of metabolism

(45, 46). While HGG aerobic glycolysis is increased, tumor cells

compete with effector T cells for glucose in TME. For example, the

proliferation of CD4+ T cells and CD8+ T cells requires the

glycolytic intermediate 2-phosphoenolpyruvate (PEP), which is

essential for nuclear translocation in response to T cell receptor

stimulation (47, 48). Similarly, glycolysis itself can control the

function of effector T cells by inhibiting the RNA binding of

glycolytic enzymes such as GAPDH and LDH and preventing

their efficient translation. Combined with our results we suggest

that the C2 subgroup has the highest level of T cell failure and

immune dysfunction (Supplementary Figure S3B, C).

There are still some limitations in this study. First, we used a

functional classification score (FCS) approach to quantify

phenotypes and pathways, but FCS analyzes each pathway

independently, and since the same gene may be involved in

multiple pathways, this may lead to significant enrichment of

individual pathways due to gene overlap.In addition, treating each

gene as an individual ignores the biological properties of genes and

the complex interactions between genes. Second, although the

correlation between metabolic levels and infiltrating immune cells

was determined at the macroscopic level, the underlying

mechanisms of metabolism of these immune cells are unknown,

Experimental studies should be conducted on the metabolism of

immune cells to explore their functional roles in greater depth.
5 Conclusion

This study includes a multi-omics analysis of the glycolysis-

associated gene set to explore the relevance of glycolysis to lower-

grade glioma heterogeneity and to develop a glycolysis risk scoring
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system. We retrieved data from TCGA including mutations, DNA

methylation, mRNA expression, histopathological grading,

molecular subtypes and clinical parameters. Unsupervised

clustering analysis of core glycolytic genes identified three

different glycolytic subtypes, named C1, C2 and C3, with C3

having the best prognosis, followed by C1, and C2 having the

worst prognosis. The clinical features, immune infiltration,

metabolic features and somatic cell variants were also explored. In

order to quantify the level of abnormal glucose metabolism and its

impact on prognosis, we developed GlySig to reflect the glucose

metabolic activity of LGG and integrated molecular features to

construct a nomogram that can be independently assessed to

predict prognosis. Our results explain and characterize the

heterogeneity of glucose metabolism within diffuse LGGs,

providing new ideas for the treatment of glioma and expanding

our understanding of glioma heterogeneity.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

BL, SW conceived and designed the study. LS, SF and XG were

responsible for data collection, analysis, and checking. SWwrote the

original draft of the manuscript, which was reviewed and revised by

CW. BZ and BL supervised the study. All authors contributed to the

article and approved the submitted version.
Acknowledgments

The authors gratefully acknowledge databases including TCGA

and GTEx many other for offering convenient access to datasets and

user-friendly online analysis.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1180662
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1180662
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fonc.2023.

1180662/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Five glycolysis-related signaling pathways that were highly enriched in LGG

samples compared with normal cortical samples in GTEx, including

GOBP_FRUCTOSE_1_6_BISPHOSPHATE_METABOLIC_PROCESS (A);
R E G U L A T I O N _ O F

GLYCOLYSIS_BY_FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM (B);
GLYCOLYSIS IN SENESCENCE (C); HALLMARK_GLYCOLYSIS (D); and

REACTOME_GLYCOLYSIS (E). Differences in the distribution of principal
components among glycolysis-related subtypes. Points with varied colors

represented samples in different subgroups.

SUPPLEMENTARY FIGURE 2

Differential distribution of Histology (A), chr7 gain & chr10 loss (B); CDKN2B
status (C), CDKN2A status (D), EGFR status (E); chr19 and chr20 co-gain (F);
PDGF2A status (G); and PDGF2B status (H) between three glycolysis
related-subtypes.

SUPPLEMENTARY FIGURE 3

Differences in ESTIMATE score (A), Dysfunction levels (B); and Exclusion levels

(C) between three glycolysis-related subtypes. Differential expression of
Frontiers in Oncology 13
immune checkpoints between three glycolysis-related subtypes (D).
Differential distribution of TCGA immune subtypes between three

glycolysis-related subtypes (E). In this figure, variance analysis was

performed with the K-S test. p<0.05 was presented with “*”, p<0.05 was
presented with “**”, p<0.05 was presented with “***”.

SUPPLEMENTARY FIGURE 4

The lollipop plot demonstrated the differences in mutation rates and sites

between different glycolysis-related subtypes for ATRX (A); TP53 (B); EGFR
(C); and IDH1 (D). Differences in somatic mutation counts between three

glycolysis-related subtypes (E). OS-dependent survival curves between high
and low GlySig subgroups in three WHO2021 stratifications, including IDHwt

(F), IDHmut-non-codel (G), and IDHmut-codel (H). Differences in GlySig (I)
and glycolysis-related pathways (J) between three glycolysis-

related subtypes.

SUPPLEMENTARY FIGURE 5

Volcano plot presented DEGs between the high and low GlySig-related

subgroups (A). Red points represented the DEGs highly expressed in the
high GlySig subgroup, while the blue points represented the DEGs lowly

expressed in the high GlySig subgroups. Black points mean DEGs did not fulfill

the threshold of |logFC|>1 and FDR<0.05. Co-expression network of lasso
genes with selected DEGs (B). GO (C) and KEGG (D) functional enrichment

analysis of nodes in the co-expression network.

SUPPLEMENTARY FIGURE 6

Article Analysis Design Flowchart.
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