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Background: In the past 5 years, ferroptosis-associated cancer immunity has

been attracted significant research interest.

Objective: This study was performed to identify and analyze the global output

trend for ferroptosis in cancer immunity.

Methods: Relevant studies were retrieved from the Web of Science Core

Collection on Feb 10th, 2023. The VOSviewer and Histcite softwares were

utilized to perform the visual bibliometric and deep mining analyses.

Results: A total of 694 studies (530 articles (76.4%) and 164 (23.6%) review

articles) were retrieved from the Web of Science Core Collection for visualization

analyses. The top 3 key keywords were ferroptosis, prognosis and

immunotherapy. The top 30 local citation score (LCS) authors were all

collaborators of Zou Weiping. Deep mining of 51 nanoparticle-related articles

showed that BIOMATERIALS was the most popular journal. The primary goal of

gene signatures related to ferroptosis and cancer immunity was to establish

prognostic predictions.

Conclusion: There has been a significant increase in ferroptosis-associated

immune publications in the recent 3 years. The key research hotspots include

mechanisms, prediction and therapeutic outcomes. The most influential article

was from the Zou Weiping’s group, which proposed that system xc-mediated

ferroptosis is induced by CD8(+) T cell-secreted IFNg after PD-L1 blockage for

immunotherapy. The frontier of research in the field of ferroptosis-associated

immune is the study on nanoparticle and gene signature The limitation of this

bibliometric study is that publications on this topic are few.
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1 Introduction

Cancer is a malignant tumor. People are more likely to die

from malignant tumors as their incidences have risen significantly in

recent years. According to the latest cancer epidemiological data, nearly

10 million people died of cancer in 2020, accounting for nearly one in

six deaths, which highlights the serious threat the disease imposes on

public health (https://www.who.int/news-room/fact-sheets/detail/

cancer). Cancer can be treated in various ways, and current strategies

involve a combination of surgery, radiotherapy, chemotherapy,

immunotherapy, and other methods (1). Among these strategies,

immunotherapies are the most promising. Major immunotherapy

approaches include inhibitory immune checkpoints (ICB) blockade,

antigen-specific peptide vaccination, oncolytic virotherapy, and

adoptive cell therapies, and they are based on the key role of tumor-

specific T cell activation (2). Immunogenic cell death (ICD) caused by

immunotherapy results in long-lasting and effective immunological

memory compared to other types of cell death (3–5).

However, many cancer cells enable to develop immune escape

and relapse pathways, so some cancer types cannot respond to

effective primary immunotherapy (6). Besides immunotherapy

triggered ICD, ferroptosis is another type of immunogenic cell

death (7). A study by Dmitri V Krysko et al. showed that early

ferroptotic tumor cells stimulated tumor immunity, produced

immune memory, and persistently killed cancer cells (8).

Ferroptosis was first proposed and named by Stockwell BR’s

group, which pioneered studies on ferroptosis (9). Canonical

ferroptosis involves the suppression of system xc−, glutathione

(GSH), and glutathione peroxidase 4 (GPX4), which accumulates

reactive oxygen species (ROS), phospholipid peroxidation (PUFA-

PL), and iron (10, 11). Additionally, Acyl-CoA Synthetase Long-

Chain Family Member 4 (ACSL4) is a promoter that executes

ferroptosis. High ACSL4 expression or activity sensitize and

promote cell ferroptosis (12, 13). In addition, targeting ferroptosis

is considered to be an effective cancer treatment strategy. Most of
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the treatment strategies are based on the mechanism of ferroptosis

are aimed at identifying sensitive signature panels of ferroptosis and

improve the efficacy of anti-cancer therapies. Numerous studies

have reported that ferroptosis inducers are sensitive to many

cancers such as glioma, triple negative breast cancer (14, 15) and

provide more opportunities for the treatment of cancer (16).

Early in 2018, Jennifer Tsoi et al. first showed that ferroptosis-

inducing agents are sensitive to reduced dedifferentiated melanoma

cells after induction of Interferon Gamma (IFNg) (17). Subsequently,
Zou’s group found that the ovarian cancer cells killed by

immunotherapy PD-L1 blockage were ferroptotic, and the

mechanism underlying this process involved the function of IFNg
released by PD-L1 blockage-activated CD8 (+) T cells. IFNgwas able to
target cancer cells by suppressing system Xc- and lead to ferroptosis as

a result (18). In addition, combining immunotherapy and radiotherapy

followed the same process (19). However, combining IFNg and AA

triggered ACSL4-induced intrinsic ferroptosis instead (20).

In this study, original articles and review articles on ferroptosis

in cancer immunity were identified from the Web of Science Core

Collection using VOSviewer. Histcite was used to visualize and

analyze the collected articles. This bibliometric study identifies and

analyzes the global trend on ferroptosis in cancer immunity. The

graphic abstract is shown in Figure 1. Our analysis is expected to

inspire researchers and provide reference data to improve future

management of scientific work.
2 Materials and methods

2.1 Search strategy and data collections

Bibliometric data for this study were collected from the Web of

Science Core Collection, including Science Citation Index Expanded

(SCI-EXPANDED), Social Sciences Citation Index (SSCI), Arts &

Humanities Citation Index (AHCI), Emerging Sources Citation
FIGURE 1

The graphic abstract of this research. The detailed description is in abstract.
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Index (ESCI) from, Current Chemical Reactions (CCR-EXPANDED),

and Index Chemicus (IC). The terms ‘ferroptosis,’ ‘immunity,’ and

‘cancer’ were searched in the MeSH (https://www.ncbi.nlm.nih.gov/

mesh). The words or phrases, such as anti-tumor immunity, immunity,

tumor immunotherapy, anti-tumor immunotherapies, anti-tumor

immune therapy, immune therapy, immunology therapy, anti-tumor

immunology therapy, radioimmunotherapy, immunomodulation, and

Neoplasm were used in the documents of cancer immunity field.

Ferroptotic, cancer(s), and Neoplasm(s) were also applied in some

documents. Truncators were adopted to avoid missing documents

during searching and to obtain more comprehensive data. *”

represented an infinite truncated word, and $ represented a finite

truncated word. To obtain a systematic and comprehensive analysis of

ferroptosis in the cancer immunity field, the following search strategy

was applied; #1 represented (((((((((TS = (anti-tumor immunity)) OR

TS = (immunity)) OR TS = (cancer immunotherapy*)) OR TS = (anti-

tumor immunotherapy*)) OR TS = (immune therapy*)) OR TS =

(anti-tumor immune therapy*)) OR TS = (immunology therapy*)) OR

TS = (ant i - tumor immunology therapy*)) OR TS =

(Radioimmunotherapy*)) OR TS = (Immunomodulation), #2

represented TS = (Neoplasm* or cancer$), and #3 represented TS =

(ferropto*). The final search strategy is TS = #1 AND #2 AND #3. Only

articles published in English and full articles and reviews were

considered. Other document types, including early access, editorial

materials, meeting abstracts, corrections, and book chapters, were

excluded. The search flow chart is shown in Figure 2. The search

was completed on Feb 10th, 2023.
2.2 Methodology

Bibliometric visualization and deep mining analysis were

performed using VOSviewer (VOSviewer version 1.6.18) and

HistCite (HistCite Pro 2.1). The distribution of publication years,
Frontiers in Oncology 03
the ratio of article and review articles, and the statistics of cancer-

type were determined using Microsoft Excel 2016.
3 Results

3.1 Years and cancer-type distribution
involved in the collected publication
documents

A total of 530 (76.4%) articles (after removing one duplicate

from 531) and 124 (23.6%) reviews were retrieved (Figure 3A,

Tables S1, S2). The chronological distribution of published

documents is presented in Figure 3B. Based on the trend line,

it was observed that the number of publications on ferroptosis

and cancer immunity increased rapidly from 2021 (n = 210, 30.3%)

to 2022 (n = 398, 57.3%). As of Feb 10th, 2023, 14 documents

have been published, and it is likely that more articles will be

published in 2023. Among the 530 articles retrieved, 26 types of

cancers were mentioned. Among them, lung cancer, hepatocellular

carcinoma and breast cancer were the top three most researched

cancer types in research associated with ferroptosis and cancer

immunity (Figure 3C).
3.2 Citation and co-citation analysis of
the documents

Histcite and VOSviewer were used to analyze the citation and

co-citations of 694 documents. The top 10 global citation score

(GCS) and local citation score (LCS) documents are shown in

Tables S3, S4. The GCS was determined by analyzing 694

documents using the Histcite software. The GCS ranged from

1,448 to 281, while LCS ranged from 321 to 37. Wang W.M.,
FIGURE 2

Search strategy. #1 represents “(((((((((TS=(anti-tumor immunity)) OR TS=(immunity)) OR TS=(cancer immunotherapy*)) OR TS=(anti-tumor
immunotherapy*)) OR TS=(immune therapy*)) OR TS=(anti-tumor immune therapy*)) OR TS=(immunology therapy*)) OR TS=(anti-tumor
immunology therapy*)) OR TS=(Radioimmunotherapy*)) OR TS=(Immunomodulation)”; #2 represents “TS=(Neoplasm* or cancer$)”; #3 represents
“TS=(ferropto*)”; “*” represents infinite truncator; “$” represents finite truncator; the retrieval date was Feb 10th, 2023. This figure was drawn by
Figdraw of HOME for Researchers.
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2019” ranked first in LCS among the articles, and “Xie Y., 2016”

ranked first in GCS among the reviews. The connection network of

citation documents analyzed by Histcite is shown in Figure 4A. An

article “Wang W.M., 2019” had the highest centrality, indicating

that it was the most influential article in the field. Similarly, the

connection network visualization through VOSviewer also showed

the highest citations of the article “Wang WM, 2019” in article type

documents (Figure 4B). To analyze the cited references of

documents, a co-citation analysis of cited references was

performed. As shown in Figure 4C, the top 10 most cited articles

are listed in Table 1. An article by Dixon S.J., 2012 was the most
Frontiers in Oncology 04
cited publication and was the first article in which ferroptosis

was defined.
3.3 Association analysis of Keywords

During the articles search, 1,585 keywords were retrieved from

530 articles. The minimum number of occurrences of a keyword

was 5, and 178 keywords met the threshold. The network

visualization map consisted of 173 keywords that were analyzed

using VOSviewer. The map shows the co-occurrence relations of
B

C

A

FIGURE 3

The distribution among years, article type, and cancer type. (A) the proportion of articles and reviews. (B) abscissa axis on the publication year. The
vertical coordinate represents the number of published documents, the blue column represents the sum of the article and reviews article
documents, the orange column represents article documents, the gray column represents review article documents. (C) distribution of involved
cancer type.
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keywords by excluding cancer, expression, cells, death, and

cell death, which are unrelated to the topic (Figure 5A). The

size of the circle indicates the occurrence of keywords. As

shown in Figures 5B–D, the top 3 keywords were ferroptosis,

immunotherapy, and prognosis.

Furthermore, some representative keywords were selected based

on their close relationship with ferroptosis, immunotherapy, and

prognosis, such as resistance, gene signature, and nanoparticles

(Figures 5E–G). The keyword “resistance” reflects the common

problems in clinical treatment. The keyword “gene signature” is a

comprehensive biomarker that can predict disease prognosis, and

nanoparticles represent a novel way of treating diseases. The above

keywords imply that the clinical problem guided the identification

of prediction biomarkers and novel treatment options, and the two

are the main focus in the field of ferroptosis and cancer immunity.
Frontiers in Oncology 05
3.4 Author connection analysis

The analysis by Histcite software showed that 4,400 authors

contributed to 530 articles. The top 30 authors with the highest total

global citation score (TGCS) and total local citation score (TLCS) are

shown in Table 2. By analyzing the signature of their articles, the 30

authors were correlated with Zou Weiping directly or indirectly. The

citation network is shown in Figure 6A. Meanwhile, co-authorship

analysis was conducted for the 4,400 authors by VOSviewer. A total of

103 authors had published ≥ 2 articles and were cited more than 100

times. The connection network of the above authors is shown in

Figure 6B. Among them, the largest set of author clusters enriched was

Zou Weiping and his colleagues, who headed a group of 21 authors

(Figure 6C). Furthermore, all articles on ferroptosis and tumor

immunity by Zou’s laboratory were retrieved, and four articles have
A

B C

FIGURE 4

Citation and co-citation of documents. (A) the connection of top 30 LCS documents. The analysis was performed by HistCite; (B) citation of
documents analyzed by VOSviewer; (C) co-citation of cited documents analyzed by VOSviewer.
TABLE 1 Top 10 highly-cited references.

# Author/Year/Journal Citation Percent (%)

1 Dixon SJ, 2012, CELL, V149, P1060, DOI 10.1016/j.cell.2012.03.042 377 54.3

2 Wang WM, 2019, NATURE, V569, P270, DOI 10.1038/s41586-019-1170-y 321 46.3

3 Stockwell BR, 2017, CELL, V171, P273, DOI 10.1016/j.cell.2017.09.021 232 33.4

4 Yang WS, 2014, CELL, V156, P317, DOI 10.1016/j.cell.2013.12.010 196 28.2

5 Hassannia B, 2019, CANCER CELL, V35, P830, DOI 10.1016/j.ccell.2019.04.002 169 24.4

6 Angeli JPF, 2019, NAT REV CANCER, V19, P405, DOI 10.1038/s41568-019-0149-1 135 19.5

7 Liang C, 2019, ADV MATER, V31, DOI 10.1002/adma.201904197 120 17.3

8 Jiang L, 2015, NATURE, V520, P57, DOI 10.1038/nature14344 117 16.9

9 Xie Y, 2016, CELL DEATH DIFFER, V23, P369, DOI 10.1038/cdd.2015.158 112 16.1

10 Bersuker K, 2019, NATURE, V575, P688, DOI 10.1038/s41586-019-1705-2 110 15.9
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been published so far (Table S5). The four articles were read carefully.

Among them, one was a review article on IFNg signaling in tumor

immunity in Jan 2022 (21), and the remaining three articles were

published inMay 2019, Dec 2019, and Apr 2022 respectively. First, they

found that IFNg released by CD8(+) T cells after PD-L1 blockage

induced cancer cells ferroptosis via suppressing system Xc- (18). Then,

their second article showed that the combination of immunotherapy

and radiotherapy also triggered system xc- mediated ferroptosis via

IFNg released by PD-L1 activated CD8(+) T cells and radiotherapy

activated Ataxia- Telangiectasia mutated gene (ATM) respectively (19).
Frontiers in Oncology 06
Based on the above findings, IFNg and arachidonic acid (AA) were

combined further to induce ferroptosis of cancer cells directly. ACSL4,

but not system xc-, was discovered to mediate ferroptosis in the third

article (20) (Figure 6D). Another big cluster of authors comprised

Krysko, Dmitri, V, and colleagues, who published three articles, one

each in 2019, 2021, and 2022 (Table S6, Figure 6B). They first

discovered that photosens (PS) or photodithazine (PD)-

photodynamic therapy (PDT) (PS-PDT or PD-PDT) induced the

death of cancer cells. The death could be reversed by ferroptosis

inhibitors. The cancer cells are engulfed by bone marrow-derived
A

B

D E

F G

C

FIGURE 5

Keyword analysis. (A–G), co-occurrences of keywords by VOSviewer analysis.
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dendritic cells (BMDC), in which the BMDCs matured and produced

IL6 (22, 23). Then they demonstrated that early ferroptotic tumor cells

were immunogenic and promoted the phenotypic maturation of

BMDCs by acting as vaccines (8).
3.5 Nanoparticle therapy-related articles

According to the connection between ferroptosis and anti-tumor

immunity, a series of nanomedicine articles have emerged. The 530
Frontiers in Oncology 07
articles were refined by tapping the keyword “nanoparticles”, and 53

documents were collected (Table S7). Next, the source of 53 articles was

investigated, and there were 28 journals in total (Table 3). The top four

publications were occupied by BIOMATERIALS (6 records), ACS

NANO (4 records), SMALL (4 records), and THERANOSTICS (4

records). The top ten most cited articles are listed in Table 4.

Furthermore, the top 30 LCS were analyzed by Histcite software.

Article by Zhang F, Li F, Lu GH, Nie WD, Zhang LJ, et al. Engineering

Magnetosomes for Ferroptosis/Immunomodulation Synergism in

Cancer. ACS NANO. 2019 MAY; 13 (5): 5662-5673” had the best
TABLE 2 Top 30 authors with the highest total global citation score (TGCS) and total local citation score (TLCS).

# Author Recs Percent TLCS TLCS/t TLCSx TGCS TGCS/t TLCR

1 Zou WP 4 0.6 441 94.2 430 1298 279.4 5

2 Kryczek I 3 0.4 439 93.2 428 1283 271.9 4

3 Liao P 3 0.4 439 93.2 428 1283 271.9 4

4 Wang WM 3 0.4 439 93.2 428 1283 271.9 4

5 Wei S 3 0.4 439 93.2 428 1283 271.9 4

6 Choi JE 2 0.3 421 84.2 410 1232 246.4 2

7 Cieslik M 2 0.3 421 84.2 410 1232 246.4 2

8 Georgiou G 2 0.3 421 84.2 410 1232 246.4 2

9 Lang XT 2 0.3 421 84.2 410 1232 246.4 2

10 Lawrence TS 2 0.3 421 84.2 410 1232 246.4 2

11 Szeliga W 2 0.3 421 84.2 410 1232 246.4 2

12 Vatan L 2 0.3 421 84.2 410 1232 246.4 2

13 Zhou JJ 2 0.3 421 84.2 410 1232 246.4 2

14 Gijon M 2 0.3 339 73.2 329 944 204.1 3

15 Johnson JK 2 0.3 339 73.2 329 944 204.1 3

16 Kennedy PD 2 0.3 339 73.2 329 944 204.1 3

17 Sell A 2 0.3 339 73.2 329 944 204.1 3

18 Green M 2 0.3 323 65.2 313 908 186.1 2

19 Li J 15 2.2 323 65.2 313 1123 248.6 20

20 Chan TA 1 0.1 321 64.2 311 893 178.6 1

21 Chinnaiyan A 1 0.1 321 64.2 311 893 178.6 1

22 Gu W 1 0.1 321 64.2 311 893 178.6 1

23 Lamb C 1 0.1 321 64.2 311 893 178.6 1

24 Li GP 1 0.1 321 64.2 311 893 178.6 1

25 Li W 3 0.4 321 64.2 311 944 195.6 2

26 Liu R 2 0.3 321 64.2 311 893 178.6 1

27 Stone E 1 0.1 321 64.2 311 893 178.6 1

28 Tanno Y 1 0.1 321 64.2 311 893 178.6 1

29 Xia HJ 1 0.1 321 64.2 311 893 178.6 1

30 Zhang HJ 2 0.3 321 64.2 311 894 179.1 2
frontie
TLCS, Total Local citation score; TLCS/t, Total local citation scores per year; TGCS, Total global citation score; TGCS/t, Total global citation scores per year; TLCSx, Total Local citation score
excluding self-citations; TLCR, Total local cited references.
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center direction and was the most cited (Figure 7A). This article was

the first nanomedicine report on ferroptosis and immunotherapy. The

article was published in May 2019, almost simultaneously with an

influential article by Wang W.M. Wang W.M. (2019) was submitted

on Apr 2018 from the USA, and Zhang F. (2019) was submitted on Jan
Frontiers in Oncology 08
2019 fromChina. A literature coupling analysis was conducted, and the

total link strength of the 53 articles was ranked from 156 to 23. The top

three most linked articles were Du (2022), Jiang (2020), and Sepand

(2020) (Figure 7B). 51 articles (excluding one hypothesis and one

review from 53 records) on nanoparticles are selected to summarize the
B

CD

A

FIGURE 6

Author and their published articles. (A) citation of authors; (B, C) co-authorship of authors, (C) the red arrow indicates cluster in (B); (D) the
mechanism of ferroptosis induction and immunotherapy combination. This figure was drawn by Figdraw of HOME for Researchers.
TABLE 3 Documents on nanoparticles involved in ferroptosis and cancer immunity.

# Journal Publication
records Percent TLCS TLCS/t TGCS TGCS/t TLCR

1 BIOMATERIALS 6 11.3 0 0 109 41.17 3

2 ACS NANO 4 7.5 15 3.82 324 80.57 0

3 SMALL 4 7.5 0 0 165 45.5 5

4 THERANOSTICS 4 7.5 0 0 103 34.5 1

5 CHEMICAL ENGINEERING JOURNAL 3 5.7 0 0 14 5 2

6 JOURNAL OF CONTROLLED RELEASE 3 5.7 4 1.33 53 17.67 1

7 JOURNAL OF NANOBIOTECHNOLOGY 3 5.7 0 0 12 6 1

8 ACS APPLIED MATERIALS & INTERFACES 2 3.8 0 0 32 9.75 1

9 ADVANCED FUNCTIONAL MATERIALS 2 3.8 0 0 22 11 3

10 ADVANCED HEALTHCARE MATERIALS 2 3.8 0 0 11 3.67 2

11 ADVANCED SCIENCE 2 3.8 0 0 78 17.7 0

12 JOURNAL OF MATERIALS CHEMISTRY B 2 3.8 0 0 42 10.5 3

13 ACTA BIOMATERIALIA 1 1.9 0 0 10 5 1

14 ADVANCED MATERIALS 1 1.9 0 0 72 24 1

15 BIOMATERIALS SCIENCE 1 1.9 0 0 26 6.5 1

16 INTERNATIONAL JOURNAL OF NANOMEDICINE 1 1.9 0 0 9 4.5 1

(Continued)
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TABLE 3 Continued

# Journal Publication
records Percent TLCS TLCS/t TGCS TGCS/t TLCR

17 ISCIENCE 1 1.9 0 0 22 5.5 0

18 JOURNAL FOR IMMUNOTHERAPY OF CANCER 1 1.9 0 0 11 5.5 0

19 JOURNAL OF COLLOID AND INTERFACE SCIENCE 1 1.9 0 0 13 6.5 0

20 JOURNAL OF DRUG TARGETING 1 1.9 0 0 0 0 0

21 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 1 1.9 6 2 47 15.67 0

22 MATERIALS & DESIGN 1 1.9 0 0 9 3 0

23 MATERIALS TODAY CHEMISTRY 1 1.9 0 0 0 0 0

24 MEDICAL HYPOTHESES 1 1.9 0 0 0 0 0

25
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND
MEDICINE

1 1.9 0 0 19 4.75 1

26 NANOSCALE 1 1.9 2 0.4 57 11.4 0

27 NATIONAL SCIENCE REVIEW 1 1.9 0 0 0 0 0

28 NATURE COMMUNICATIONS 1 1.9 0 0 35 11.67 0
F
rontie
rs in Oncology
 09
 frontie
TLCS, Total Local citation score; TLCS/t, Total local citation scores per year; TGCS, Total global citation score; TGCS/t, Total global citation scores per year; TLCSx, Total Local citation score
excluding self-citations; TLCR, Total local cited references.
TABLE 4 The top 10 most cited articles in the field of nanoparticles.

# Date/Author/Journal LCS LCS/t LCSx GCS GCS/t NA LCR CR

1
Zhang F, Li F, Lu GH, Nie WD, Zhang LJ, et al.
Engineering Magnetosomes for Ferroptosis/Immunomodulation Synergism in Cancer
ACS NANO. 2019 MAY; 13 (5): 5662-5673

7 1.4 7 167 33.4 11 0 37

2

Jiang Q, Wang K, Zhang XY, Ouyang BS, Liu HX, et al.
Platelet Membrane-Camouflaged Magnetic Nanoparticles for Ferroptosis-Enhanced
Cancer Immunotherapy
SMALL. 2020 JUN; 16 (22): Art. No. 2001704

0 0 0 148 37 7 1 66

3

Xu T, Ma YY, Yuan QL, Hu HX, Hu XK, et al.
Enhanced Ferroptosis by Oxygen-Boosted Phototherapy Based on a 2-in-1 Nanoplatform
of Ferrous Hemoglobin for Tumor Synergistic Therapy
ACS NANO. 2020 MAR 24; 14 (3): 3414-3425

5 1.25 4 116 29 9 0 54

4

Song RD, Li TL, Ye JY, Sun F, Hou B, et al.
Acidity-Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for
Immunotherapy of Cancer
ADVANCED MATERIALS. 2021 AUG; 33 (31): Art. No. 2101155

0 0 0 72 24 11 1 38

5

Chen QJ, Liu LS, Lu YF, Chen XL, Zhang YJ, et al.
Tumor Microenvironment-Triggered Aggregated Magnetic Nanoparticles for Reinforced
Image-Guided Immunogenic Chemotherapy
ADVANCED SCIENCE. 2019 MAR 20; 6 (6): Art. No. 1802134

0 0 0 71 14.2 13 0 43

6

Zhang DS, Cui P, Dai ZC, Yang BC, Yao XX, et al.
Tumor microenvironment responsive FePt/MoS2 nanocomposites with chemotherapy
and photothermal therapy for enhancing cancer immunotherapy
NANOSCALE. 2019 NOV 14; 11 (42): 19912-19922

2 0.4 0 57 11.4 8 0 44

7

Xu QB, Zhan GT, Zhang ZL, Yong TY, Yang XL, et al.
Manganese porphyrin-based metal-organic framework for synergistic sonodynamic
therapy and ferroptosis in hypoxic tumors
THERANOSTICS. 2021; 11 (4): 1937-1952

0 0 0 55 18.33 6 0 45

8
Zhang J, Yang J, Zuo TT, Ma SY, Xokrat N, et al.
Heparanase-driven sequential released nanoparticles for ferroptosis and tumor

0 0 0 53 17.67 10 0 68
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details of nanoparticles in fighting cancer. The statistics about the

name, composition, and function of the nanoparticles are listed in

Table 5. Most of the nanoparticles mentioned above were constructed

based on the synergistic effect of ferroptosis and immunotherapy.
3.6 Gene signature-related articles

A total of 168 articles out of 530 articles contained the keywords

“gene signature” (Table S8). The publication period ranged from 2020

to 2023. As shown in Figure 8A, only one article was published in 2020,

67 articles in 2021, and 97 articles in 2022, three articles in 2023. These

articles were screened by reading the title and abstract, and the articles

were divided into 10 clusters according to the directions of a gene

signature in ferroptosis and cancer immunity (Figure 8B). These

articles mainly focused on five aspects of gene signature in the field

of ferroptosis and cancer immunity, including diagnosis, sensitivity,

therapy, prognosis, and mechanism. The number of articles on the
Frontiers in Oncology 10
above directions either alone or in combinations, is shown in Figure 8B.

Most of these gene signature-related articles were focused on the

direction of prognosis, including single and combined directions.
4 Discussion

Since its first discovery, ferroptosis has become popular

worldwide. In the last ten years, there has been a sharp increase

in the number of documents on ferroptosis and tumor immunity,

and these two interrelated fields have gained significant attention in

the recent three years (Figure 3B). The increase in the number of

articles on cancer and ferroptosis was still observed until the end of

2022. Among these publications, the documents on lung cancer are

the most published, maybe because lung cancer has high morbidity

and attracts more attention from researchers. Overall, our findings

imply that more researchers might focus on ferroptosis and cancer

immunity. Keywords analysis in this study presents the hotspots in
TABLE 4 Continued

# Date/Author/Journal LCS LCS/t LCSx GCS GCS/t NA LCR CR

microenvironment modulations synergism in breast cancer therapy
BIOMATERIALS. 2021 JAN; 266: Art. No. 120429

9

Liang H, Wu XY, Zhao GZ, Feng K, Ni KY, et al.
Renal Clearable Ultrasmall Single-Crystal Fe Nanoparticles for Highly Selective and
Effective Ferroptosis Therapy and Immunotherapy
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2021 SEP 29; 143 (38): 15812-
15823

6 2 6 47 15.67 6 0 46

10

Hsieh CH, Hsieh HC, Shih FS, Wang PW, Yang LX, et al.
An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an
immunostimulatory tumor microenvironment
THERANOSTICS. 2021; 11 (14): 7072-7091

0 0 0 39 13 7 0 63
fr
ontiersi
LCS, Local citation score; LCS/t, Local citation scores per year; GCS, Global citation score; GCS/t, Global citation scores per year; LCSx, Local citation score excluding self-citations; LCR, Local
cited references; NA, Number of authors; CR, Cited references.
A B

FIGURE 7

Data mining in nanoparticle-related articles. (A) Top 30 LCS of 53 documents. The analysis was performed by HistCite, the note of Top 30 LCS
literature; (B) Literature coupling analysis by VOSviewer.
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TABLE 5 Nanoparticles name, composition, and function of the 51 articles.

Nanoparticle name Components Function Refs

Nanoformulation (CP)
Ferroptosis-inducing cannabinoid nanoparticles and
immunostimulatory Poly(I:C) Activating ferroptosis-immunotherapy pathways (24)

A novel biomimetic
nanoplatform

Photosensitizer chlorin e6 (Ce6), hemin and PEP20 (CD47 inhibitory
peptide)

Integrating oxygenboosted PDT, ferroptosis activation
and CD47-SIRP alpha blockade (25)

Fe/PEI-Tn
Polyethyleneimine (PEI), Fe3+ and the modification of bifunctional
peptides Tn

Blocking the PD-1/PD-L1 pathway, activating
macrophages, reversing the phenotype of pro-tumour
M2-type macrophages (26)

Zero-valent-iron
nanoparticle (ZVI-NP)

ZVI@Ag, ferrous sulfate (FeSO4) and trisodium citrate
(Na3C6H5O7) dehydrate

Shifting pro-tumor M2 macrophages to anti-tumor M1,
decreasing the population of regulatory T cells,
downregulating PD-1 and CTLA4 in CD8(+) T cells (27)

mFe(SS)/DG
Cancer cell membrane coated metal organic framework (MOF),
glucose oxidase (GOx) and doxorubicin (DOX)

Releasing tumor antigens to initiate antitumor
immunity (28)

HLCaP nanoreactors (NRs)
CaCO3-assisted double emulsion, lipoxidase, hemin and poly(lactic-
co-glycolic acid) (PLGA)

Producing cytotoxic lipid radicals and priming
antitumor immunity (29)

FPBC@SN
ferritin, pH-sensitive molecular-switch,sorafenib (SRF) and IDO
inhibitor (NLG919) Promoting ferroptosis and arouse tumor immunity (30)

CCM@Mn@MSN-Pt(IV),
CMnMPt

Mn ions-doped mesoporous silica nanoparticles (Mn@MSN),
cisplatin prodrug (Pt(IV)) and cancer cell membrane cloaking

Inducing ferroptosis-mediated ICD and recruiting
cytotoxic T lymphocytes cells (31)

m@Au-D/B NCs
Cancer cell membrane-camouflaged gold nanocage, doxorubicin
(DOX) and L-buthionine sulfoximine (BSO)

Inducing ferroptosis and repolarizing the tumor-
associated macrophages (TAMs) from protumor (M2)
phenotype to anti-tumor (M1) phenotype (32)

NLC/H(D + F + S) NPs

Heparanase (HPSE)-driven sequential released nanoparticles, beta-
cyclodextrin (beta-CD) grafted heparin (NLC/H(D + F + S) NPs),
doxorubicin (DOX), ferrocene (Fc), and TGF-beta receptor inhibitor
(SB431542)

Modulating tumor microenvironment and activating
ferroptosis pathway (33)

Ferumoxytol Iron oxide nanoparticles
Ferumoxytol mediated ferroptosis and increased NK
cells’ cytotoxic function (34)

C-RAuNC Cancer cell membrane coated gold nanocages and RSL3
Synergistic treatment of ferroptosis and photothermal
therapy (PTT) initiate effective anti-tumor immunity (35)

A nanozyme-based
formulation

Ultrasmall CaO2, Fe3O4 nanoparticles (NPs), dendritic mesoporous
silica nanoparticles (DMSN) and the pH-responsive membrane

Synergized efficient ferroptosis with
immunomodulation (36)

FePt/BP-PEI-FA NCs
FePt nanoparticles (FePt NPs) and ultrathin black phosphorus
nanosheets (BPNs)

Synergistic effect of photothermal therapy (PTT),
photodynamic therapy (PDT), and chemodynamic
therapy (CDT) (37)

zinc-fluorouracil
metallodrug networks (Zn-
Fu MNs) Zn and Fu Enhanced ROS production and immune activation (38)

Biomimetic magnetic
nanoparticles, Fe3O4-SAS @
PLT

Sulfasalazine (SAS), mesoporous magnetic nanoparticles (Fe3O4) and
platelet (PLT) membrane camouflage

Sensitize effective ferroptosis and produce mild
immunogenicity (39)

A Hypoxia-responsive
nanoelicitor (HRNE)

Immune-elicitable polyphenols, Chlorogenic acid (CA), Mitoxantrone
(MIT), Fe3+ ions and hypoxia-responsive hybrid liposomal
membrane Fenton reaction and activated tumoricidal immunity (40)

AuNRs&IONs@Gel
A gel delivery platform, embedded gold nanorods (AuNRs), and iron
oxide nanoparticles (IONs)

Induce ferroptosis and transfer M2-like phenotype into
the antitumor M1-like phenotype (41)

A biomimetic magnetosome

Fe304 magnetic nanocluster (NC), pre-engineered leukocyte
membranes as the cloak, TGF-fl inhibitor (Ti), and PD-1 antibody
(Pa) Ferroptosis/immunomodulation synergism in cancer (42)

GCMNPs
A leukocyte membrane coated poly (lactic-co-glycolic acid) and
glycyrrhetinic acid

Combination of GCMNPs, ferumoxytol and anti-PD-Ll
improve T-cell immune response synergistically (43)

IrFc1 A ferrocene-containing Ir(III) photosensitizer
Causing ferroptosis and promoting immunogenic cell
death (ICD) (44)

(Continued)
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TABLE 5 Continued

Nanoparticle name Components Function Refs

ETP-PtFeNP Enolase targeting peptide, Pt-prodrug and Fe3O4 nanoparticles ICD-associated antitumor immune responses (45)

ZnP@DHA/Pyro-Fe
particles

Cholesterol derivative of DHA (Chol-DHA) and Pyropheophorbide-
iron (PyroFe)

Sensitizing non-immunogenic cancers to anti-PD-L1
immunotherapy (46)

IONVs Iron oxide-loaded nanovaccines
Improving immunostimulatory capacity and targeting
tumor cell ferroptosis (47)

FeCO-IR820@FeIIITA

Thermosensitive boronic acid group -containing CO prodrug, tannic
acid (TA), iron (Fe) and near-infrared (NIR) photothermal agent
IR820

Enhancing ferroptosis and CTLA-4 blockade
immunotherapy (48)

siProminin2 The iron oxide nanoparticles, polymers and oxaliplatin attached
Inhibiting the secretion of tumor cell-derived exosomes
and enhancing the immune activation (49)

Acidity-Activatable
Dynamic Nanoparticles

Ionizable block copolymer, acid-liable phenylboronate ester (PBE)
dynamic covalent bonds and a glutathione peroxidase 4 inhibitor
RSL-3.

Recruiting tumor-infiltrating T lymphocytes for IFNg
and sensitizing ferroptosis (50)

AuPB@LMHep
Fusing hepcidin, leukemia cell-membrane vesicles, gold nanoparticles
(AuNPs) and hollow mesoporous Prussian Blue

AuNPs triggered ferroptosis and AuPB@LMHep
enhanced cytotoxic tumor-infiltrating T cells effect (51)

TPA-NDTA NP High-performance photothermal nanoparticle
Promoting ferroptosis and evoking ICD through
ferroptosis pathway (52)

CM CTNPs@OVA
Solid mes-oporous copper telluride nanoparticles, ovalbumin (OVA),
mesoporous, and melanoma cell membrane

Initiating ferroptosis and ICD by DC maturation and T
cells recruitment (53)

Fe3O4@Chl/Fe CNPs
Cluster-structured nanoparticles (CNPs), Fe3O4 and iron chlorophyll
(Chl/Fe) photosensitizers Reprogramming of the tumor microenvironment (54)

A “closed-loop” therapy
Copper silicate, iron silicate mesoporous hollow Nanospheres, Au
nanoparticles and an immune adjuvant resiquimod R848

Enhancing ferroptosis and immunogenic cell death
(ICD) (55)

iRGD-bccUSINPs
iRGD peptide, Fe core around 2 nm and an iron oxide shell less than
0.7 nm Inducing ferroptosis and immunogenetic cell death (56)

Mn-MOF A manganese porphyrin-based metal-organic framework
Enhancing SDT (ultrasound (US)-triggered
sonodynamic therapy) and ferroptosis (57)

Mitochondrial-targeting
liposomal nanoparticles
(abbreviated MLipRIR NPs)

The encapsulation of R162 (inhibitor of glutamate dehydrogenase 1
[GDH1]), IR780 (a hydrophobic sonosensitizer) and the lipid bilayer

Causing severe ferroptosis and triggering immunogenic
cell death (ICD) (58)

Bi2Te3-Au/Pd
near-infrared (NIR-II) photothermal-nanocatalyst, Bi2Te3 nanosheets
and ultrasmall Au/Pd bimetallic nanoparticles Modulating the TME and enhancing ferroptosis (59)

Lp-IO
Liposomes, PEG-coated 3 nm gamma-Fe2O3 nanoparticles and
bilayer Initiating ferroptosis in cancer cells (60)

GNRa-CSP12
Gold nanorods (GNRs), a binary surfactant mixture of
hexadecyltrimethylammonium bromide and sodium oleate

Abrogating endogenous Fe2+-dependent m(6)A
demethylase activity (61)

DOX-TAF@FN
Doxorubicin (DOX), tannic acid (TA)-iron (Fe) networks (for short,
TAF) and fibronectin (FN)

Inducing immunogenic cell death through enhanced
ferroptosis of cancer cells (62)

PFTT@CM

Polyvinyl pyrrolidone (PVP) dispersed nanoscale metal-organic
framework (NMOF) of Fe-TCPP, hypoxia-activable prodrug
tirapazamine (TPZ) and the cancer cell membrane (CM)

Triggering ferroptosis and enhancing photodynamic
therapy (PDT) efficacy (63)

CCR2(+)-Fe-M1-Nys

M1 macrophages, up-regulated CCR2 expression, as Fe3O4
nanoparticles carrier, exosome-mimic nanovesicles (denoted as CCR2
(+)-Fe-M1-Nys)

Facilitating ferroptosis and inducing macrophages
repolarization (64)

Monodispersed ferrihydrite
nanoparticles Monodispersed ferrihydrite nanoparticles

Apoptosis- and ferroptosis of cancer cell and tumor
associated macrophage (TAM) polarization from the
tumor-promoting M2 type to the tumor-killing M1
type (65)

Multifunctional FePt/MoS2-
FA nanocomposites (FPMF
NCs) Anchoring FePt nanoparticles, folic acid (FA) and MoS2 nanosheets

Cytosine-guanine (CpG ODNs) combined with
systemic checkpoint blockade therapy using an anti-
CTLA4 antibody (66)

(Continued)
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the field of ferroptosis and cancer immunity, such as prognosis,

gene signature, and nanoparticles, which have the potential for

prediction and therapy strategy. Gene signature for drug sensitivity

or prognosis prediction is popular for big data application in cancer

research development based on real data analysis and model

validation (75, 76). Overall, the attention on drug sensitivity and

treatment outcomes of ferroptosis and cancer immune has

increased. In the next few years, more articles on ferroptosis and

cancer immunity are anticipated to be published.

Dixon (2012) and Wang (2019) were the most co-cited references.

Wang W.M. et al. reported that IFNg released by CD8(+) T cells after

PD-L1 blockage triggered ferroptosis mediated by system xc-,

indicating the connection of immunotherapy and ferroptosis and the

influence of tumor microenvironment. Wang’s colleagues (Zou’s lab)

focused on the synergistic effect of immunotherapy and ferroptosis.

Zou’s group contributed a lot to the synergy theory of ferroptosis and

immunotherapy. Screening of their articles published in recent years
Frontiers in Oncology 13
revealed that they mainly focused on cancer immunotherapy. Apart

from ferroptosis, they also researched on autophagy and how it may

work in synergy with immunotherapy to treat cancer (77). Moreover, T

cells and macrophages played a significant role in cancer

immunotherapy, which was evident in their published papers (78).

From 2019 to 2022, they published more than 20 articles on the

mechanism of immunotherapy and some combination treatments,

suggesting their persistent efforts in cancer research (Table S9).

In clinical, only a small percentage of patients responded to

immune checkpoint inhibitors (ICIs) such as PD-L1. Resistance to

checkpoint inhibitors was significant (79). Coincidently,

immunotherapy and ferroptosis work in synergy to overcome the

resistance of single cancer treatment especially immunotherapy.

Apart from ferroptosis, necroptosis and apoptosis also act as

important role in killing cancer, However, Krysko, Dmitri et al.

showed that ferroptosis had unique immunogenic characteristics. In

his research, early ferroptotic tumor cell death stimulated tumor
TABLE 5 Continued

Nanoparticle name Components Function Refs

SRF@Hb-Ce6

Hemoglobin (Hb), the photosensitizer chlorin e6 (Ce6), a 2-in-1
nanoplatform (SRF@Hb-Ce6) and Sorafenib (SRF, ferroptosis
promotor)

Recruiting immune cells to secrete IFN-gamma and
sensitizing Fe-dependent ferroptosis (67)

multifunctional
nanotherapeutic agent
FePt@COP-FA
nanocomposites (FPCF
NCs)

Magnetic FePt-cubes, carboxylated by 3-(4-hydroxyphenyl) propionic
acid (DHCA), benzidine (BD), 1,3,5-triformylphloroglucinol (Tp),
COP shells and HS-PEG-FA

Activating apoptosis, ferroptosis and specific immune
response (68)

GBM-targeted drug delivery
system (Fe3O4-siPD-
L1@M–(Bv2)) BV2 membrane, -S-S-, siPD-L1-SH, Fe3O4-SH

Inducing ferroptosis of GBM cells and maturation of
DC cell (69)

MP@PI
The metal-organic framework (MOF), polydopamine (PDA), IR820
and piperlongumine (PL) Eliciting ferroptosis and pyroptosis (70)

GNPIPP12MA FTO inhibitor and GSH-bioimprinted nanocomposites
GNPIPP12MA selectively targeting leukemia blasts and
inducing ferroptosis (71)

RSL3@O2-ICG NBs
Nanobubbles (NBs), sonosensitizer Indocyanine green (ICG) and
RAS-selective lethal (RSL3, ferroptosis promoter) Enhancing SDT and ferroptosis (72)

A nano-activator (DAR) Doxorubicin (DOX), tannic-acid (TA) and IR820 Facilitating ferroptosis and immunotherapy respectively. (73)

MiR-21-3p-loaded gold
nanoparticles MiR-21-3p and gold nanoparticles Activating IFN-gamma-mediated ferroptosis (74)
frontier
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FIGURE 8

Analysis of gene signature-related articles. (A) the time distribution of gene signature-related article publications; (B) the ratio of research direction
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immunity and enhanced immune memory (8). Ferroptotic cancer

cells released three DAMPs, including HMGB1, ATP, and CRT,

promoting immunogenicity that aided in overcoming resistance to

the cancer drug. Furthermore, various lipids released by ferroptotic

cancer cells were shown to target immune cells such as DCs and

CD8+ T cells to exert the anti-tumor immunity effects (8, 80).

1183405However, conflicting opinions still exist. Research by

Peter Vandenabeele‘s group showed that ferroptotic cancer cells

impair the function of DCs and cannot stimulate the immune

response in cancer patients (81). In addition, another research by

this group also showed that ferroptosis induction impairs the

recruitment of immune cells and may act as a biomarker to

predict the poor outcome of cancer patients (82). In cancer

immunity, T lymphocytes are the major regulators of anti-cancer

immunity. Antigen-presenting cells (APCs) including dendritic

cells (DCs) and macrophages present antigenic peptides of cancer

cells to T cells, the peptide binding major histocompatibility

complex molecules (MHCs) is exposed on the cell surface to be

recognized by T cell receptors (TCRs) and form TCR-peptide-MHC

complex that activates the T cell (83). Therefore, the activation of

APC cells and T cells plays a major role in anti-cancer immunity.

Initially, the cytokine IFNg was identified to be primarily secreted

by CD8+ T cells and known to affect the dedifferentiation degree of

melanomas cells. The dedifferentiation subtype of melanomas cells

is promoted by IFNg in response to ferroptosis inducers. It is

therefore speculated that ferroptosis inducers in combination with

cytokine stimulators may promote anti-tumor immunity (17).

Subsequently, a research published on the nature journal

demonstrated that the IFNg secretion of CD8+ T cells activated

by PD-L1 blockage promoted ferroptosis of CD45- ID8 cells, and

combination of cyst(e)inase and PD-L1 blockage significantly

increased the anti-cancer efficacy (18). Subsequently, Iuliia

Efimova and her colleagues suggested that when early ferroptotic

cancer cells (specifically MCA205 cells) are taken up by BMDCs,

they can trigger the activation of BMDCs by inducing the
Frontiers in Oncology 14
expression of CD80, CD86, and MHCII on BMDCs, potentially

serving as a cancer treatment vaccine. They confirmed the strong

immunogenic potential of early ferroptotic cancer cells (8).

Nevertheless, confl icting findings emerged from Peter

Vandenabeele ’s laboratory, wherein they replicated the

experimental conditions used by Iuliia Efimova’s team but

discovered that early ferroptotic cancer cells are non-

immunogenic and do not trigger anti-tumor immunity.

Moreover, they discovered that the corpses of ferroptotic cancer

cells were negatively correlated with the activation and proliferation

of CD8+ T cells (81). A recent study revealed that pathologically

activated neutrophils and myeloid-derived suppressor cells (PMN-

MDSCs) in human tumors, exhibiting elevated ferroptosis levels,

are particularly susceptible to ferroptosis via the regulation of

FATP2. Consequently, the functionality and proliferation of T

cells within the tumor microenvironment are impeded, with the

sensitivity of ferroptosis in PMNs being contingent on hypoxia.

Notably, the combination of ferroptosis inhibition and PD-1

antibody has been found to augment antitumor immunity (84).

The cells used in the study were obtained from tumor-bearing

animals not directly from cell lines, and the hypoxia condition of

tumor microrenvironment (TME) was developed in vitro. Thus, the

results of the study may more accurately match clinical findings. An

alternative hypothetical explanation for the conflicting viewpoints is

the immune cell status in response to ferroptotic signals.

Specifically, if T cells or DC cells are already activated by

immunotherapy within the tumor microenvironment, then the

induction of ferroptosis may potentially synergize with the anti-

tumor immunity. Conversely, if the antitumor immunity is

unresponsive, the hierarchy of cell death within the tumor

microenvironment is determined by the varying sensitivity of cell

types to ferroptosis. Under such circumstances, if immune cells are

more susceptible to ferroptosis, then Rina Kim’s findings may be

more comprehensible. Further evidence from scholars is necessary

to validate the veracity of these findings. Overall, research into the
FIGURE 9

The milestones in ferroptosis and cancer immunity. This figure was drawn by Figdraw of HOME for Researchers.
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intersection of ferroptosis and tumor immunity has made

significant progress in recent years, as evidenced by the

milestones highlighted in Figure 9.

With the development of the synergy theory of ferroptosis and

cancer immunity, a series of applications that show great potential,

such as nano-medicine and gene signature-based prediction, have

emerged. Nanoparticles are applied in combination with

ferroptosis, and immunotherapies. In three years, 51 articles

about nanopartic le designs based on ferroptosis and

immunotherapies targets had already been published. This

number of publications indicated that researchers are confident in

potentially inducing synergistic effects on ferroptosis and

immunotherapies. The design of nanoparticles for inducing

ferroptosis primarily focuses on targeting ROS, iron overload,

GSH, and certain ferroptosis-regulated molecules, including

system xc-, GPX4, and ACSL4 (85–90). ROS is one of the most

important mechanisms that is applied during the formulation of

nano-medicines. On one hand, physiological ROS accumulation

can promote the death of cancer cells. Therefore, the nanoparticles

such as PPS designed by XianwenWang and his colleagues aimed to

increase the accumulation of H2O2, decrease the amounts of

glutathione (GSH) and cause death by targeting cancer cells (91).

As such, PPS may serve as an ideal complement to ferroptosis

inducers and/or immunotherapies, thereby improving the

effectiveness of cancer treatment. However, the rapid buildup of

ROS in cancer cells over a short period can result in a severe

inflammatory response. To resolve the excess ROS problems caused

by PPT, Xianwen Wang and his colleagues designed ultrasmall ZrC

NDs, which eliminates ROS to decrease inflammation caused by

PTT treatment for glioma (92). Subsequently, ultrasmall ZrC–PVP

nanodots (NDs) (ZrC–PVP NDs) based on the combination of

PTT–RT photothermal therapy (PTT) -Radiation therapy (RT) was

designed for glioma treatment (93). Furthermore, they attempted to

disrupt the respiration process and modify the oxidation state of

cancer cells by continuously generating H2 through the transfer of

MgG rods into the cancer cells. This approach has the potential to

trigger a robust synergistic effect with ferroptosis inducers and

immunotherapies (94). As an increasing number of nano-medicines

for cancer treatment based on ROS, GSH, and iron are being

explored, the long-term accumulation and biodegradability of

these medicines may prove critical to their clinical translation

(95). So far, nanoparticles combining ferroptosis induction and

immunotherapies are very diverse. However, there is still a long way

to go for patients to benefit, considering the transformation, clinic

trial, production volume, and economy.

Apart from nanoparticles, the gene signatures for prognosis

prediction in ferroptosis and cancer immunotherapies are hotspots

that attract the attention of so many researchers. The traction on

gene signature indicates that it may be promising for evaluating

patients in the future. The gene signature research is based on big

data and data mining, which reflects the principles of gene

presentation and paves the way for treatment based on

translation research. Apart from prediction, prompt treatment

based on the combination of ferroptosis induction and
Frontiers in Oncology 15
immunotherapy is urgent, but currently, the strategy is full

of challenges.

In summary, publications on ferroptosis and tumor

immunotherapy have increased rapidly in the last 3 years, and most

studies were on lung cancer. Zou Weiping’s laboratory contributed a

lot and published the most influential articles. The mechanism,

prediction, and therapy directions of this topic are hotspots in the

research trends. Particularly, the development of nanomedicines based

on the benefit of combining ferroptosis and immunotherapy has been

rapid, and it presents promising hotspots in future research.
4.1 Limitation

Nevertheless, this bibliometric study has limitations that should be

mentioned. The search date in this study in the Web of Science Core

Collection was Feb 10th, 2023. Since the data is constantly updated,

some parts of documents in this field, from the search date to the

publication date, are not included. Another limitation is that

the keywords tapped are TS and are mostly present in the title or the

abstract. Therefore, some useful keywords in the main text could be

missed. The third reason is that the database selected for the study may

not be comprehensive enough to cover all documents in this field. Last

but not least, there are conflicting views on whether ferroptosis is

immunogenic or not and its role in affecting immune cells. No other

group provides external evidence to support or disprove their

hypothesis. Maybe it will be revealed by more research in the near

future. Other limitations in this study have been previously described

(96, 97).
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