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Applying machine learning
techniques to predict the risk
of lung metastases from rectal
cancer: a real-world
retrospective study

Binxu Qiu1, Zixiong Shen2, Dongliang Yang1 and Quan Wang1*

1Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin
University, Changchun, China, 2Department of Thoracic Surgery, The First Hospital of Jilin University,
Changchun, China
Background: Metastasis in the lungs is common in patients with rectal cancer,

and it can have severe consequences on their survival and quality of life.

Therefore, it is essential to identify patients who may be at risk of developing

lung metastasis from rectal cancer.

Methods: In this study, we utilized eight machine-learning methods to create a

model for predicting the risk of lungmetastasis in patients with rectal cancer. Our

cohort consisted of 27,180 rectal cancer patients selected from the Surveillance,

Epidemiology and End Results (SEER) database between 2010 and 2017 for

model development. Additionally, we validated our models using 1118 rectal

cancer patients from a Chinese hospital to evaluate model performance and

generalizability. We assessed our models’ performance using various metrics,

including the area under the curve (AUC), the area under the precision-recall

curve (AUPR), the Matthews Correlation Coefficient (MCC), decision curve

analysis (DCA), and calibration curves. Finally, we applied the best model to

develop a web-based calculator for predicting the risk of lung metastasis in

patients with rectal cancer.

Result: Our study employed tenfold cross-validation to assess the performance

of eight machine-learning models for predicting the risk of lung metastasis in

patients with rectal cancer. The AUC values ranged from 0.73 to 0.96 in the

training set, with the extreme gradient boosting (XGB) model achieving the

highest AUC value of 0.96. Moreover, the XGB model obtained the best AUPR

and MCC in the training set, reaching 0.98 and 0.88, respectively. We found that

the XGB model demonstrated the best predictive power, achieving an AUC of

0.87, an AUPR of 0.60, an accuracy of 0.92, and a sensitivity of 0.93 in the internal

test set. Furthermore, the XGB model was evaluated in the external test set and

achieved an AUC of 0.91, an AUPR of 0.63, an accuracy of 0.93, a sensitivity of

0.92, and a specificity of 0.93. The XGB model obtained the highest MCC in the

internal test set and external validation set, with 0.61 and 0.68, respectively.

Based on the DCA and calibration curve analysis, the XGB model had better

clinical decision-making ability and predictive power than the other seven

models. Lastly, we developed an online web calculator using the XGB model
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to assist doctors in making informed decisions and to facilitate the model’s wider

adoption (https://share.streamlit.io/woshiwz/rectal_cancer/main/lung.py).

Conclusion: In this study, we developed an XGB model based on

clinicopathological information to predict the risk of lung metastasis in patients

with rectal cancer, which may help physicians make clinical decisions.
KEYWORDS

machine learning, rectal cancer, lung metastasis, real world, web calculator
Introduction

Colorectal cancer is a prevalent gastrointestinal tumor with

increasing incidence rates worldwide, causing over 900,000 deaths

among almost 2 million new cases reported by the World Health

Organization (WHO) (1, 2). In East Asia, where the disease is highly

prevalent, the lifetime risk of developing colorectal cancer is 2% (2).

Rectal cancer is a significant proportion of colorectal cancers, and early

detection is crucial for improving patient outcomes. In Japan, early

screening has increased the 5-year survival rate of rectal cancer patients

to over 60%. However, late-stage rectal cancer, particularly with distant

metastases, remains challenging to treat, with a survival rate of less than

15% (3). Unfortunately, lung metastases are a common site of

metastasis, occurring in over 70% of patients within 5 years of

diagnosis (4, 5). Although immunotherapy has improved survival

rates, the benefits are limited, and systemic therapy and radiotherapy

have low objective remission rates (6, 7). Early identification of high-

risk patients with lung metastases from rectal cancer can improve

survival quality and reduce unnecessary medical resource waste.

The integration of artificial intelligence with medical disciplines is

growing, with machine learning playing a crucial role in this

collaboration (8). Machine learning involves learning from data to

improve algorithms, and resulting models can make predictions or

decisions. Compared to traditional statistical methods, such as logistic

regression, machine learning algorithms can analyze data associations

more multidimensionally, making them particularly useful for analyzing

complex medical data (9). Improved computing power and storage

capacity have enabled machine learning to identify significant

connections within medical data, facilitating personalized treatment

recommendations, efficient healthcare delivery, and cost reduction (10,

11). Many researchers have used machine learning techniques for cancer

metastasis assessment and early prediction with some success. However,
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these studies have had the disadvantage of using only public database

data to develop models or having small sample sizes (12–14).

Additionally, machine learning models are often viewed as “black

boxes” and challenging for clinicians to understand and trust,

hindering their widespread use in medical decision-making (15, 16).

The objective of our study was to use machine learning models

to combine common clinicopathological factors and predict the

probability of lung metastases in patients with rectal cancer. To

validate our findings, we utilized external data from a Chinese

hospital. Subsequently, we developed a web-based calculator using

the most effective machine learning model. This predictive tool can

help physicians assess the risk of lung metastasis in patients with

rectal cancer and devise personalized medical strategies while

optimizing medical resource allocation.
Materials and methods

Patient cohort

Development cohort
The Surveillance, Epidemiology, and End Results (SEER) database is

a publicly available cancer reporting system that provides essential data

for investigating complex diseases (17). After obtaining a license and

permission, we generated a rectal cancer cohort using rectal cancer

patient data from the SEER database. In this study, we included patient

data from 2010 to 2017 as information on patients’ liver, brain, lung, and

bone metastases was not collected into the database until after 2010 (18).

Additional information about SEER is available on its official website

(http://seer.cancer.gov/about/). To be included in our study, patients in

the SEER database met the following criteria: 1. Pathologically diagnosed

with rectal cancer based on the International Classification of Diseases

morphological tumor code (ICD-O-3/WHO 2008); 2. Diagnosed

between 2010 and 2017; 3. Rectal cancer as the primary tumor; 4.

Complete clinicopathological information, including age, gender, race,

marital status, T-stage, N-stage, pathological grading, carcinoembryonic

antigen (CEA) levels, nerve invasion, tumor size, tumor deposits, primary

site, and diagnostic information.

External validation cohort
For external validation, we used data from 1,118 patients at the

First Hospital of Jilin University, with additional criteria of no
frontiersin.org
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neoadjuvant radiotherapy before surgery and heterocoelous lung

metastases (lung metastases occurring within 2 years of diagnosis of

rectal cancer). The study was retrospective and did not involve

patient safety or privacy, and an ethical exemption was granted.

Please refer to Figure 1 for a detailed outline of the patient selection

process for both the development and external validation cohorts.
Data collection and data processing

We utilized SEER * STAT (8.4.0) software to extract data from

SEER Research Plus Data, 18 Registries + Hurricane Katrina

Impacted Louisiana Cases + Hispanic Ethnicity, Nov 2020 Sub

(2000-2018) for patients diagnosed with rectal cancer. The

clinicopathological information from the external validation cohort

was processed according to SEER standards (Supplement Table 1).

The cases were staged using the 7th edition of the AJCC TNM staging

and SEER-related guidelines. We categorized the variables for ease of

use in model construction (Supplement Table 2).
Construction of predictive models

We employed eight machine-learning algorithms for

classification to predict the risk of lung metastasis in patients with

rectal cancer. These algorithms included the extreme gradient

boosting machine (XGB), random forest (RF), decision tree (DT),

K-nearest neighbor (KNN), multilayer perceptron (MLP), logistic
Frontiers in Oncology 03
regression (LR), support vector machine (SVM), and Naive Bayes

(BNB). XGB is a tree-based learning algorithm framework that has

shown successful application in medical model construction in

recent years (19). RF can reduce training variance, increase

integration, and improve generalization by constructing multiple

decision trees (20). DT is commonly used for high-accuracy tumor

classification and image screening (21). KNN is a vital classification

algorithm widely used for pattern recognition, data mining, and

intrusion detection (22). MLP is a neural network model that can

enhance pattern performance using stochastic gradient descent

optimization with a momentum algorithm (23). LR is a classical

binary variable classification algorithm commonly used in data

mining due to its simplicity and greater explanatory power (24).

BNB is a model based on an application of Bayes’ theorem that

allows the use of continuous eigenvalues when they occur (25).

To train and validate our models, we randomly divided the

rectal cancer patient data obtained from SEER into a training set

and an internal validation set in a 7:3 ratio. Due to the significant

impact of category imbalance on model performance when dealing

with dichotomous variable problems, we addressed the data

imbalance by using a synthetic minority category oversampling

technique (SMOTE) to increase the number of patients with lung

metastases from rectal cancer. This technique oversamples data

samples from small categories to improve the model’s accuracy by

increasing the number of data samples from small classes (26). We

trained the eight models using the training set data. We used 80%

and 20% of the data set for each set of parameters to fit the models

for validation while searching for the optimal model parameters
FIGURE 1

The Workflow diagram for study design and patient screening.
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using random hyperparameters. We validated and evaluated the

constructed models using the internal valid warranty data. Finally,

we used an external validation cohort to determine the models’

extrapolation and generalization capabilities. We selected the best-

performing model from the eight models mentioned above to

construct the network predictor. The code for the article data

ana ly s i s i s r epre sen ted in the suppor t ing mate r i a l

(Supporting Table 3).
Model performance and
feature importance

In this study, we evaluated the performance of eight models

using various metrics, including the area under the curve (AUC),

the area under the precision-recall curve (AUPR), predictive

accuracy, sensitivity, specificity, the Matthews correlation

coefficient (MCC), and F1 score. The AUC value is typically

calculated by Receiver Operating Characteristic (ROC) curve.

Given the highly unbalanced nature of this dataset, we performed

both PR curves, using the area under the PR curve as an essential

metric for assessing model performance (27, 28). MCC is a

particular case of the phi coefficient (j). The True Class and

Predicted Class are considered binary variables, and their

correlation coefficients are calculated (similar to the correlation

coefficient calculation between any two variables). The higher the

correlation between the True and Predicted values, the better the

prediction. A prediction will only yield a high score if it obtains

good results in all four confusion matrix classes (29, 30). We used

the Brier score to assess the accuracy of probabilistic predictions,

which is suitable for tasks where the forecast must assign

probabilities to mutually exclusive discrete outcomes. A lower

score indicates a more accurate model (31). To evaluate the

clinical value of the models, we used clinical decision curve

analysis (DCA) (32). A calibration curve is essential for

evaluating prediction models and assessing the difference and bias

between the predicted values and actual observations (33). To

analyze the importance of the included features across all

algorithms, we used the permutation importance principle for

feature importance analysis (34). This principle involves training

the model, interrupting the data in one of the columns, and using

that dataset to make predictions while assessing the decrease in

prediction accuracy to reflect the importance of that feature

variable. This process is then repeated for the other feature

variables (35). The following formula was used to calculate model

performance in this study:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN
= recall
Frontiers in Oncology 04
F1 =
2*Precision*recall
Precision + recall

Brier score =
1
N
 on

T=0(ft − Ot)

MCC =
TP*TN − FP*FN

√ (TP + FP)(TP + FN)(TN + FP)(TN + FN)
Statistical analysis

All data analyses in this study were conducted using Python

(version 3.8, Python Software Foundation) and R software (version

4.1.0). Continuous variables were reported as median and standard

deviation, and group comparisons were performed using the

Wilcoxon rank sum test. Categorical variables were reported as

frequencies and percentages, and differences between groups were

compared using the c2 or Fisher’s exact test. Univariate logistic

regression analysis was conducted for all variables included in the

study. Variables with a two-sided P value< 0.05 were considered

significant factors for lung metastasis from rectal cancer.

Multivariable logistic regression was then performed to test

whether these significant factors were independent risk factors for

lung metastasis in patients with rectal cancer. The machine learning

model included variables with a multivariable logistic regression p

value< 0.05 for further analysis.
Result

Demographic composition and clinical
baseline information

A total of 27,180 cases of rectal cancer diagnosed between 2010

and 2017 were included in this study using the SEER database.

Among them, 912 cases (3.36%) had lung metastases, while 26,268

cases (96.64%) did not. Demographic and clinicopathological

characteristics of all patients are reported in Table 1. The subjects

were randomly assigned to a training set (n = 19026) and an

internal test set (n = 8154) at a 7:3 ratio. An external test set

comprising 1,118 patients with rectal cancer first diagnosed at our

institution from 2010 to 2017 was also included. Detailed

information regarding the training and test sets can be found

in Table 2.
Univariate analysis and multivariable
logistic regression analysis

Univariate logistic regression analysis of the training dataset

revealed that marital status, T and N stage, preoperative CEA levels,

tumor deposition, perineural invasion, and tumor size were

significantly associated with lung metastasis in patients with rectal

cancer (P<0.05; Table 3). Variables with a P-value of less than 0.05
frontiersin.org
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TABLE 1 Clinical and pathological characteristics of study population.

Variables
All NLM LM

P Value
N=27180 N=26268 N=912

Age (mean (SD)) 62.50 (13.43) 62.52 (13.42) 61.85 (13.47) 0.138

Gender, n (%)

Male 16007 (58.9) 15477 (58.9) 530 (58.1) 0.651

Female 11173 (41.1) 10791 (41.1) 382 (41.9)

Race, n (%)

White 21566 (79.3) 20835 (79.3) 731 (80.2) 0.539

Black 2669 (9.8) 2575 (9.8) 94 (10.3)

Asian or Pacific Islander 2698 (9.9) 2620 (10.0) 78 (8.6)

American Indian/Alaska Native 247 (0.9) 238 (0.9) 9 (1.0)

Marital, n (%)

Married (including common law) 15265 (56.2) 14812 (56.4) 453 (49.7) 0.001

Single (never married) 4497 (16.5) 4319 (16.4) 178 (19.5)

Widowed 2864 (10.5) 2765 (10.5) 99 (10.9)

Divorced 2743 (10.1) 2623 (10.0) 120 (13.2)

Unknown 1440 (5.3) 1394 (5.3) 46 (5.0)

Separated 293 (1.1) 281 (1.1) 12 (1.3)

Unmarried or Domestic Partner 78 (0.3) 74 (0.3) 4 (0.4)

T stage, n (%)

T1 6529(24.0) 6391(24.3) 138(15.1) <0.001

T2 4551 (16.7) 4498 (17.1) 53 (5.8)

T3 13660 (50.3) 13136 (50.0) 524 (57.5)

T4 2440 (9.0) 2243 (8.5) 197 (21.6)

N stage, n (%)

N0 16077 (59.2) 15796 (60.1) 281 (30.8) <0.001

N1 8231 (30.3) 7775 (29.6) 456 (50.0)

N2 2872 (10.6) 2697 (10.3) 175 (19.2)

Grade, n (%)

Grade I 3899 (14.3) 3844 (14.6) 55 (6.0) <0.001

Grade II 19620 (72.2) 18944 (72.1) 676 (74.1)

Grade III 3192 (11.7) 3029 (11.5) 163 (17.9)

Grade IV 469 (1.7) 451 (1.7) 18 (2.0)

Tumor Deposits, n (%)

No 17159 (63.1) 16895 (64.3) 264 (28.9) <0.001

Yes 2342 (8.6) 2221 (8.5) 121 (13.3)

Unknown 7679 (28.3) 7152 (27.2) 527 (57.8)

Perineural Invasion, n (%)

No 17839 (65.6) 17453 (66.4) 386 (42.3) <0.001

(Continued)
F
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TABLE 1 Continued

Variables
All NLM LM

P Value
N=27180 N=26268 N=912

Yes 2328 (8.6) 2205 (8.4) 123 (13.5)

Unknown 7013 (25.8) 6610 (25.2) 403 (44.2)

CEA, n (%)

Negative 8828 (32.5) 8694 (33.1) 134 (14.7) <0.001

Borderline 83 (0.3) 83 (0.3) 0 (0.0)

Positive 6944 (25.5) 6407 (24.4) 537 (58.9)

Unknown 11325 (41.7) 11084 (42.2) 241 (26.4)

Tumor Size (mean (SD)) 4.04 (3.50) 3.97 (3.40) 5.91 (5.37) <0.001
F
rontiers in Oncology
 06
 fron
CEA, Carcinoembryonic antigen; LM, Lung metastasis; NLM, no lung metastasis.
TABLE 2 Clinical and pathological characteristics of the training set, test set and validation set.

Variables
SEER database(N=27180) Outer validation (N=1118) P Value

Training (N=19026) Testing (N=8154)

Age (mean (SD)) 62.52 (13.39) 62.44 (13.52) 62.78(13.50) 0.493

Gender, n (%)

Male 11204(58.9) 4803(58.9) 653(58.4) 0.747

Female 7822 (41.1) 3351 (41.1) 465 (41.6)

Race, n (%)

White 15079 (79.3) 6487 (79.6) 0 <0.001

Black 1893 (9.9) 776 (9.5) 0

Asian or Pacific Islander 889 (9.9) 809 (9.9) 1118(100.0)

American Indian/Alaska Native 165 (0.9) 82 (1.0) 0

Marital, n (%)

Married (including common law) 10665 (56.1) 4600 (56.4) 1116(99.8) <0.001

Single (never married) 3177 (16.7) 1320 (16.2) 0

Widowed 1998 (10.5) 866 (10.6) 0

Divorced 1930 (10.1) 813 (10.0) 0

Unknown 996 (5.2) 444 (5.4) 0

Separated 208 (1.1) 85 (1.0) 0

Unmarried or Domestic Partner 52 (0.3) 26 (0.3) 2(0.2)

T stage, n (%)

T1 4476 (23.5) 2053 (25.2) 271 (24.2) 0.272

T2 3192 (16.8) 1359 (16.7) 183 (16.4)

T3 9675 (50.9 3985 (48.9) 584 (52.2)

T4 1683(8.8) 757 (9.3) 80 (7.2)

N stage, n (%)

N0 11224 (59.0) 4853 (59.5) 630 (56.4) 0.517

(Continued)
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in the univariate analysis were included in multivariable logistic

regression analysis to identify independent risk factors for lung

metastasis in rectal cancer patients. Multivariable logistic regression

analysis revealed that T and N stage, CEA, tumor deposition,

perineural invasion, grade, and tumor size were independent risk

factors for lung metastasis in rectal cancer (P< 0.05; Table 3).
Model performance

Figure 2A displays the results of the tenfold cross-validation,

indicating that XGB exhibited the best performance with an average

AUC value of 0.96 (std=0.00), surpassing other models such as RF

(AUC=0.93, std=0.00), LR (AUC=0.77, std=0.01), SVM

(AUC=0.81, std=0.01), MLP (AUC=0.88, std = 0.01),

KNN (AUC = 0.76, std = 0.01), BNB (AUC = 0.73, std = 0.01),

and DT (AUC = 0.84, std = 0.01). Moreover, the XGB model
Frontiers in Oncology 07
obtained the best AUPR and MCC in the training set, reaching 0.98

and 0.88, respectively (Figure 2B). The XGB model also

demonstrated the lowest Brier score of 0.025 among all models.

Based on the training set data, the DCA curves revealed that the

XGB model had high reliability (Figures 2C, D). In the internal

validation set, the XGBmodel achieved the highest AUC of 0.87 and

exhibited high accuracy, precision, sensitivity, and F1 score

(Figures 3A, 4). In the external validation set, the XG B model

attained the highest AUC of 0.91 and displayed excellent accuracy,

precision, sensitivity, and F1 score (Figures 3E, 4). Furthermore, the

XGB model demonstrated a larger AUPR than other models

(Figures 3B, F). The XGB model obtained the highest MCC in the

internal test set and external validation set, with 0.61 and 0.68,

respectively. The DCA and clinical decision curves show that the

XGB model has good clinical decision-making ability and actual

predictive power compared to the other seven models (Figures 3C,

G, D, H). Considering the high predictive performance of the XGB
TABLE 2 Continued

Variables
SEER database(N=27180) Outer validation (N=1118) P Value

Training (N=19026) Testing (N=8154)

N1 5799 (30.5) 2432 (29.8) 380 (34.0)

N2 2003 (10.5) 869 (10.7) 108 (9.7)

Grade, n (%)

Grade I 2688 (14.1) 1211 (14.9) 162 (14.5) 0.361

Grade II 13718 (72.1) 5902 (72.4) 826 (73.9)

Grade III 2287 (12.0) 905 (11.1) 110 (9.8)

Grade IV 333 (1.8) 136 (1.7) 20 (1.8)

Tumor Deposits, n (%)

No 12066 (63.4) 5093 (62.5) 629 (56.3) <0.001

Yes 1637 (8.6) 705 (8.6) 128 (11.4)

Unknown 5323 (28.0) 2356 (28.9) 361 (32.3)

Perineural Invasion, n (%)

No 12567 (66.1) 5272 (64.7) 674 (60.3) <0.001

Yes 1639 (8.6) 689 (8.4) 89 (8.0)

Unknown 4820 (25.3) 2193 (26.9) 355 (31.8)

CEA, n (%)

Negative 6227 (32.7) 2601 (31.9) 422 (37.7) <0.001

Borderline 56 (0.3) 27 (0.3) 38 (3.4)

Positive 4875 (25.6) 2069 (25.4) 326 (29.2)

Unknown 7868 (41.4) 3457 (42.4) 332 (29.7)

Tumor Size (mean (SD)) 4.05 (3.50) 4.00 (3.50) 3.93 (3.82) 0.324

Lung Met, n (%)

No 18401(96.7) 7867(96.5) 932(83.3) <0.001

Yes 625(3.3) 287(3.5) 186(16.6)
fron
CEA, Carcinoembryonic antigen; SEER, The Surveillance, Epidemiology, and End Results (SEER) database.
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TABLE 3 Univariate analysis and multivariable logistic regression analysis of variables.

Variables Category
Univariate Analysis Multivariable Analysis

P value Odds Ratio (95% CI) P value

Age 0.096

Sex Male 0.506

Female

Race White 0.162

Black

Asian or Pacific Islander

American Indian/Alaska Native

Marital status Married 0.010 Reference Reference

Single (never married) 1.06 (0.88-1.28) 0.530

Widowed 1.12 (0.89-1.41) 0.349

Divorced 1.21 (0.98-1.51) 0.080

Unknown 1.10 (0.80-1.52) 0.550

Separated 1.08 (0.58-2.01) 0.806

Unmarried or Domestic Partner 1.54 (0.52-4.55) 0.431

Grade Grade I <0.001 Reference Reference

Grade II 2.45 (1.82-3.31) <0.001

Grade III 2.56 (1.83-3.58) <0.001

Grade IV 2.01 (1.13-3.57) 0.017

T stage T1 <0.001 Reference Reference

T2 0.61 (0.44-0.85) 0.004

T3 1.05 (0.84-1.32) 0.676

T4 1.51 (1.17-1.96) 0.002

N stage N0 <0.001 Reference Reference

N1 2.37 (2.00-2.81) <0.001

N2 2.72 (2.17-3.40) <0.001

CEA Pretreatment Negative <0.001 Reference Reference

Borderline 1.74 (0.79-2.69) 0.940

Positive 3.63 (2.98-4.42) <0.001

Unknown 1.30 (1.04-1.62) 0.022

Perineural Invasion No <0.001 Reference Reference

Yes 1.57 (1.25-1.98) <0.001

Unknown 1.47 (1.23-1.75) <0.001

Tumor Deposits No <0.001 Reference Reference

Yes 1.59 (1.25-2.01) <0.001

Unknown 4.41 (3.67-5.31) <0.001

Tumor size <0.001 1.03 (1.02-1.04) <0.001
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FIGURE 2

(A) Ten-fold cross-validation results of different machine models in the training set. (B) PR curves of different machine learning models in the training
set. (C) DCA curves of different machine learning models in the training set. (D) Calibration curves of the best models in the training set. LR, logistic
regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting;BNB, plain Bayesian classification; MLP, multilayer perceptron; SVM,
support vector machine; KNN, k-nearest neighbor.
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FIGURE 3

(A) ROC curves of different machine learning models in the internal validation set. (B) PR curves of different machine learning models in the internal
test set. (C) DCA curves of different machine learning models in the internal test set. (D) Calibration curves of different machine learning models in
the internal test set (E) ROC curves of different machine learning models in the external test set. (F) PR curves of different machine learning models
in the external test set. (G) DCA curves of different machine learning models in the external test set. (H) Calibration curves of different machine
learning models in the external validation set. LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; NBC,
plain Bayesian classification; MLP, multilayer perceptron; SVM, support vector machine; KMN, k-nearest neighbor; DCA, Decision curve analysis; PR,
precision-recall.
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model in both internal and external validation sets, we designate it

as the best model.
Relative feature importance on prediction

The importance of the features in predicting lung metastases

was evaluated using the importance ranking principle, and the

results are shown in Figure 5. Tumor size and deposits were found

to be the most important variables across most machine-learning

models. Conversely, differentiation grade was found to be the least

important variable in most models, but it still contributed to the

models to some extent. In the XGB model, the relative importance

of features in descending order was tumor deposits, CEA, peripheral

nerve invasion, N stage, T stage, tumor size, and grade. The

importance of the features varied slightly across different machine

learning models.
The prediction of the risk of lung
metastasis in patients with rectal cancer

To facilitate clinical use, we have developed an online web

calculator based on the XGBmodel for predicting lung metastasis in
Frontiers in Oncology 10
rectal cancer. The XGB model showed superior predictive

performance for rectal cancer lung metastasis, but its complexity

makes it unsuitable for clinical application. The web calculator

(https://share.streamlit.io/woshiwz/rectal_cancer/main/lung.py)

enables users to input the patient’s clinicopathological information,

and estimate the probability of lung metastasis occurrence in rectal

cancer patients. Figure 6 shows screenshots of the web calculator.
Discussion

Timely detection and intervention of lung metastases are crucial

in rectal cancer patients as they significantly predict poor prognosis.

Early diagnosis of lung metastases can improve the feasibility of

surgical treatment and overall survival. For instance, Heinemann

et al. demonstrated that early detection of lung metastases for

surgery improved the 5-year survival rate by 30% compared to

patients who did not undergo surgery (7). However, lung metastases

incidence may have been underestimated due to the lack of

symptoms at the time of initial diagnosis or delayed presentation.

Therefore, detecting lung metastases from rectal cancer at an early

stage is challenging. Moreover, patients with lung metastases from

rectal cancer may experience a reduced quality of life due to

respiratory symptoms such as chest pain, coughing up blood, and
A B C

FIGURE 4

(A) Prediction performance of different models in the training set. (B) Prediction performance of different models in the internal validation set.
(C) Prediction performance of different models in the external validation set. LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme
gradient boosting; NBC, plain Bayesian classification; MLP, multilayer perceptron; SVM, support vector machine; KMN, k-nearest neighbor.
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respiratory failure (36). Although Positron Emission Tomography–

Computed Tomography (PET-CT) is commonly used to diagnose

lung metastases, its high cost and potential risk of radiological

damage may make it unsuitable for early screening (37). The biopsy

is the gold standard for diagnosing lung metastases, but the

procedure’s complexity and the risk of tumor cell dissemination

make it unsuitable for routine diagnosis (38). Given these

limitations, this study utilized machine learning techniques based

on clinicopathological indicators to develop predictive models to

identify high-risk patients. These models could help clinicians

develop personalized treatment plans for patients with rectal

cancer, including asymptomatic patients with lung metastases.

In several studies, tumor size is an independent risk factor for

cancer metastasis (39–43). The results of this study’s multivariable

logistic regression and machine learning models are consistent with

them. The larger the tumor size, the longer the tumor growth time,

allowing for better tumor cell evolution and thus contributing to lung
Frontiers in Oncology 11
metastasis development. In a prospective controlled study involving

167 individuals, patients with lymph node metastases were more

likely to have recurrence and distal metastases (44). This is because

the main route of distal metastasis is lymphatic, and the lung is one of

the most lymphatic-rich organs, where tumor cells are more likely to

colonize the lung via the lymphatics. Not surprisingly, more

advanced T-stage rectal cancers are more likely to develop lung

metastases (39, 45). This is because the late T stage and tumor

invasion of connective tissue contributes to tumor metastasis via

blood vessels or lymphatic vessels. Numerous studies have shown

that CEA is an essential indicator of recurrence and metastasis in

patients with colorectal cancer (46, 47). Li et al. suggested that

perineural invasion is an independent predictor of distal metastasis

in rectal cancer, and our findings support their view (48). Some

current studies suggest that cancer cells may metastasize to other

body parts along the peripheral nervous system in the case of nerve

invasion. However, few have explained why patients with perineural
FIGURE 6

A web calculator for predicting lung metastases from rectal cancer.
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FIGURE 5

The importance of Variables in each prediction model. (A) Feature Importance of XGB. (B) Feature Importance of RF. (C) Feature Importance of LR.
(D) Feature Importance of DT. (E) Feature Importance of KNN. (F) Feature Importance of BNB. (G) Feature Importance of MLP. (H) Feature
Importance of SVM. LR, logistic regression; DT, decision tree; RF, random forest; XGB, extreme gradient boosting; BNB, plain Bayesian classification;
MLP, multilayer perceptron; SVM, support vector machine; KMN, k-nearest neighbor; CEA, Carcinoembryonic antigen; PI, perineural invasion.
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invasion are prone to distal metastasis, and further in-depth studies in

this area are needed in the future. Tumor deposits were identified as a

risk factor for lung metastasis from rectal cancer. These deposits refer

to nodules of tumor tissue found within the lymphatic drainage area

of the primary tumor, lacking lymph node, vascular, and nerve tissue,

and can vary in size, shape, and border (49). Romian et al. showed

that tumor deposits in colorectal cancer patients increased the risk of

death by 59% and found that the prognosis of patients with tumor

deposits was the same as that of patients with N1 lymph node

metastases from rectal cancer (50).

To our knowledge, the study represents the first instance of

utilizing machine learning algorithms with real-world data to predict

lung metastasis in rectal cancer. In order to enhance the model’s

versatility, we incorporated multicenter data from the SEER database

and performed internal validation to confirm its reliability. Due to the

heterogeneity of the data, we employed external validation to evaluate

the model’s performance. Using the XGB algorithm, our study

produced a machine-learning model for lung metastasis prediction

in rectal cancer that outperformed other algorithms. The XGB

algorithm demonstrated excellent predictive ability in training and

validation cohorts. This algorithm’s superiority in managing large

and non-linear datasets may be due to incorporating standard terms

into the objective function to prevent overfitting and using column

sampling to bolster model stability (46). Our study’s lung metastasis

model for rectal cancer can give clinicians and patients a more precise

estimate of the likelihood of lung metastasis in the clinical setting.

Shortening the examination cycle for high-risk patients allows early

detection and treatment of lung metastases from rectal cancer, thus

improving patient prognosis and elevating their quality of life.

Although our developed model shows strong discriminatory

power, this study has some drawbacks. Firstly, this is a retrospective

study, and there may be a selection bias in the patient selection that

needs to be validated in further prospective studies. Secondly, the

external validation cohort was single-center data with a small

number of patients who were all Asian. Therefore, more patient

data from multiple hospitals will be needed to validate our model’s

diagnostic efficacy and extrapolation. Thirdly, the absence of

important information, including immunohistochemical

information, hematologic indicators, and radiotherapy

information due to data limitations in the SEER database, limited

our ability to optimize the model further.
Conclusion

In summary, we developed and validated a clinical prediction

model for lung metastases from rectal cancer built on machine

learning algorithms. We have created a visual web calculator based

on the XGB algorithm, which helps doctors to individualize the

treatment of patients at risk of lung metastasis from rectal cancer. In

the future, we will further validate the model using multicenter data

and evaluate its performance.
Frontiers in Oncology 12
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