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Oral cancer is one of the 19most rapidly progressing cancers associated with

significant mortality, owing to its extreme degree of invasiveness and aggressive

inclination. The early occurrences of this cancer can be clinically deceiving

leading to a poor overall survival rate. The primary concerns from a clinical

perspective include delayed diagnosis, rapid disease progression, resistance to

various chemotherapeutic regimens, and aggressive metastasis, which

collectively pose a substantial threat to prognosis. Conventional clinical

practices observed since antiquity no longer offer the best possible options to

circumvent these roadblocks. The world of current cancer research has been

revolutionized with the advent of state-of-the-art technology-driven strategies

that offer a ray of hope in confronting said challenges by highlighting the crucial

underlying molecular mechanisms and drivers. In recent years, bioinformatics

and Machine Learning (ML) techniques have enhanced the possibility of early

detection, evaluation of prognosis, and individualization of therapy. This review

elaborates on the application of the aforesaid techniques in unraveling potential

hints from omics big data to address the complexities existing in various clinical

facets of oral cancer. The first section demonstrates the utilization of omics data

and ML to disentangle the impediments related to diagnosis. This includes the

application of technology-based strategies to optimize early detection,

classification, and staging via uncovering biomarkers and molecular signatures.

Furthermore, breakthrough concepts such as salivaomics-driven non-invasive

biomarker discovery and omics-complemented surgical interventions are

articulated in detail. In the following part, the identification of novel disease-

specific targets alongside potential therapeutic agents to confront oral cancer via
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omics-based methodologies is presented. Additionally, a special emphasis is

placed on drug resistance, precision medicine, and drug repurposing. In the final

section, we discuss the research approaches oriented toward unveiling the

prognostic biomarkers and constructing prediction models to capture the

metastatic potential of the tumors. Overall, we intend to provide a bird’s eye

view of the various omics, bioinformatics, and ML approaches currently being

used in oral cancer research through relevant case studies.
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1 Introduction

Oral cancer is defined as a heterogeneous group of cancers

linked to aberrant changes in the oral mucosal lining. The etiology

of oral cancer is multifactorial and predominantly attributed to the

accumulation of multiple genetic mutations in the oral epithelial

cells (1). It is a substantial public health issue, with a high mortality

rate. The major concerns with respect to oral cancer from a clinical

standpoint include delayed diagnosis, rapid disease progression,

resistance to various chemotherapeutic regimens, and aggressive

metastasis which pose a substantial threat to prognosis (2).

Understanding the key molecular mechanisms and drivers for

drug resistance, disease progression, and metastasis is vital to

overcome these problems and improve patient care (3, 4). In the

current technology-driven era, the utilization of omics is of

paramount importance to address these clinical setbacks (5).

Omics leverages big data from genomics, transcriptomics,

proteomics, and metabolomics to aid in understanding the

molecular mechanisms of the disease on the basis of genes, RNA,

proteins, and metabolites respectively (6). In recent times, a

multiomics approach, which refers to the use of a combination of

these omics strategies, is being employed to simultaneously analyze

these biological molecules and their interactions (Figure 1).

Untangling omics data has the potential to reveal key factors

associated with the development and progression of the disease,

as well as the response to treatment on a molecular level in order to

capture a comprehensive view of the mechanisms underlying the

various clinical facets of the disease (5, 7).

Further, Artificial Intelligence and Machine Learning (ML)

techniques (Figure 2) are also being interlaced with omics

strategies to shed light on these molecular mechanisms and

provide insight into the genetic and molecular abnormalities that

are at play in oral cancer. ML strategies enhance the opportunities

to discover novel predictive models for diagnosis and prognosis, as

well as facilitate the development of personalized treatment

strategies based on the patient’s characteristics. Bioinformatics is

yet another data-driven field, adopted to explicitly integrate and

interpret omics data (8, 9).

The need of the hour in oral cancer research is thus to overcome

the aforesaid clinical roadblocks by reconnoitering avant-garde
02
strategies and amalgamating multiple technologies. In this review, we

intend to present a bird’s eye view of the various omics, bioinformatics,

and ML approaches currently being used in oral cancer research

through snapshots from case studies curated to highlight the

research methodologies and their clinically relevant outcomes.
2 Omics in diagnosis: revelation of
novel diagnostic parameters for oral
cancer through omics mining

2.1 Unearthing candidate diagnostic
biomarkers for oral cancer - a multi-
omics approach

Wan et al., 2021 (7) employed an integrated approach to explore

novel DNA methylation-regulated genes with promising clinical

applicability in oral cancer. A combination of RNA sequencing

technology along with multiple omics approaches such as

transcriptomics and methylomics was used. Transcriptomics refers

to the study of RNA to identify changes in the expression of specific

genes (10), while methylomics refers to the study of a type of

epigenetic modification to the genetic material of a cell involving

methylation. Methylation is an essential process of gene regulation,

however, abnormal methylation can levy detrimental effects and lead

to neoplastic conditions (11).

Initially, transcriptomic data was retrieved from 17 paired

samples of oral cancer and normal adjacent tissue by RNA

sequencing, following which the data was normalized and

processed. Next, a multifactor analysis was carried out using the

DESeq2 R program package to identify significant Differentially

Expressed Genes (DEGs) using preset criteria. As a result, 2,211

down-regulated and 778 up-regulated genes were captured.

Subsequently, methylomic data was obtained by analyzing the

datasets, GSE38532 and GSE46802, from the National Center for

Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) database (12). The Differentially Methylated Genes

(DMGs) from these two datasets were extracted using the GEO2R

software. By integrating the above transcriptomic and methylomic

data, a multi-omics analysis was performed using the VennDiagram
frontiersin.org
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package of the R program. The overlapping genes between DMGs

and DEGs were studied to excavate the aberrantly Methylation-

regulated and Differentially Expressed Genes (MeDEGs), which

resulted in the identification of 170 down-regulated genes

exhibiting a hyper-methylated and 56 up-regulated genes

demonstrating a hypo-methylated pattern. Subsequently, the

biological functions of these MeDEGs were analyzed using

Metascape (13). Biological processes like leukocyte proliferation,

response to bacteria, and calcium homeostasis were affected by

hypo-methylated up-regulated genes, whereas hyper-methylated

down-regulated genes affected the muscle and neuronal system,

among others.

The Search Tool for the Retrieval of Interacting Genes

(STRING) (14) database was employed to elucidate the Protein-

Protein Interaction (PPI) networks pertinent to hyper-methylated

down-regulated and hypo-methylated up-regulated genes.

Evaluation of these two networks was done by various calculation

methods to identify the top ten genes and the common genes in all

methods were considered potential hub genes. CD80, CDSN,

CTLA4, GRP29, PI3, and TNFSF11 were identified from the

hypo-methylated network and ACTN2, ISL1, MYH11, MYOD1,

and PAX7 from the hyper-methylated network (Table 1).

Validation of these hub genes was carried out by correlating the

expression levels in the disease and the survival effect using the

Gene Expression Profiling Interactive Analysis (GEPIA) tool to

appraise the clinical importance of the aforesaid hub genes in oral

cancer. Four genes were identified to be significantly dysregulated:

CDSN and CTLA4 were up-regulated, while MYH11 and ACTN2

were down-regulated. In addition, the prognostic significance of the

aforementioned 11 hub genes was explored by investigating the link

between the degree of expression of each gene and the Overall

Survival (OS) of the Head and Neck Squamous Cell Carcinoma

(HNSCC) cases using the Kaplan Meier plotter. Herein, HNSCC

cases were taken from the GEPIA and The Cancer Genome Atlas
Frontiers in Oncology 03
(TCGA) database instead of oral cancer cases, due to the

unavailability of an independent oral cancer category, however,

oral cancer constitutes approximately 95% of the HNSCC cases and

was thus considered as a suitable substitute. The degree of

expression of the following four hub genes: CTLA4, GPR29, ISL1,

and TNFSF11, displayed substantial association with the clinical

outcome. Amongst these, longer OS was associated with increased

expression of CTLA4, GPR29, and TNFSF11, the hypo-methylated

up-regulated hub genes, while shorter OS was significantly
FIGURE 1

Omics cascade.
FIGURE 2

Machine learning workflow.
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associated with reduced expression of ISL1, the hyper-methylated

down-regulated hub gene (Figure 3).

In comparison to other epigenetic alterations, DNA methylation is

crucial as it is one of the earliest detectable carcinogenic changes and is

reasonably reversible by chemical treatment. This research is

particularly beneficial to gain insights into the clinical profile of

DNA methylation and its impact on gene expression and biological

pathways. Aberrant DNA methylation plays an imperative role in oral

carcinogenesis, thus highlighting the significance of the study. This

multi-omics analysis provides an array of biomarkers for oral cancer

which can be instrumental for understanding the molecular

mechanisms of the disease and aid in diagnosis.
2.2 Intercalating ML and omics - unveiling
the diagnostic potential of long non-
coding RNA biomarkers in oral cancer

Messenger RNA (mRNA) plays a major role in the translation

process and is hence considered one of the hallmark features of

mutations or translational inconsistencies in cancer. Similarly,
Frontiers in Oncology 04
lncRNAs act as critical regulators for assessing the metastatic

potential of cancer. The multifaceted role of RNAs in diagnosis,

prognosis, and therapeutics of various cancers has been widely

studied and explored (15). A study conducted by Yang et al., 2020

(16) focused on identifying the markers associated with the

diagnosis and prognosis of oral cancer at a molecular level.

Herein, ML and modeling techniques were adopted to explore the

patterns in gene expression profiles, particularly the Differentially

Expressed mRNAs (DEmRNAs) and Differentially Expressed

lncRNAs (DElncRNAs) in order to signify their role as

biomarkers in oral cancer.

Initially, relevant RNA-seq and clinical data of 331 oral cancer

cases and 44 normal controls were downloaded from the TCGA

database and cleaned. The data was then screened with strict

parameters to identify DEmRNAs and DElncRNAs in the disease

group compared to the control group, using the R package from

DESeq2. This step resulted in the identification of 1,114 DEmRNAs

of which 345 were up-regulated and 769 down-regulated, and 156

DElncRNAs of which 86 were up-regulated and 70 were

down-regulated.

Next, to identify optimal diagnostic lncRNA biomarkers, ML

approach was used. Initially, the LASSO algorithm was used along

with data dimension reduction to perform the feature selection

procedure which resulted in the selection of 30 diagnostic

DElncRNAs. The importance of these was then ranked from large

to small based on Mean Decrease Accuracy by the Random Forest

algorithm. This was then followed by a 10-fold cross-validation

analysis to identify the optimum number of features, which was

found to be 15. Thus, the top 15 DElncRNAs were chosen as

optimal diagnostic lncRNA. Finally, these 15 DElncRNAs were used

to establish the classification models, i.e., Random Forest package,

Support Vector Machine (SVM), and Decision Tree. The diagnostic

ability of these models and the lncRNAs were evaluated based on

Receiver Operating Characteristic (ROC), Area Under Curve

(AUC), sensitivity, and specificity. The highest AUC was recorded

for the Random Forest Model, followed by the SVMmodel and then

the Decision Tree model. The sensitivity of the three models

followed a similar trend, while the specificity was similar for the

Random Forest Model and the SVM model, and lowest for the

Decision Tree model.

Further, a correlation analysis between the 15 lncRNAs and

clinical features such as tumor grades was performed via a boxplot

to further investigate their diagnostic potential. It was found that

irrespective of the tumor grades, the expression of these lncRNAs

was significantly lower in normal controls versus oral cancer cases.

Additionally, to evaluate their prognostic value a survival analysis

was performed, which demonstrated a significant association

between FOXD2.AS1 and survival rate, thus indicating its

potential as a prognostic marker.

Finally, a co-expression analysis between the lncRNAs and

mRNAs followed by a functional analysis was performed to

predict the functions of the optimal diagnostic lncRNAs. The co-

expression analysis performed using Pearson’s correlation

coefficient resulted in the identification of 662 DEmRNAs co-

expressed with the 15 DElncRNAs. RP11 .760H22.2 ,

ADAMTS9.AS1, and CTC.297N7.9 were discovered as the top
TABLE 1 List of identified methylation regulated differentially expressed
genes (7).

Identified
Hub Gene

Description log2FC
a

Methyla-
tion Site
(Probe ID)

Upregulated Hypomethylated Genes

CTLA4
Cytotoxic T-lymphocyte
associated protein 4

2.23 cg08460026

GPR29
C-C motif chemokine

receptor 6
2.55

cg05824215
cg13615963

TNFSF11
TNF superfamily

member 11
3.28

cg21094154
cg24222324

CD80 CD80 molecule 2.54
cg06509940
cg21572897

CDSN Corneodesmosin 7.20
cg08424423
cg24735489

PI3 Peptidase inhibitor 3 4.28
cg09462575
cg02442161

Downregulated Hypermethylated Genes

ACTN2 Actinin alpha 2 -8.15
cg16853982
cg21376883

MYOD1
Myogenic

differentiation 1
-6.09

cg16519321
cg07271264
cg18555440
cg24322623

ISL1 ISL LIM homeobox 1 -3.74
cg26896762
cg21410991

MYH11 Myosin heavy chain 11 -2.92
cg17880199
cg15488251

PAX7 Paired box 7 -6.31
cg11428724
cg07536847
alog2FC, log2 transformed fold change.
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three DElncRNAs having the highest numbers of co-expressions

with DEmRNAs. The functional analysis was performed for the 662

DEmRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG). In the GO analysis most DEmRNAs

were significantly enriched in the following categories: “signal

transduction” in biological process; “cytoplasm” in cellular

components; and “protein binding” in molecular function. In the

KEGG analysis, the most enriched pathways included the “Focal

adhesion” pathway, followed by “ECM-receptor interaction” and

“Pathways in cancer” (Figure 4). The study thus highlighted the

potential of lncRNAs to diagnose oral cancer and revealed the

various pathways involved in oral cancer.
2.3 Omics in noninvasive biomarker
identification and differential diagnosis –
amalgamating salivaomics and ML to
distinguish oral cancer from oral
potentially malignant disorders (OPMDs)

In recent times, it has been found that salivary components,

such as proteins, mRNA, and metabolites, are significantly altered

in response to certain disease states, including both oral and

systemic diseases. Hence, saliva can be used as a source for these

biochemical components, which have diagnostic and prognostic

capabilities and may act as biomarkers. Approaches that make use

of saliva as a source for biochemical data can be termed as

salivaomics. This field is increasingly gaining traction due to the
Frontiers in Oncology 05
ease of collection, storage, and noninvasive features of saliva

sampling (17). Similarly, ML techniques are progressively gaining

popularity in healthcare diagnostics and the development of

assistive diagnostic platforms due to their impressive performance.

In this study, Adeoye et al., 2022 (18) have attempted to

combine the principles of ML and salivaomics to optimize the

robustness of salivary markers in detecting oral cancer using a ML-

supported liquid biopsy platform. In particular, this study utilized

genome-wide methylation analysis methods to reconnoiter

noninvasive salivary methylome biomarkers and differentially

diagnose oral cancer from OPMDs. Further, ML-based platforms

were adopted to optimize the role of the shortlisted biomarkers in

the diagnosis of oral cancer.

Initially, to evaluate and endorse methylome biomarkers in oral

cancer and OPMDs, adequately defined oral cancer and OPMD

(Oral Lichen Planus (OLP), erythroplakia, erythroleukoplakia,

leukoplakia, and oral submucous fibrosis) cases were selected and

their saliva samples were collected. For biomarker discovery and

ML analysis, the outcome status for the first 50 patients was

discerned. This was followed by randomly selecting 33 samples

from this pool for further Reduced-Representation Bisulfite

Sequencing (RRBS) to analyze the genome-wide methylation

profiles. Post RRBS, differential methylation analysis was

performed using Methylkit (19) to capture the Differentially

Methylated CpG sites (DMCs) and small-sized Differentially

Methylated Regions (DMR) based on the mean methylation

percent difference. Overall, 1,745 DMCs were recognized for oral

cancer relative to the OPMDs, of which 854 were hyper-methylated
FIGURE 3

Capturing aberrant epigenetic modifications to aid in oral cancer diagnosis.
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and 891 were hypo-methylated. Similarly, of the total 105 DMRs

identified in oral cancer patients, 62.9% were hyper-methylated

regions and the rest were hypo-methylated regions. Subsequently,

the DMCs and DMRs underwent functional annotation and

pathway enr ichment ana lys i s . The Genomat ion and

Hypergeometric Optimization of Motif Enrichment software was

used to functionally annotate the DMCs and DMRs on the basis of

their location with respect to genes and CpG islands. This showed

that the majority of the DMCs were predominantly enriched in the

intergenic regions, 9.4% in CpG islands, and 17.9% in CpG island

shores. For pathway enrichment analysis, GO terms related to

biological processes, and KEGG pathways were used. For DMCs,

important biological processes such as regulation of apoptosis, ion

transport, and synapse organization among others, were enriched in

GO. KEGG pathway implicated endocytosis, PI3K-Akt, Ras, and

Rap1 pathways as the most enriched pathways in oral cancer.

Similarly, the 84 DMRs that were enriched in 47 genes, when

subjected to the GO-biological processes analysis led to the

identification of biological processes such as chromatin

organization, pattern specification, and cell-cell adhesion, among

others. KEGG analysis also implicated various cancer-related

pathways associated with five DMR-associated genes.

Subsequently, to construct predictive MLmodels to differentiate

oral cancer from OPMDs, the percentage methylation for all

identified DMCs and DMRs was retrieved. Initially, utilizing each

DMC and DMR as a predictive feature, a ML model was created

using the following techniques: Adaptive Boosting, Extremely

Randomized Trees (ExtraTrees), Decision Tree, Gradient

Boosting Machines, k-Nearest Neighbors, Linear and Radial Basis

Function, Random Forest, and SVM. To enhance the feasibility and

clinical applicability by selecting the most optimal DMCs and
Frontiers in Oncology 06
DMRs, feature selection using three techniques (ANOVA,

MRMR, and LASSO) was performed. After experimenting with

various permutations and combinations of the feature selection

technique-based DMC and DMR sets and the various ML model

techniques, the best performing models were identified. Out of the

different DMC-based models, a combination of the common DMCs

chosen from all three feature selection techniques and the ML

models based on Linear SVM and ExtraTrees exhibited superiority

in performance metrics. On the other hand, in the case of DMR-

based models, it was found that using a combination of the LASSO-

selected DMRs instead of the common DMRs to develop the models

showed better outputs. Finally, DMC hypo-methylation of FGF4

and the LINC00461 associated DMR were found to be the highest

significant features for the delineation of oral cancer and OPMDs.

This research demonstrated the viability of using genome-wide

methylation analysis techniques to aid in discriminating the

features of oral cancer from OPMDs, suggesting its translational

potential in a clinical setting.
2.4 Omics in oral cancer classification - an
attempt to stratify genes based on
molecular subclasses and disease stages
via bioinformatics

The objective of the study piloted by Shafana et al., 2021 (20)

was to identify the genetic markers of oral cancer and classify them

not only on a molecular basis but also on tumor stages. The study

attempted to develop a novel methodology for this classification and

aid in the identification of molecular subclasses of oral cancer at

various stages of the disease. This could potentially improve the
FIGURE 4

Combining ML and omics to unveil the diagnostic potential of lncRNA biomarkers in oral cancer.
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scope for individualized therapy and identification of the cancer in

an early curable stage. The study can be effectively parsed into three

sections for ease of understanding. Firstly, DEGs, that is, over and

under-expressed genes, were identified, followed by the

categorization of the genes based on molecular subclasses, and

finally, classification based on the tumor stages, particularly early

and late stages.

To identify DEGs, gene expression profiles of 48 oral cancer

cases and 8 healthy controls were accessed via the GSE51010 dataset

from the NCBI GEO database (12). The data was retrieved and

processed using the R programming tool via Bioconductor packages

(GEOquery, Biobase, and affy) (21). Post-processing, the data was

subjected to cross-platform normalization and underwent noise

removal. Subsequently, the DEGs were identified from the panel of

significant genes based on stringent cut-off criteria to convert them

as gene identifiers by utilizing AnnotationDbi.

To capture molecular subclasses of oral cancer, the

ConsensusClusterPlus package was employed to cluster the

identified genes and further consensus Cumulative Distribution

Function curve analysis led to the identification of 5 subclasses.

Further, to stratify the genes on the basis of early and late tumor

stages, the study leveraged clinical data from the datasets and

developed a gene co-expression network. A gene co-expression

network is developed on the grounds of a similarity matrix with

regard to gene expression profiles of many genes, and the genes

exhibiting high similarity are correlated and suggested to have

similar functionalities. This function is used to associate gene

expression with phenotypic traits (22). In this study, based on the

clinical data from the datasets, the genes were categorized as either

early or late stage. The CoExpress software and the Expression

Correlation plugin of Cytoscape (23) software was used to

understand the similarity network and to develop the gene co-

expression network for early and late stage-specific genes separately

based on the correlation between the genes.

Additionally, pathway enrichment analysis was carried out with

the help of the Database for Annotation, Visualization and

Integrated Discovery (DAVID) tool (24) to excavate vital proteins

that play a role in oral cancer. The analysis also aided in the

identification of the most influenced canonical pathways, diseases

and disorders, molecular and cellular functions, and the

transcriptional regulators from the genes that have been

categorized depending on the subclasses and stages respectively in

the previous steps. This led to the identification of Integrin (ITGB4)

as an underexpressed gene, its main role being focal adhesion which

is important for regulatory signal transmission. Additionally,

Serglycin (SRGN), a gene with apoptotic function was found to be

down-regulated in oral cancer patients, and finally, GPX2, a gene

responsible for detoxification and antioxidant activity was found to

be up-regulated.

Ultimately, the results of the study were validated against the list

of marker genes that were previously identified from the Catalogue

Of Somatic Mutations In Cancer (25) and NCBI database (12). It

was found that most of the genes identified in this study coincided

with that of previously identified genes. For example, TAGLN2,

CCND2, and CCL8 were identified in the study and were previously
Frontiers in Oncology 07
well-established as tumor suppressor genes. Thus, adding credibility

to the current novel methodology and other results of the study.

Successful translation of these discoveries could lead to well

defined molecular subtypes of oral cancer and to the revelation of

stage-classified genes that can aid in early diagnosis, patient

selection, and paving the way for the design of suitable

therapeutic protocols.
2.5 Excavating crucial oncogenic
signatures overlapped in OLP and oral
cancer from genomic data

OLP is an oral inflammatory condition with the potential to

progress into oral cancer. The study conducted by de Lanna et al.,

2022 (26) aimed to highlight the similarities between OLP and oral

cancer with regard to gene expression profiles and their roles in

inflammatory processes associated with malignant transformation.

Additionally, the study focused on identifying new targets and

pharmacotherapeutic options to potentially reverse the

malignant changes.

Gene expression data from three mRNA microarray datasets

consisting of an array of samples derived from oral cancer, OLP,

and healthy controls, were accessed via NCBI GEO (12) using the

GEOquery R package (27). Similarly, relevant expression data from

the TCGA and other GEO microarray datasets were also retrieved

to validate the results. The data obtained was preprocessed,

integrated, and normalized. Post this, differential expression was

analyzed using the limma R package (28) to identify DEGs in OLP,

early-stage oral cancer, and advanced oral cancer in comparison

with healthy controls. This led to the revelation of 107 DEGs

associated with OLP, 331 with early stage oral cancer, and 282

with advanced oral cancer. Of these, a total of 35 genes were found

to be overlapping between all three conditions and these were

further subjected to non-supervised clustering. As a result, all the

samples of OLP clustered with oral cancer samples, predominantly

in the early oral cancer stage. Some of the DEGs common to OLP

and oral cancer include KRT4 (down-regulated) and KRT16,

KRT17, KRT10, and KRT75 (up-regulated). These results, when

validated using the TCGA data and independent microarray GEO

datasets, were found to be consistent.

Subsequently, Gene Set Enrichment Analysis (GSEA) (29) and

Over-representation Analysis were performed using the

WebgestaltR package (30) and ReactomePA R package (31)

respectively, for various sets of OLP and oral cancer genes to

identify significant pathways. Pathways related to immunity such

as antigen presentation, antimicrobial peptides, complement, and

interleukin-10 (IL-10) signaling, alongside other pathways related

to extracellular matrix (ECM), non-integrin membrane-ECM

interactions, and keratinization were enriched in OLP. Similarly,

in oral cancer (early and advanced stage), pathways related to

interferon signaling, keratinization, and multiple interleukin,

among others, were found to be enriched. Further, it was found

that the main pathways enriched in both OLP and oral cancer

(either early or late stage), were “antigen presentation pathway”;
frontiersin.org

https://doi.org/10.3389/fonc.2023.1183766
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Satish et al. 10.3389/fonc.2023.1183766
“formation of the cornified envelope”; “antigen processing cross-

presentation”; “interleukin-10 signaling”; “collagen chain

trimerization”; “neutrophil degranulation” and “non-integrin

membrane-ECM interactions”.

Immune infiltration cell analysis was done to estimate the vital

proportions of cells infiltrating both the conditions by using the

CIBERSORTx tool (32) and the tool’s genetic signatures available

for 22 cell types. This includes various B cell types, T cell types,

natural killer cells, dendritic cells, macrophages, mast cells,

neutrophils, monocytes, and eosinophils among others. As a

result of this analysis, it was found that, when compared to the

normal oral mucosa, the levels of activated natural killer cells in

OLP and oral cancer samples were significantly lower. Also,

significantly higher proportions of M0 and M1 macrophages and

CD8+ T lymphocytes were found in advanced-stage oral cancer

when compared to OLP. In contradiction, reduced proportions of

resting naïve B cells, Mast cells, and monocytes were observed in

both stages of oral cancer relative to normal oral mucosa and OLP.

Further, gene signatures related to non-pathogenic and pathogenic

Th17 cells were explored by employing a 33-gene signature panel

based on previously characterized Th17 phenotypes. Oral cancer

displayed predominant gene expression pertinent to the pathogenic

Th17 signature, while non-pathogenic Th17 cell profile expression

was high in OLP and control mucosa. In OLP, pathogenic signaling-

related genes such as IL1B, LTA, LTB, CTSC, HIF1A, and TGFB3

were differentially modulated. Further, higher expression of CTSC,

HIF1A, and IL1B was observed in both stages of oral cancer. These

findings were in line with that of the validation datasets.

Next, to analyze the connection strength between genes

showing similar expression patterns and identify co-regulated

genes involved in the cancerization of OLP, gene co-expression

modules were developed with the help of the Weighted Gene Co-

expression Network Analysis R package (33, 34). 12 such co-

expression modules were developed by analyzing 15,000 genes.

Out of the 12 modules, a significant positive correlation with OLP

was observed in only one. In this module, to better understand the

interactions of the genes, a PPI network was constructed in the

STRING (14) database which led to the identification of 11 hub

genes. Further FDA-approved anticancer drug-gene interactions

and gene categories for the hubs were determined using the Drug-

Gene Interaction Database (DGIdb) online tool (35). This led to the

identification of 15 transcription factors, 112 genes in the druggable

genome, and 6 genes that were clinically actionable. Subsequently,

89 drugs that interacted with 3 of 11 hubs were selected. Further

study of the hub gene expressions revealed that PI3 was the only

gene that was significantly up-regulated in all the conditions while

DSC1, DSG1, IVL, and PKP did not demonstrate significant

differences in expression when compared to the control. Three of

the 11 hub genes had previously known drug-gene interactions, that

is, PI3 and DSP which were up-regulated in OLP and oral cancer,

and IVLwhich was up-regulated in OLP and early-stage oral cancer.

Subsequently, to identify drugs with the ability to reverse the

expression signatures of the selected overlapping DEGs, the L1000

Characteristic Direction Signature Search Engine tool on the

Library of Integrated Network-Based Cellular Signatures Program

platform was used (36, 37). Additionally, the drugs identified were
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repositioning possibilities. As a result, PI3K/mTOR pathway

inhibitors were found to be one of the most represented

categories of drugs including agents like Torin-2, GSK 1059615,

INK-128, and GDC-0980, among others.
3 Omics in disease management:
unearthing potential therapeutic
strategies to confront oral cancer by
exploring omics big data

3.1 Reprofiling CYP 450 inhibitors against
oral cancer - a contemporary drug
discovery endeavor

Oral cancer is characterized by several hallmark features

amongst which up-regulation of Akt1 and Akt2 is considered

significant (39, 40). On the other hand, the MAOB gene is

reported to be down-regulated in cancer progression (40). In

pursuit of candidate/lead molecules for oral cancer, it is

hypothesized that chemical entities inhibiting the overexpression

of Akt1 and Akt2 without suppressing the expression of MAOB

may demonstrate promising therapeutic potential. Based on the

above concept, Siam et al., 2021 (41) leveraged the molecular

docking technique to explore potential leads with the

aforementioned properties. This research group believed CYP

inhibitors to be an ideal option for modulating Akt1 and Akt2

proteins with minimal or no impact on MOAB expression.

Initially, intensive literature mining was carried out to capture

potent Cytochrome P450 (CYP3A4) inhibitors derived from herbs.

Structures of the resultant molecules were obtained from DrugBank

and PubChem in SDF format and concurrently converted using

Open Babel into PDB format (42–44). This served as a test set for

molecular docking studies, while Capivasertib and A-443654 were

selected as reference inhibitors to dock against Akt1 and Akt2

respectively. The 3D structures of Akt1 and Akt2 were retrieved

from Research Collaboratory for Structural Bioinformatics-Protein

Data Bank and curated using PyMOL (45, 46). The obtained

proteins and ligands were docked using AutoDock Vina (47) and

the protein-ligand interactions were visualized using Discovery

Studio. RAMPAGE, an online server was used to analyze the

Ramachandran plot, while admetSAR 2.0 (48) offered insight into

the pharmacological properties of the studied drugs.

Docking studies revealed that a few CYP inhibitors exhibited

higher binding affinities than reference Akt1 and Akt2 inhibitors.

Amongst these CYP inhibitors, galuteolin and linarin were

remarkable and were subjected to further analysis. The protein-

ligand interaction complexes of the CYP inhibitors, that is,

galuteolin and linarin, and reference inhibitors were visualized by

superimposing them on the binding pockets of their respective Akt

proteins. This revealed that the CYP inhibitors and the reference

Akt inhibitors shared the same binding pockets of Akt proteins.

Later, respective Akt protein-reference inhibitors complex and Akt

protein-CYP inhibitors complex were analyzed to identify the
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common amino acid residues involved in the interaction. The CYP

inhibitors and reference inhibitors had overlapping interacting

amino acids, hence the test drugs were assumed to interact with

the same protein pocket as the reference drugs. Finally, the ADMET

(absorption, distribution, metabolism, elimination, and toxicity)

properties of the CYP inhibitors were analyzed and found to be

superior when compared to the reference inhibitors in terms of

blood brain barrier permeability.

After analyzing the Akt inhibitory properties of the CYP

inhibitors, their influence on MAOB proteins was investigated.

Herein, two PDB structures of MAOB (2C65 and 1S2Q) were

docked in rigid mode with the literature-derived CYP inhibitors

having Rasagiline as standard using AutoDock Vina (47). This

revealed that galuteolin and linarin did not exhibit any inhibitory

activities on MAOB (Figure 5). The results of this study emphasized

the capability of the above CYP inhibitors to be a promising

repurposable therapeutic option for oral cancer.
3.2 Omics in combating drug
resistance - interlacing proteomic and
phosphoproteomic data to unearth kinases
with druggable potential in chemotherapy-
resistant tongue cancer

Tongue cancer is one of the most aggressive and prevalent

forms of oral cancer which is associated with rapid progression and

poor prognosis. The treatment is dependent on the stage of the

cancer, and in cases with locally advanced inoperable tumors,

neoadjuvant chemotherapy (NACT) has been identified as a

beneficial regimen. However, the success of NACT is limited by

the development of resistance, low response rates, and local

relapses. George et al., 2022 (49) explored the proteomic and

phosphoproteomic profiles of NACT resistant and sensitive

tongue cancer patients to identify differentially expressed proteins

associated with these properties by using Liquid Chromatography-

tandem Mass Spectrometry (LC-MS/MS) techniques. The study

aimed to provide a molecular background for the mechanisms of
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treatment resistance.

Tissue biopsy samples from treatment-naive tongue cancer

patients were collected and the tumor composition of the samples

was pathologist verified. Following this, all the patients underwent

NACT with standard drug dosages for a specified duration.

Following the second cycle of chemotherapy, the treatment

response was evaluated using Response Evaluation Criteria in

Solid Tumors (50) and recorded, based on which the patients

were categorized as either responders or non-responders,

respectively. Next, the proteome and phosphoproteome of these

patients were quantified, using multiplexed Tandem Mass Tags

(TMT), Immobilized Metal Affinity Chromatography (IMAC)-

based phosphopep t ide enr i chment , and LC-MS/MS

methodologies, to evaluate the protein expression and

phosphorylation events associated with resistance (from 4 non-

responders) and sensitivity (from 4 responders) to treatment. The

data was then processed using the MASCOT and SEQUEST-HT

algorithms from the Proteome Discoverer 2.0 platform. The global

proteome and phosphoproteome data of the resistant and sensitive

patients were compared. From the global proteome data, 7,453

proteins were identified and 7,000 of these proteins that were

present in all samples were quantified. From these, 15,440

phosphopeptides were identified and 9,385 were quantified,

corresponding to 4,150 and 3,106 proteins respectively, across all

the patients. Next, the PhosphoRS algorithm was used to identify

serine/threonine/tyrosine phosphorylation sites, and post

quantification 9813 serine, 1,266 threonine, and 87 tyrosine

phosphorylation sites corresponding to 9,385 phosphopeptides

which in turn correspond to 3,106 proteins, were identified.

The proteomic and phosphoproteomic data were then

statistically analyzed separately to identify differentially expressed

proteins and differentially phosphorylated proteins in the resistant

cohort relative to the sensitive cohort. This resulted in the

recognition of 59 differentially expressed proteins out of

275 significantly expressed proteins and 126 differentially

phosphorylated phosphopeptides corresponding to 98 proteins

out of 305 significantly phosphorylated phosphopeptides.
FIGURE 5

Unveiling the repurposable potential of CYP 450 inhibitors against oral cancer.
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Thesesignificantly expressed proteins and phosphorylated

phosphopeptides separately underwent unsupervised clustering,

which led to the identification of unique proteomic signatures in

the resistant cohort. Upon further study, it was observed

that proteins such as aspartic peptidase retroviral like 1

(ASPRV1), keratin 1 (KRT1), and keratin 10 (KRT10) among

others, were highly expressed in resistant patients. Similarly,

hyperphosphorylation of various keratins was observed in the

phosphoproteomics data of the resistant cohort. KRT10 was

observed in the non-responders at the sites S33, S39, S42, S56,

S61, S459, S537, and S577, while hyperphosphorylation of KRT1

was observed at the sites of S13, S66, S612, S344, Y639, S618, S609,

and S541. Furthermore, a comparison between the differentially

expressed proteins and differentially phosphorylated proteins

revealed five proteins that showed significant changes in both

protein expression and phosphorylation, and 81 proteins that

were dysregulated only at the phosphorylation level with no

difference in protein expression. These 81 proteins were then used

to construct a PPI network in the STRING (14) database.

Pathway enrichment analysis of these differentially expressed

and phosphorylated proteins was done using the Reactome analysis

tool (51), which revealed distinct pathways. Differentially expressed

proteins demonstrated enrichment in pathways such as

“interleukin-18 signaling”, “formation of the cornified envelope”,

and “keratinization” among others. In contrast, differentially

phosphorylated proteins revealed significant pathway enrichment

related to the Rho GTPase cycle and its signaling. The resistant

cohort of patients was associated with 17 differentially

phosphorylated proteins which were implicated in the Rho

GTPase cycle. Pathways enriched in both proteomic and

phosphoproteomic data included those related to keratinization

and formation of cornified envelope.

From these differential phosphorylation events, kinases were

investigated and the identified kinases were searched and the

KinMap tool (52) was used to construct a kinome map. 191

kinases from various kinase families such as tyrosine kinase,

tyrosine-like kinase, and calmodulin/calcium-regulated kinase

among others were identified and a kinome map was created.

Further, in the resistant cohort hyperphosphorylation of kinases

such as Mammalian Ste20-like protein kinase 3 (MST3),

Microtubule affinity-regulating kinase 2 (MARK2), and Fibroblast

growth factor receptor 3 (FGFR3) was observed. Next, kinase-

substrate enrichment analysis was carried out for the differentially

phosphorylated proteins to study the molecular regulatory

mechanisms involved in NACT resistance. Using the Kinase

Enrichment Analysis 3 tool, Mitogen-activated protein kinase 1

(MAPK1), Akt1, and Mitogen-activated protein kinase 3, were

predicted as the top three enriched kinases that are involved in

hyperphosphorylation among others, while SRC and ABL1 were

identified as the top two kinases involved in hypophosphorylation.

PhosphoSitePlus (53) was used to identify upstream phosphatases

for the downregulated kinases which resulted in the identification of

the following upstream phosphatases for the SRC kinase: PTEN,

PPP2CA, PTP52N13, PTP1B, PTPRJ, PTPRA, and SHP-2.

Next, the protein expression and mRNA of the predicted

kinases were studied using publicly available data from
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cBioPortal. Using the expression data of 131 tongue cancer

patients from the TCGA database, the mRNA expression was

examined. Variable expression of the predicted kinases from the

current study was also observed in this dataset. Similarly, using the

protein expression data of 61 patients from the Reverse Phase

Protein Arrays in signaling pathways database the protein

expression was investigated and the expression of only the top

two kinases were found, that is MAPK1 and Akt1, and these too

were variably expressed.

Finally, the Therapeutic Target Database was queried to identify

enriched druggable targets from the hyperphosphorylated kinases

and predicted kinases for NACT resistant patients. Mainly

inhibitors of the enriched kinases identified in the current study

were found and were either approved or in clinical trials. For

example, MAP3, a kinase predicted to be enriched in resistant

patients from this study, currently has 2 antagonists, ravoxertinib

and ulixertinib, which are in clinical trials.
3.3 Omics complementing surgery -
exceptional insight to differentiate oral
cancer surgical margins using
transcriptomic biomarker signatures

One of the crucial aspects related to the survival of cancer

patients post-surgery depends on the degree of excision of the

original tumor. The residual dysplasia prevailing in resection

margins post-surgery is considered a common attributing factor

for the recurrence of the disease.

The significance of whole-transcriptome gene expression and

short non-coding RNA profiles in developing distinctive

biomarkers to distinguish surgical margins in oral cancer was

demonstrated by Fox et al., 2022 (54). Patients undergoing

surgical resection for oral cancer were chosen to study the

differential gene expression profiling on biopsy samples of the

tumor, near margin, and distant margin sites. This study involved

enrolling 18 oral cancer patients prior to their surgical intervention,

and the oral cancer sites were visualized using Narrow Band

Imaging (NBI) and conventional white light illumination.

Later, oral cancer resection was carried out at the level ≥5 mm

beyond the surgical margin defined by NBI; subsequently, punch

biopsies of 4 mm dimension were obtained from (1) 5 mm away

from the limit of tissue abnormality showcased by NBI which is

considered as normal (N), (2) 5 mm away from the limit of tissue

abnormality observed under white light, which is considered as

margin (M) and (3) the primary tumor core (T).

In general, tumor histology was mostly moderate to highly

differentiated oral cancer with a single incident of verrucous

carcinoma. The margins in independent histopathology were ‘clear’

in all samples except one, and two samples showed margins that were

more than 5 mm demarcated from the tumor. Also, one ‘close’margin

was detected at 1 mm. Based on this approach, it was reported that the

five-year disease-free survival (DFS) and the local recurrence rate were

84.21% and 5.26% respectively.

In addition to this, mRNA expression was collated fromHuman

Genome U133 Plus 2.0 followed by quality control procedures. The
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suitable data were subjected to pre-processing steps and normalized

by the Guanine Cytosine Robust Multi-Array Analysis (GCRMA)

method. Subsequent to this, specific mRNA probes were correlated

to their respective genes and the functional annotation of the

resultant genes was achieved with the DAVID tool (24). Through

this, a total of 4,794 genes were identified by differential gene

analysis, and individual comparisons revealed the following

number of genes: 4,387 for T vs. N, 3,266 for T vs. M, and 7 for

N vs. M. Likewise, miRNA expression analysis showcased 119

differentially expressed miRNA, further, upon individual

comparisons 109 miRNAs were observed at T vs. N, 81 miRNAs

at T vs. M and 7 miRNAs at N vs M. These findings imply that N

samples were comparatively more molecularly distinct from T

samples than from M samples, and thus justify the adoption of a

complementary optical imaging technique in oral cancer

surgical excision.

As a further step, multivariate regression algorithms (sPLS-DA)

were performed to identify the key variables unique to each group.

The aforementioned task was executed using the mixOmics R

package (55) with ‘tune’ function in place to retrieve an array of

parameters with a minimal error rate. This method aided in the

identification of the classifying gene or miRNA expression

signatures that distinguish various tissue zones (N, M, and T).

Preliminary modeling yielded 14 optimally performing genes that

are highly effective in discriminating T samples, while less effective

in differentiating N and M samples. The analysis was repeated

without T samples and that resulted in a binomial model consisting

of 20 genes. These genes performed well in the discrimination of N

and M samples. Therefore, this profile of 20 gene expression

biomarkers can be considered to differentiate the more distant

normal tissue from the histologically tumor-free margin.

In parallel, a classifying model based solely on miRNA expression

was developed using the same approach as previously stated, i.e.,

multivariate regression methods (sPLS-DA). Intriguingly, the gene

expression model outperformed the miRNA expression-based model

in terms of classification ability, specifically for the T and M zones.

Additionally, the performance of elastic net regression, which

used a gene expression dataset as input, was examined to determine

biomarkers and classify samples. Unfortunately, no subset of genes

worked best for developing a prediction model for multinomial

classification. Adding to this fact, it was also noted that the elastic

regression analysis performed inferior to that of sPLS-DA

in discrimination.

Furthermore, the classifier genes such as MYO1B, MMP1,

TNFRSF12A, MMP12, LAMC2, WDR66, SLC16A1, and PLAU

that were elevated in tumor tissue were identified to generate

biomarkers to spot residual abnormalities in the surgical margins.

Application of the aforesaid gene signature to classify 18 marginal

samples predicted 13 as normal and 5 as tumors. The interesting

fact is that some of the forecasts were unambiguous while others

were more borderline.

In addition, the generated prediction model was tested using an

external dataset consisting of N, M, and T samples to evaluate its

generalizability and clinical applicability. The model identified 13

out of 49 M samples as tumors with a prediction score of 0.5 or

more and the survival analysis failed to demonstrate a significant
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findings, discrimination signatures were successful in recognizing

cancer samples within the independent cohort, while the samples

linked to recurrence could not be distinguished using the statistical

model signature of abnormality in the margins. In conclusion, the

biomarker signatures identified could complement the current

surgical and histological approaches in the early detection of

tumors in oral cancer with clean surgical margins.
4 Omics in prognosis: forecasting
prognostic outcomes for oral cancer
using omics methodologies

4.1 Comprehensive bioinformatics analysis
to spot the latent biomarkers of oral
cancer associated with progression
and prognosis

Oral cancer research is primarily focused on identifying disease-

specific genes to comprehend their molecular and biochemical

activities alongside their role in intricate interaction networks that

influence the development, progression, and prognosis.

To unravel the DEGs in oral cancer, Reyimu et al., 2021 (56) mined

three mRNA expression datasets: GSE9844 encompassing 26 tumor

and 12 normal tissues, GSE30784 containing 167 tumor and 45 normal

tissues, and GSE74530 comprising six tumor and six premalignant

tissues; and one miRNA expression dataset, GSE124566 which

included 10 tumor and 10 normal samples. The datasets were

analyzed using the R package (limma) (28) with a set screening

criteria (adjusted P < 0.05, and log2FC > 1). This revealed the

differential expression of 298 genes in oral cancer tissue inclusive of

98 down-regulated genes and 200 up-regulated genes.

Following this, GO functional annotation analysis of DEGs revealed

their enrichment in “extracellular structure and matrix containing

collagen”, while, pathway enrichment analysis in KEGG confirmed

their significant enrichment in IL-17 and PI3K-Akt signaling pathway.

Later, using STRING and Cytoscape (23), the genes were subjected to a

PPI network as well as miRNA-gene network analysis. The shortlisted

central genes were screened based on gene degree, molecular complex

detection plugin, and miRNA-gene network.

Subsequently, the recognized genes were analyzed for their

significance in TCGA and Kaplan Meier data which correlated a

high expression of IL6, CXCL8, DDX60, and RTP4 with poor

prognosis in oral cancer patients, while a better prognosis was

linked with a high expression of IFI44L and RSAD2. Raised

expression of CXCL8, DDX60, IFI44L, RSAD2, and RTP44 in oral

cancer was confirmed by Oncomine (57), and The Human Protein

Atlas database (58) demonstrated higher expressions of RTP44,

DDX60, RSAD2, and IFI44L in malignant tissues. Finally, according

to Cox regression analysis, RTP44, DDX60, RSAD2, and IFI44L

were identified as independent prognostic indicators of oral cancer

(Figure 7). This research presented a framework of putative

biomarkers and pertinent pathways linked with the prognosis of

oral cancer.
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4.2 Construction of ferroptosis-related-
lncRNAs-based oral cancer prognostic
prediction model

Qiu et al., 2022 (59) identified ferroptosis-related lncRNAs from

oral cancer patient data to build a prognostic predictive model.

Firstly, the RNA-seq data of 338 oral cancer patients from the

TCGA portal was analyzed using a rank sum test. This resulted in

386 DElncRNAs out of which eight ferroptosis and prognosis-

related lncRNAs (AC079921.2, AC099850.3, AC090246.1, FIRRE,

AL512274.1, MIAT, LINC01305, and LINC00524) were predicted

via univariate Cox survival analysis.

Further, the FerrDb website (60) and literature mining yielded 382

ferroptosis-related genes that encompassed ferroptosis markers along

with ferroptosis-suppressing and ferroptosis-inducing genes. Following

this, a correlation network was constructed between the acquired

prognosis-related lncRNAs derived from the patient data in this study

and literature/website-derived ferroptosis-related genes. The

constructed network was visualized in Cytoscape (23), which revealed

the co-expression of AL512274.1, LINC01305, and AC099850.3, with a

comparatively increased number of ferroptosis genes.

The precision of the established model was further assessed

through survival curves, ROC curves, and clinical Decision Curve

Analysis (DCA), while independent prognostic factors were assessed

using univariate and multivariate Cox regression analyses. This

determined the risk scores based on the expression levels of risk

regression coefficients and ferroptosis-related lncRNAs. Accordingly,

the patients were allocated to low or high-risk groups. Subsequent

survival analysis revealed that the high-risk group had a lower OS rate

when compared with the low-risk group. Survival status together with

ROC analysis suggested that the risk model developed, performed well

in predicting the patient prognosis.
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Factors that could independently predict the prognosis were

analyzed by univariate and multivariate Cox analysis. Univariate

Cox analysis of patients’ clinical features revealed that age, stage,

risk score, and tumor grade varied considerably and were risk

factors for oral cancer. Multifactorial Cox analysis indicated that the

risk score may independently signify the prognosis of oral cancer.

Concurrent heat map analysis of eight predicted lncRNAs

between the low- and high-risk group disclosed that AC090246.1,

AC099850.3, and FIRRE were up-regulated, while AL512274.1,

AC079921.2, LINC01305, and MIAT were downregulated in the

high-risk group, thus confirming the accuracy of the model in

predicting oral cancer prognosis.

Followed by this, a DCA curve was plotted by analyzing the

association between predicted prognosis and clinicopathological

parameters involving ROC of clinical characters and risk score.

This analysis also confirmed that the risk score was a more

promising prognostic factor than other clinical markers. Further

study on the correlation between the risk scores with individual

clinical features followed by heat map analysis demonstrated a

substantial difference in the T stage of oral cancer between low and

high-risk groups. Subsequently, a nomogram was constructed

considering the factors such as age, gender, risk score, grade, TN

stage, and other prognostic factors to predict the survival rate of a

patient using personal data. Intriguingly the foreseen survival rate

was very near to the ideal line signifying the accuracy of the

prediction made by the nomogram which can serve as a tool for

future personalized treatment.

Furthermore, the relationship between the risk model and

immune cell infiltration was analyzed to identify the difference in

immune-related functions (T-cell co-stimulation, T-cell

co-inhibition, CCR, and HLA) between the low and high-

risk groups. This revealed a significant difference in
FIGURE 6

Discerning surgical margin based on transcriptomic biomarker signatures.
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immunestatus between the groups, reinforcing the requisite for

customized immunotherapy.

An additional examination of differences in m6A-associated

genes and immune checkpoints between the two groups revealed

that only 29 checkpoint genes were found to be remarkably

differentially expressed between the groups. Additionally,

examination of gene expression differences between the two

groups revealed that m6A-related gene YTHDC2 was significantly

down-regulated while HNRNPC, ALKBH5, and YTHDF1 were

significantly up-regulated in high-risk groups.

Later, KEGG analysis uncovered the involvement of almost 24

and 10 active signaling pathways in the low and high-risk group

patients respectively. These were linked with metabolic pathways

pertinent to purine, pyrimidine, and spliceosome in the high-risk

group while, immune-associated biological processes such as the B-

cell receptor pathway, T-cell receptor pathway, and FcϵRI pathway
in the low-risk group.

Simultaneously, an attempt was made to recognize the potential

drugs to target oral cancer, utilizing the up- and down-regulated

ferroptosis-related genes via the L1000FWD database (61). This

fetched MEK inhibitors, estrogen receptor agonists, and RAF

inhibitors among others, as possible reference candidates.

Differences in gene enrichment were observed when the cell lines

were treated with these molecules. The top ten candidate molecules

include KM-03949SC (MEK inhibitor), RJC-00245SC (estrogen

receptor agonist), BRD-K82185908 (adrenergic receptor

antagonist), KM-00519SC (RAF inhibitor), BRD-K94987138

(histamine receptor antagonist), BRD-K67619794 (histamine

receptor antagonist), BRD-K05197617 (EGFR inhibitor),

Ivermectin (benzodiazepine receptor agonist), Vemurafenib (RAF

inhibitor), and BRD-K03122949 (dopamine receptor antagonist).

Finally, the alteration in the expression of ferroptosis-related

lncRNAs with regard to varying clinical characteristics was studied

using real-time PCR. This revealed the following findings: (a)
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AC079921.2, AL512274.1, AC090246.1, AC099850.3, FIRRE,

MIAT, LINC00524, and LINC01305 in tumor and normal tissues,

(b) AC090246.1 and AL512274.1 in N stage tumors, (c) MIAT and

AL512274.1 in the lymphovascular invasion; (d) AL512274.1,

LINC01305, and AC079921.2 in different grades; (e) MIAT,

AC099850.3, and AL512274.1 expression had a strong correlation

with OS rate.

Additionally, expression levels of the selected eight lncRNAs

were detected in four pairs of matched oral cancer and adjacent

normal tissues. In contrast to nearby normal tissues, oral cancer

tissues had greater relative expression levels of AC099850.3,

AC079921.2, AC090246.1, FIRRE, MIAT, LINsC01305, and

LINC00524, whereas, AL512274.1 had lower relative expression

levels. The results were in agreement with those of the model

analysis. In conclusion, the developed model may potentially serve

as a valuable tool to predict prognosis and explore ferroptosis-

related lncRNAs in oral cancer.
4.3 Development and corroboration of oral
cancer prognostic model based on
metabolism-related genes

Zhang et al., 2020 (62) developed a model based on

Metabolism-Related Genes (MRGs) to evaluate the prognostic

outcome of oral cancer.

Initially, the FPKM normalized gene expression profiles along

with clinical information of around 340 cancers and 32 non-cancer

samples were retrieved from TCGA oral cancer cohort (training

set), in addition to 97 oral cancer samples from the GSE41613 GEO

database (12) (validation set). Later, the samples from either source

that corresponded to less than 90 day follow-up period were

excluded, which resulted in the inclusion of 319 patients from the

training set and 94 from the validation set. The metabolic DEGs
FIGURE 7

Comprehensive bioinformatics analysis to spot the prognostic biomarkers of oral cancer.
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within cancer relative to non-cancer samples were screened by

differential analysis using the limma R package (28). The results

showcased a total of 317MRGs inclusive of 142 down-regulated and

175 up-regulated genes.

Later, univariate Cox regression analysis performed to construct

a prognostic signature revealed 12 differentially expressed MRGs

that were positively correlated with poor prognosis. These risk

genes were considered as possible molecular markers to predict

prognosis in oral cancer. On the other hand, Lasso-Cox regression

analysis established 11 prognostic gene models (ADA, ADK, ATIC,

GNPDA1, GOT1, HADHB, HPRT1, MGST1, POLD2, POLE3, and

SHMT2). In addition, the Lasso- Cox regression derived gene

correlation coefficient was used to analyze the risk score which

led to the classification of the samples as either high-risk or low-risk.

The patients with high risk had significantly lower survival rates

than those with low risk as evidenced by Kaplan Meier analysis.

Additionally, the risk scores’ sensitivity and accuracy in

predicting oral cancer prognosis at one, three, and five years were

established using the pROC package ROC function. Based on the

AUC values obtained from ROC analysis, the model involving 11

MRGs was found to have the potential to serve as a prognostic

instrument with good predictive sensitivity and accuracy.

Moreover, results from univariate and multivariate Cox

regression analyses on risk scores and clinical characteristics (age,

gender, stage, grade, T stage, and N stage) demonstrated that the

risk score could independently predict the prognosis. Further,

clinical correlation analysis on risk scores’ and clinicopathological

features confirmed the significant relationship between MRGs-

derived risk scores and clinical features inclusive of stage, grade,

and sex.

Later, the outcome of the training model was verified using the

validation set and was found to be similar for all the parameters

analyzed reinstating the accuracy of the prognosis forecasting

capability of the model. Following this, a nomogram was

constructed considering age, gender, TNM stage, and risk score,

adopting the R software RMS package to predict the survival status.

The results revealed that the nomogram well predicted the survival

status of oral cancer patients with accuracy as compared to other

indicators such as gender, grade, T stage, N stage, and risk score.

Further, to understand the gene function, enrichment analysis

was performed using GO and KEGG databases. The resultant gene

set enrichment data was analyzed by GSEA (29). GO analysis

revealed that MRGs were predominantly linked with the glycosyl

compound metabolic process, nucleoside metabolic process, purine

ribonucleoside monophosphate metabolic process, and purine

nucleoside monophosphate metabolic process, while KEGG

analysis showed that MRGs were mostly enriched in carbon

metabolism, drug metabolism-other enzymes, phenylalanine

metabolism, and purine metabolism amongst others. GSEA (29)

showed that cysteine and methionine metabolism, b-alanine
metabolism, pyrimidine metabolism, and purine metabolism were

highly associated with high-risk groups, whereas a-linolenic acid

metabolism was enriched in low-risk patients.

In the next step, the association between immune cells and risk

signature demonstrated that dendritic cells, immature dendritic

cells, T helper cell 17, and mast cells were highly enriched in the
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low-risk group, whereas T helper cell 2 was more enriched in the

high-risk group. This result confirms that low-risk patients have an

active immune function and better prognosis than high-

risk patients.

Additionally, ScRNA-Seq data of GSE172577 was processed by

the Seurat package followed by Principal Component Analysis to

identify the main cell clusters. The findings showed that 31,719

single cells were grouped into seven major cell types: B cell,

endotheliocyte cell, epithelial cells, fibroblasts, mast cell, myeloid

cell, and T cells using marker genes. On further exploration of the

expression, in the validation set, among the prognosis-related

MRGs in various cells of oral cancer, it was found that five genes

were predominantly expressed in epithelial cells and may be

restricted to tumor cells, while the six other MRGs were

expressed neither in tumor microenvironment nor in tumor cells

(Figure 8). Conclusively, this MRGs-based model has the potential

to predict the survival status of oral cancer patients and may assist

in clinical decision-making for personalizing treatment.
4.4 Omics to predict metastasis -
exploiting protein profiles to forecast oral
cancer metastasis at the lymph node level

Yu et al., 2019 (63) developed a novel prediction model to

forecast lymph node metastasis and assess the prognostic features in

terms of survival rate in patients with early-stage oral cancer. This

retrospective cohort study collated clinicopathological factors and

potential biomarkers to construct the proposed model. This study

was parsed into two stages: 1) the training stage and 2) the

validation stage.

At the outset, a total of 159 oral cancer patients were recruited

in the study, wherein, 58 patients (33 without lymph node

metastasis and 25 with lymph node metastasis) were assigned to

the training set and the rest of the patients were allocated to the

validation set (74 without lymph node metastasis and 27 with

lymph node metastasis).

Subsequently, the oral cancer tissues or oral cancer metastasis

cell lines from the above cases were subjected to mass spectrometry

to capture the proteins that (a) expressed different protein

abundances between the metastatic and non-metastatic oral

cancer conditions, (b) exhibited significant association with

clinical features, (c) displayed positive staining with oral cancer

tissues compiled in The Human Protein Atlas (58), and (d) were

highlighted in oral cancer metastasis-related literature. This in-

depth analysis revealed eight candidate biomarkers such as prolyl 4-

hydroxylase, alpha polypeptide II (P4HA2), caldesmon (CAD),

bone marrow stromal cell antigen 2 (BST2), integrin beta-6

(ITGB6), protein-glutamine gamma-glutamyl transferase 2

(TGM2), peroxiredoxin-4 (PRDX4), superoxide dismutase

(SOD2), and thrombospondin-1(THBS1) of relevance in oral

cancer metastasis. Further, the expression levels of the aforesaid

p r o t e i n b i oma rk e r s we r e ana l y z ed by pe r f o rm ing

immunohistochemistry. The resultant Histochemistry score (H-

score) revealed a significant elevation in the expression levels of

CAD, BST2, PRDX4, ITGB6, and SOD2 in oral cancer lymph node
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metastatic tissues compared to non-metastatic tissues. On the other

hand, the H-Score indicated that P4HA2, TGM2, and THBS1 did

not display a significant differential expression between the tissues.

The proteins with significantly elevated expression captured by H-

score were later subjected to binary logistic regression analysis. This

signified a substantial association of SOD2 and CAD with lymph

node metastasis evinced via the histopathological grade status and

their expression levels. Further, univariate and multivariate Cox

regression analysis performed on SOD2 and CAD demonstrated a

significant correlation of the survival status with histopathological

grade status, SOD2 expression, CAD expression, and lymph node

metastasis. A prediction model for life status constructed based on

the Kaplan Meier analysis correlated poor histopathological grade

status, high expression levels of SOD2 and CAD, and positive nodal

metastasis with poor OS and DFS.

The predictions of the training model were corroborated by

leveraging the patient data reserved for the validation stage. In

a c c o rd an c e w i th t h e p r ed i c t i on mode l , b a s e d on

immunohistochemistry and regression analysis, significantly

higher expression levels of SOD2 and CAD alongside poor

histopathological grade status were linked with oral cancer nodal

metastatic characteristics. Similarly, Kaplan Meier analysis of the

validation set confirmed the association of high expression levels of

SOD2 and CAD with poor OS and DFS. The constructed model

based on protein profile serves as a sensitive tool in capturing the

metastatic potential at an earlier stage in order to achieve a desirable

prognostic value.
5 Discussion

The rapidly evolving bioinformatics and ML tools have

unfurled the applications of omics to comprehend the underlying

mechanisms of a disease on a molecular basis (64). The associated

clinical intricacies are addressed by untangling the molecular

anomalies at the epigenomic, genomic, transcriptomic, proteomic,

and metabolomic levels (65). Disorders such as oral cancer, bearing
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strong genetic underpinnings especially derive benefits from an

amalgamation of the above strategies (66).

This review presents the applicability of omics strategies in

unraveling the key molecular mechanisms to confront the clinical

complexities pertinent to diagnosis, management, and prognosis

encountered in oral cancer (67). The diagnosis section provides a

landscape of methodologies to address the constraints regarding

early diagnosis, noninvasive biomarker identification, differential

diagnosis, tumor characterization, and classification. Biomarker

discovery is a crucial strategy to target these setbacks, particularly

to enable early diagnosis. However, a significant concern with

regard to the high dimensionality of enormous omics data lies in

selecting informative genes with substantial biological relevance to

clinical outcomes and to translate this big data into meaningful

patterns with key genes and pathways. This problem is addressed in

a study byWan et al., 2021 (7), which emphasizes the significance of

studying aberrant DNA methylation patterns and its effects on gene

expression and metabolic pathways in order to find biomarkers for

oral cancer. In this study, an integrated multi-omics strategy was

employed to explore DEGs and MeDEGs with potential

clinical applicability.

Biomarkers and their expression patterns can also be selected as

features to build diagnostic models using ML and optimize the

process. On this note, Yang et al., 2020 (16) explored the TCGA

database to select DEmRNAs and DElncRNAs of oral cancer and

further utilized ML to screen key lncRNAs with diagnostic and

prognostic potential. Based on the findings, an interaction network

was constructed and functional annotation was performed in the

co-expressed DEmRNAs of lncRNAs. By combining the gene

expression profile and clinical data, the study identified clinically

relevant biomarkers, establishing a biological basis for further

research into oral cancer.

Furthermore, salivaomics analysis which utilizes saliva as a

source of biochemical data is a lucrative approach that can

overcome the drawbacks associated with solid biopsy sampling

such as invasiveness, difficulty in sample collection, and storage

(68). The study by Adeoye et al., 2022 (18) presents a
FIGURE 8

Development of oral cancer prognostic model based on metabolism-related genes.
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comprehensive framework for carrying out the salivary methylome

biomarker-based oral cancer diagnosis using genome-wide

techniques with ML assistance. Tumor characterization is an

essential step in categorizing cancer, and it can aid in identifying

molecular signatures that can support early detection, tumor

staging, differential diagnosis, and individualized treatment (69).

The work by Shafana et al., 2021 (20) provides an approach to

classify oral cancer into five molecular subclasses that could

potentially assist in early diagnosis of oral cancer as well as

individualize drug therapy. Since the co-expression networks

demonstrated that the majority of the genes are differentially

expressed at an early stage rather than a later one, this approach

is very promising particularly in the context of early diagnosis.

Additionally, omics is explored through bioinformatics techniques

to capture the carcinogenic propensity of other oral disorders

sharing similarities with oral cancer. In this regard, de Lanna

et al., 2022 (26) studied the commonalities in the gene signatures

of OLP and oral cancer to elucidate the malignant potential of the

former and identified potential therapeutic targets for the same.

In the prognosis section, an emphasis is placed on

reconnoitering biomarkers underlying the progression of the

disease and collating them to develop models that predict survival

outcomes. By using a bioinformatics approach, Reyimu et al., 2021

(56) performed prognostic studies in oral cancer to identify

prognostic hub genes with good reliability and sensitivity. This

study gives scope for future research to confirm these hub genes in

prospective clinical trials and understand the role of these indicators

in contributing to oral carcinogenesis. Furthermore, prognostic

models developed to predict metastasis at an early stage can be

utilized to derive clinically pre-emptive decisions and initiate

prompt intervention (70). Early-stage prognostic prediction is

especially significant as it can aid in selecting the most suitable

treatment for patients with oral cancer, thereby improving their

survival. In order to address oral cancer metastasis and treatment

related concerns, it is the need of the hour to mine prognosis-related

molecular markers that reflect the biological characteristics of the

tumor. Numerous databases, such as TCGA, GEPIA, GEO, KEGG,

and DAVID among others, have made extensive gene expression

data and associated clinical data available to researchers. Decoding

these databases using various bioinformatics strategies can uncover

pathways to arrive at treatment plans, develop new prognostic

models with high precision from the standpoint of tumor cell

biological behavior (62).

Finally, with respect to oral cancer management, the area of

interest majorly lies in utilizing omics strategies to identify novel

therapeutic targets and carry out target-guided drug discovery (71).

Drug repurposing is one of the breakthrough concepts used to

discern new therapeutic options for oral cancer. This concept is

delineated in the study by Siam et al., 2021 (41), where they

evaluated the efficacy of two CYP inhibitors to be repurposed as

an Akt pathway inhibitor in the treatment of oral cancer. The study

generated a precise and definite view of the efficiency of the
Frontiers in Oncology 16
repurposable drugs by examining their interactions with related

disease pathways using diverse in silico methodologies. Another

challenging aspect of oral cancer therapy is drug resistance and

associated therapeutic failure, the review also sheds some light on

the application of omics strategies to overcome the same (72). On

these lines, proteomic and phosphoproteomic data were combined

in the study by George et al., 2022 (49) to identify kinases with

druggable potential in chemotherapy-resistant tongue cancer.

Further, in advanced stages of oral cancer, surgical intervention

becomes the mainstay of clinical management. This review

highlighted an intriguing application of omics in recognizing

biomarkers that complement surgery in terms of demarcating the

surgical margins from normal tissues to assist precision surgery

techniques (73). In conclusion, the review has exemplified the

essential role of various technology-driven omics strategies to

reconnoiter solutions to clinical constraints related to oral cancer

diagnosis, management, and prognosis.
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ADMET Absorption, Distribution, Metabolism, Elimination, Toxicity

AUC Area Under Curve

BST2 Bone Marrow Stromal Cell Antigen 2

CAD Caldesmon

DAVID Database for Annotation, Visualization and Integrated Discovery

DCA Decision Curve Analysis

DEG Differentially Expressed Gene

DElncRNA Differentially Expressed long non coding RNA

DEmRNA Differentially Expressed mRNA

DFS Disease Free Survival

DMC Differentially Methylated CpG

DMG Differentially Methylated Gene

DMR Differentially Methylated Region

ECM Extracellular Matrix

ExtraTrees Extremely Randomized Trees

GEPIA Gene Expression Profiling Interactive Analysis

GO Gene Ontology

GSEA Gene Set Enrichment Analysis

HNSCC Head and Neck Squamous Cell Carcinoma

H Score Histochemistry score

ITGB6 Integrin Beta 6

KEGG Kyoto Encyclopedia of Genes and Genomes

LASSO Least Absolute Shrinkage and Selection Operator

LC MS/MS Liquid Chromatography-Tandem Mass Spectrometry

lncRNA long non-coding RNA

MAPK1 Mitogen-activated protein kinase 1

MeDEG Methylation-regulated and Differentially Expressed Gene

MRG Metabolism-related Gene

NBI Narrow Band Imaging

NCBI GEO - National Center for Biotechnology Information - Gene
Expression Omnibus

OLP Oral Lichen Planus

OPMD Oral Potentially Malignant Disorders

OS Overall Survival

P4HA2 Alpha Polypeptide II

PPI Protein-Protein Interaction

PRDX4 Peroxiredoxin-4

ROC Receiver Operating Characteristic

RRBS Reduced Representation Bisulfite Sequencing
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SOD2 Superoxide Dismutase-2

STRING Search Tool for the Retrieval of Interacting Genes

SVM Support Vector Machine

TCGA The Cancer Genome Atlas

TGM2 Protein-glutamine gamma-glutamyl transferase 2

THBS1 Thrombospondin-1
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