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Objective: The purpose of this study was to evaluate the diagnostic performance

of computed tomography (CT) scan–based radiomics in prediction of lymph

node metastasis (LNM) in gastric cancer (GC) patients.

Methods: PubMed, Embase, Web of Science, and Cochrane Library databases

were searched for original studies published until 10 November 2022, and the

studies satisfying the inclusion criteria were included. Characteristics of included

studies and radiomics approach and data for constructing 2 × 2 tables were

extracted. The radiomics quality score (RQS) and Quality Assessment of

Diagnostic Accuracy Studies (QUADAS-2) were utilized for the quality

assessment of included studies. Overall sensitivity, specificity, diagnostic odds

ratio (DOR), and area under the curve (AUC) were calculated to assess diagnostic

accuracy. The subgroup analysis and Spearman’s correlation coefficient was

done for exploration of heterogeneity sources.

Results: Fifteen studies with 7,010 GC patients were included. We conducted

analyses on both radiomics signature and combined (based on signature and

clinical features) models. The pooled sensitivity, specificity, DOR, and AUC of

radiomics models compared to combinedmodels were 0.75 (95% CI, 0.67–0.82)

versus 0.81 (95% CI, 0.75–0.86), 0.80 (95% CI, 0.73–0.86) versus 0.85 (95% CI,

0.79–0.89), 13 (95% CI, 7–23) versus 23 (95% CI, 13–42), and 0.85 (95% CI, 0.81–

0.86) versus 0.90 (95% CI, 0.87–0.92), respectively. The meta-analysis indicated

a significant heterogeneity among studies. The subgroup analysis revealed that

arterial phase CT scan, tumoral and nodal regions of interest (ROIs), automatic

segmentation, and two-dimensional (2D) ROI could improve diagnostic

accuracy compared to venous phase CT scan, tumoral-only ROI, manual

segmentation, and 3D ROI, respectively. Overall, the quality of studies was

quite acceptable based on both QUADAS-2 and RQS tools.
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Conclusion: CT scan–based radiomics approach has a promising potential for

the prediction of LNM in GC patients preoperatively as a non-invasive diagnostic

tool. Methodological heterogeneity is the main limitation of the included studies.

Systematic review registration: https://www.crd.york.ac.uk/Prospero/display_

record.php?RecordID=287676, identifier CRD42022287676.
KEYWORDS

radiomics, machine learning, artificial intelligence, lymph node metastasis,
gastric cancer
1 Introduction

Despite advancements in identification and treatment, gastric

cancer (GC) remains a significant global health challenge, ranking

as the fifth most diagnosed cancer globally and the fourth leading

cause of cancer-related mortality, with an estimated 769,000 deaths

reported in 2020 alone (1). The selection of the optimal treatment

strategy for GC is largely based on the tumor-nodal-metastasis

(TNM) staging system, which assesses the extent of tumor invasion

through the different layers of the stomach (T), lymph node

involvement (N), and distant metastasis (M). This staging system

is important in determining the most appropriate treatment

approach, such as surgery, chemotherapy, and/or radiation

therapy, and has been shown to be a reliable predictor of patient

outcomes (2). Accurate determination of lymph node metastasis

(LNM) status is critical for optimal management of GC. As the

main component of TNM staging, LNM status is used to select the

appropriate preoperative treatment strategy and is also an

important prognostic factor for patient survival and tumor

recurrence after surgical resection. Thus, it is essential to

accurately determine LNM status (3, 4). Current traditional

imaging methods for assessing nodal status are based on lymph

node (LN) shape, enhancement, and size, which can be normal or

enlarged. Most patients may be misclassified for nodal staging in the

TNM system. To date, computed tomography (CT) is the most

common imaging modality, which is widely used for preoperative

estimation of nodal status. However, the reported overall accuracy

was low and unsatisfactory. Therefore, it is necessary to establish

more precise methods to supplement the current methods of

assessing LN status (5–7).

Recently, radiomics has attracted more attention as the

methodology of translating medical images into reproducible and

quantitative data for clinical decision support. Radiomics extracts

quantitative features, so-called radiomics features, from diagnostic

images by using mathematical machine learning or deep learning

algorithms to uncover the hidden tumor characteristic, which is not

seen by the naked eye and helps predict the considered outcome, for

example, LNM prediction. In detail, radiomics features are

extracted from the region of interest (ROI) or volume of interest

(VOI). When two-dimensional (2D) ROI or (3D) VOI is delineated
02
by a radiologist, software, or both (image segmentation), the

different types of radiomics features (e.g., histogram based and

texture based) are extracted by mathematical methods. Maybe

hundreds of radiomics features are extracted; however, most of

them are redundant and non-informative. Therefore, they have to

be transformed or removed (dimensionality reduction), and then

the most informative features should be selected (feature selection).

Finally, a predictive model is established based on the selected

features (model construction) to predict the outcome (e.g., LNM

prediction) (8, 9). Hence, radiomics can capture a lot of valuable

invisible information non-invasively and more precisely.

In this meta-analysis, we have collected evidence from previous

studies to further investigate the diagnostic accuracy of CT-based

radiomics for predicting LNM metastasis status in GC patients in

order to help applying the radiomics approach in clinical practice.
2 Materials and methods

This systematic review and meta-analysis were conducted

according to the recommendations of the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines (Supplementary Material) (10). The study protocol was

registered on the International Prospective Register of Systematic

R e v i ew s (PROSPERO) p r o s p e c t i v e l y ( r e g i s t r a t i o n

no. CRD42022287676).
2.1 Literature search

A computerized search of PubMed, Embase, Web of Science,

and Cochrane Library databases was performed without a

limitation of a start date for studies published until 16 August

2022. We searched databases for the second time on 10 November

2022 to discover newly published studies. All related search terms

and synonyms were considered in the search strategy as follows:

[(GC) OR (gastric tumor) OR (stomach cancer) OR (stomach

tumor)] AND [(CT) OR (computed tomography)] AND [(lymph

node) OR (lymphatic) OR (lymphovascular)] AND [(radiomic) OR

(radiomics) OR (texture)]. We used Mendeley software, version
frontiersin.org
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1.19.8, and Rayyan (11) for managing references. Two observers

(Z.H. and P.T.) screened references by title and abstract to

determine eligibility. Then, the full text based on inclusion and

exclusion criteria was reviewed. Also, included study references

were manually searched to find additional eligible studies. We

restricted the search to the studies published in English.

Uncerta int ies were resolved by consult ing the third

observer (L.A.M.).
2.2 Inclusion criteria

We selected studies satisfying the following PICO criteria: (1)

population: patients diagnosed with GC; (2) index test: index test

used CT scan for detection of LNM; (3) comparator test: for

comparison, histopathologic results were considered as the

reference standard; and (4) test accuracy or outcome: studies

provided the area under the curve (AUC), sensitivity, and

specificity data of CT-based radiomics or the corresponding data

for a 2 × 2 contingency table construction.
2.3 Exclusion criteria

Exclusion criteria were set as follows: (1) studies in the form of

conference abstracts, review articles, case reports, editorial,

comments, letters, and animal studies; (2) studies not related to

the CT scan–based radiomic prediction of LNM or GC; (3) studies

in languages other than English; and (4) unable to construct 2 × 2

contingency table.
2.4 Data extraction

The following data were extracted, regarding patient, study, and

CT-based radiomics characteristics using a standardized table: (1)

patient characteristics: patients sample size, training, and testing

group population sample size, patients sex numbers, mean age, and

numbers of recruitment center number; (2) study characteristics:

study origin (first author and country), publication year, study

design, CT scan data, reference standard, and positive LNM ratio;

(3) radiomics characteristics: image segmentation information,

model features selection, and extraction methods, model or

nomogram construction methods.
2.5 Quality assessment

The methodological quality of included studies was assessed

using the Quality Assessment of Diagnostic Accuracy Studies 2

(QUADAS-2) (12) tool and radiomics quality score (RQS) (13).

Two independent observers (Z.H. and P.T.) conducted data

extraction and quality assessment. Any disagreement was resolved

by reaching a consensus.
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2.6 Statistical analysis

This meta-analysis was performed on MIDAS module in

STATA 14.0 (StataCorp, Texas, United States). We quantified

predictive accuracy by calculating pooled sensitivity, specificity,

diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and

negative likelihood ratio (NLR) with 95% confidence interval (CI).

The summary receiver operating characteristic curve (SROC) was

created, and AUCs were used to summarize diagnostic accuracy. I2

values were calculated to assess statistical heterogeneity among the

included studies. I2 values of 0%–25%, 25%–50%, 50%–75%, and >

75% represent very low, low, medium, and high-statistical

heterogeneity, respectively. Coupled forest plots were created for

showing pooled sensitivity and specificity. Studies and effect sizes

were pooled using a random-effect model, indicating that the

estimation of the distribution of true effects between studies

considers heterogeneity. The presence of threshold effects was

investigated in MetaDisc 1.4 by computing the Spearman’s

correlation coefficient (r) between the logit (true positive rate)

and logit (false positive rate). Subgroup analysis was performed to

investigate the heterogeneity causes. The following covariates were

selected to assess which factor causes heterogeneity: top left method

used or not, segmentation dimension, arterial or venous phase of

CT scan, tumoral or nodal segmentation, and automatic or manual

segmentation. Furthermore, to assess the impact of included studies

on the overall estimate, a sensitivity analysis was performed by

eliminating each study. Deeks’ funnel plot was created to examine

publication bias. Some studies did not report sensitivity and

specificity to construct 2 × 2 table construction. Thus, we used

the receiver operating curve (ROC) to calculate sensitivity and

specificity using the top left method (14).
3 Results

3.1 Literature search

According to the search strategy, 123 citations were identified

from databases, of which 58 were duplicates. After screening

records by title and abstract, 23 were excluded because they did

not meet the inclusion criteria. After a full-text review, 27 were

omitted, leaving 13 articles for meta-analysis. A new literature

search was repeated, and two eligible articles based on inclusion

criteria were included. Finally, 15 eligible articles were selected for

final meta-analysis. The detailed literature search flowchart is

depicted in Figure 1.
3.2 Characteristics of included studies

Characteristics of the included studies and predictive models

are shown in Tables 1, 2. We enrolled 15 studies with a total number

of 7,010 patients. Studies were published from July 2019 to October

2022, of which 46% (seven of 15) were published in 2021 and 2022.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1185663
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


HajiEsmailPoor et al. 10.3389/fonc.2023.1185663
TABLE 1 General characteristics of the included studies.

Study No. of patients Age Male vs.
female

Recruitment
center no.

CT scan
phase

Positive LNM ratio

L. Meng 2020
(15)

Total: 539
Training: 377
Internal testing: 162

58.9 vs. 59.2 372 vs. 167 Four Venous Total: 122/539 (22.6%)
Training: 91/377 (24.1%)
Internal testing: 31/162
(19.1%)

Y. Wang 2019
(16)

Total: 247
Training: 197
Internal testing: 50

60.7 167 vs. 80 One Arterial Total: 183/247 (74.0%)
Training: 146/197 (74.1%)
Internal testing: 37/50
(74.0%)

X. Gao A 2020
(17)

Total: 463
Training: 308
Internal testing: 155

46% (213/463) ≥
60

330 vs. 133 One Venous Total: 83/463 (17.9%)
Training: 53/308 (17.2%)
Internal testing: 30/155
(19.3%)

L. Wang 2021
(18)

Total: 515
Training: 340
Internal testing: 175

58% (303/515) ≥
60

398 vs. 117 One Venous Total: 64/515 (12.4%)
Training: 42/340 (12.3%)
Internal testing: 22/175
(12.5%)

S. Liu 2021 (19) Total: 163
Training: 122
Internal testing: 41

64 111 vs. 52 One Arterial Total: 113/163 (69.3%)
Training: 85/122 (69.6%)
Internal testing: 28/41
(68.2%)

J. Li, 2020 (20) Total: 204
Training: 136
Internal testing: 68

58 157 vs. 47 One Arterial +
Venous

Total: 122/204 (59.8%)
Training: 84/136 (61.7%)
Internal testing: 38/68
(55.8%)

(Continued)
F
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FIGURE 1

Study selection flowchart.
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All study populations were from China and designed

retrospectively. Only one study (25) used a prospective testing set

(n = 112). One study (20) included patients with gastric

adenocarcinoma, and the remaining studies included patients

with GC. Majority of patients were male (4,935 vs. 2,075). Seven

thousand ten patients were divided into a training set (n = 4136)

and a testing set (n = 2874). Three studies (25, 26, 28) also used an

external testing set. Eleven studies recruited patients from one

center, three studies from two centers (25, 26, 28) and one study

(15) from four centers. Pathological confirmation of LNM was the
Frontiers in Oncology 05
reference standard in all studies. Most of the studies (9/15) used a

venous phase CT scan, and five used an arterial phase for lesion

segmentation. One study (20) used both venous and arterial phases.

Six studies used PyRadiomics for feature extraction from images.

Open-source ITK-SNAP was the most commonly used tool for

lesion segmentation (nine of 15). Twelve studies performed

segmentation manually, and the other three studies performed it

automatically. Most of the studies (nine of 15) delineated 2D

regions of interest, and the remaining performed 3D

segmentation (six of 15). Extracted features ranged from 35 to
TABLE 1 Continued

Study No. of patients Age Male vs.
female

Recruitment
center no.

CT scan
phase

Positive LNM ratio

X. Wang 2021
(21)

Total: 159
Training: 80
Internal testing: 79

61.7 113 vs. 46 One Venous Total: 39/159 (24.5%)
Training: 22/80 (27.5%)
Internal testing: 17/79
(21.5%)

J. Yang 2020
(22)

Total: 170
Training: 118
Internal testing: 52

61.61 112 vs. 58 One Arterial Total: 113/170 (66.4%)
Training: 79/118 (66.9%)
Internal testing: 34/52
(65.3%)

Q. Feng 2019
(23)

Total: 490
Training +
Validation: 326
Internal testing: 164

61.8 363 vs. 127 One Venous Total: 297/490 (60.6%)
Training + valid: 197/326
(60.4%)
Internal testing: 100/164
(60.9%)

J. Yang 2022
(24)

Total: 170
Training: 118
Internal testing: 52

61.6 (M) vs. 58.7
(F)

112 vs. 58 One Arterial Total: 113/170 (66.4%)
Training: 79/118 (66.9%)
Internal testing: 34/52
(65.3%)

Z. Sun 2021
(25)

Total: 1618
Training: 531
External testing: 975
Prospective testing:
112

42% (680/1618)
≥ 60

1120 vs. 498 Two Venous Total: 978/1618 (60.4%)
Training: 336/531 (63.2%)
External testing: 579/975
(59.3%)
Prospective testing: 63/112
(56.2%)

X. Gao B 2020
(26)

Total: 768
Training: 486
Internal testing: 240
External testing: 42

49% (383/768) ≥
60

547 vs. 221 Two Venous Total: 450/768 (58.5%)
Training: 281/486 (57.8%)
Internal testing: 134/240
(55.8%)
External testing: 35/42
(53.3%)

X. Guan 2022
(27)

Total: 347
Training: 242
Internal testing: 105

64.34 252 vs. 95 One Arterial Total: 212/347 (61.0%)
Training: 150/242 (61.9%)
Internal testing: 62/105
(59.0%)

Q. Zeng 2022
(28)

Total: 634
Training: 388
Internal testing: 167
External testing: 79

58.6 vs. 57.4 vs.
58.0

392 vs. 242 Two Venous Total: 214/634 (33.7%)
Training: 148/388 (38.1%)
Internal testing: 49/167
(29.3%)
External testing: 17/79
(21.5%)

A. Zhang 2022
(29)

Total: 523
Training: 367
Internal testing: 156

59.6 389 vs. 134 One Venous Total: 356/523 (68.0%)
Training: 247/367 (67.3%)
Internal testing: 109/156
(69.8%)
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TABLE 2 General characteristics of predictive models in the included studies.

Study Segmentation ROI ROI
software

No. of
feature
after/
before

reduction

Feature
extraction
software

Imaging
features

Feature
reduction
algorithm

ICC
evaluation

Modeling
algorithm

Clinical factors

L.
Meng
2020
(15)

Automatic 2D NA 7/867 NA Shape and size
based, first
order, texture
based (GLCM,
GLRLM,
GLSZM,
GLDM, and
NGTDM)

mRMR +
LASSO

Yes (>
0.75)

LR No

Y.
Wang
2019
(16)

Semi-automatic 3D Radiomics 150/844 NA Shape based,
first order,
texture based
(GLCM and
GLRLM), and
wavelet

NA Yes (>
0.80)

RF CT-reported LN
status

X. Gao
A
2020
(17)

Manual 3D 3D slicer 6/859 PyRadiomics First order,
shape based,
texture based,
and wavelet

LASSO Yes (≥
0.85)

LASSO CT-reported LN
status

L.
Wang
2021
(18)

Manual 2D MaZda 8/352 MaZda Geometric,
texture based
(GLCM,
GLRLM, AR,
and absolute
gradient), and
wavelet

LASSO +
Ranker +
Entropy

Yes (>
0.75)

LASSO CT-reported LN
status

S. Liu
2021
(19)

Manual 2D Image
analyzer

11/35 Image
Analyzer

First order and
second order
(GLCM)

LASSO No SVM Differentiation
degree, tumor
range, infiltrative
growth, adipose
tissue stains,
morphologic type,
lymphadenectasis,
and CA242

J. Li,
2020
(20)

Manual 2D GSI
viewer +
ITK-
SNAP

2/527 ITK-SNAP Shape based,
histogram, and
texture based
(GLCM and
GLRLM)

DCNNs Yes (>
0.75)

ANN +
SVM

CT-reported LN
status

X.
Wang
2021
(21)

Manual 2D ITK-
SNAP

4/273 MATLAB Shape and size
based, gray
level, texture
based, and
wavelet

mRMR No LR CT-reported LN
status

J.
Yang
2020
(22)

Manual 3D ITK-
SNAP

20/2394 PyRadiomics Shape based,
first order, and
texture based

SFFS No LR No

Q.
Feng
2019
(23)

Manual 2D ITK-
SNAP

13/93 Python First order,
shape based,
and texture
based (GLRLM,
GLCM, and
GLSZM)

SVM No SVM No

J.
Yang
2022
(24)

Manual 3D ITK-
SNAP

∼80/2394 PyRadiomics Shape based,
first order, and
texture based
(GLCM,
GLRLM,
GLSZM,

FSBudget +
Pearson
correlation

No UMvPLS No

(Continued)
F
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2,394. Various methods were used in studies for image feature

reduction or selection, and some used more than one method. The

most often used algorithm was the Least Absolute Shrinkage and

Selection Operator (LASSO) regression. Three studies (20, 27, 28)

used a deep learning algorithm for feature extraction. The interclass

consistency coefficient is a mathematical method for ranking the

most robust features for further image analysis (30). Ten studies

utilized this method for feature selection with a specific threshold.

Four of them set the threshold at 0.75. Different types of features

were extracted from CT scan images. Shape- and size-based (e.g.,

dimension), first-order (e.g., mean, maximum, and standard

deviation), second-order (e.g., gray-level features), and wavelet

features are the most common extracted features from images.

Support vector machine (SVM) algorithm was used in five studies,

logistic regression (LR) in four studies, LASSO in three studies, and
Frontiers in Oncology 07
random forest (RF) in two studies. One study used unsupervised

multi-view partial least squares (UMvPLS) algorithm for the

development of prediction models. Some studies incorporated

radiomics features with clinical variables in order to establish a

combined model. CT-reported LN status was the most common

clinical variable used for establishing combined model.
3.3 Quality assessment

3.3.1 RQS
The average RQS score of the included studies was 14.8,

accounting for 41% of the total points. The highest RQS score

was 24 points (66%), seen in only one study (25), which used a

prospective dataset for model evaluation. Almost half of the studies
TABLE 2 Continued

Study Segmentation ROI ROI
software

No. of
feature
after/
before

reduction

Feature
extraction
software

Imaging
features

Feature
reduction
algorithm

ICC
evaluation

Modeling
algorithm

Clinical factors

NGTDM, and
GLDM)

Z. Sun
2021
(25)

Manual 2D ITK-
SNAP

4–9/269 MATLAB First order,
shape based,
and texture
based (GLCM,
GLRLM, and
NGTDM)

LASSO +
Pearson
correlation

Yes LASSO Tumor location,
size, differentiation,
CEA, CA199, cT
stage, and cN stage

X. Gao
B 2020
(26)

Manual 3D 3D Slicer 7/859 PyRadiomics First order,
shape based,
texture based,
and wavelet

LASSO Yes (≥ 0.9) LR CA72-4, pT stage,
and CT-reported
LN status

X.
Guan
2022
(27)

Semi-automatic 2D ITK-
SNAP

72/- PyRadiomics NN features,
first order,
shape based,
GLCM,
GLSZM,
GLRLM,
NGTDM, and
GLDM

DL
ResNet50

Yes (≥ 0.8) RF DL features score
and CT-reported
LN status

Q.
Zeng
2022
(28)

Manual 3D ITK-
SNAP

101/107 PyRadiomics Shape feature,
first order, and
texture based

LASSO +
Spearman’s
correlation
+ CNN

Yes SVM Yes

A.
Zhang
2022
(29)

Manual 2D ITK-
SNAP

48/851 PyRadiomics Shape feature,
histogram
statistics, and
second order
(GLDM,
GLCM,
GLRLM,
GLSZM, and
NGTDM)

LASSO Yes (>
0.75)

SVM No
AR, autoregressive model; CNN, convolutional neural networks; CT, computed tomography; DCNNs, deep convolutional neural networks; GLCM, gray level co-occurrence matrix; GLDM, gray-
level dependence matrix; GLRLM, gray-level run length matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; ICC, interclass consistency coefficient; LASSO, Least
Absolute Shrinkage and Selection Operator; LN, lymph node; LR, logistic regression; mRMR, minimum redundancy maximum relevance; NA, not available; NGTDM, neighboring gray tone
difference matrix; NN, neural networks; RF, random forest; ROI, region of interest; SFFS, sequential forward floating selection; SVM, support vector machine; UMvPLS, unsupervised multi-view
partial least squares; 2D, two-dimensional; 3D, three-dimensional.
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(seven of 15) were credited between 11 and 14 points,

corresponding to 30%–40% of total points. These items were not

performed by studies and therefore were assigned 0 points: imaging

at multiple time points, cost-effectiveness analysis, and open science

and data. Details are shown in Table 3.

3.3.2 QUADAS-2
Quality assessment according to QUADAS-2 is illustrated in

Figure 2. Generally, quality assessment was acceptable. There was

no high risk of bias or high applicability concern. The reason for the

unclear risk of bias in each of the domains included: reporting

consecutive or random sampling of patients in patients’ selection

domain, reporting the index test interpretation without knowledge

of reference standard result in the index test domain, and reporting

the appropriate interval between index and reference standard test

in flow and timing domain.
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4 Data analysis

Methodologically, included studies utilized extracted CT scan

features in order to establish radiomics models by using machine

learning or deep learning mathematical algorithms. Also, a combined

model incorporating radiomics features and clinical variables (e.g.,

laboratory tests and CT reported LN status) was constructed.

Accordingly, we have split data analysis based on radiomics models

and combined models and analyzed data separately.

In addition, included studies enrolled patients and then

integrated them as a main dataset. Then, they divided the main

dataset into a training set and testing set (internal testing/validation

set) by a specific proportion, randomly. Training set is used for

discovering and learning hidden mathematical algorithms in the

dataset in order to predict the expected outcome. Finally, a

prediction model is established based on those algorithms whose
TABLE 3 Radiomics quality score and average scores of studies.

Criteria Possible points Average
score

1 Image protocol quality +1 if protocols are well documented
+1 if public protocol is used

0.93

2 Multiple segmentations +1 if multiple segmentations are carried out (i.e., different physicians/algorithms/software) 1

3 Phantom study +1 if phantom study is used on all scanners 0.53

4 Multiple time points +1 if images are collected at additional time points 0

5 Feature reduction or adjustment for
multiple testing

−3 if neither measure is implemented
+3 if either measure is implemented

3

6 Multivariable analysis with non-
radiomics features

+1 if multivariable analysis with non-radiomics features is carried out 0.73

7 Biological correlates +1 if phenotypic differences are demonstrated 0.2

8 Cutoff analyses +1 if risk groups are determined by either the median, a previously published cutoff or if a
continuous risk variable is reported

0.06

9 Discrimination statistics +1 if a discrimination statistic and its statistical significance is reported (i.e., ROC curve, and AUC)
+1 if a resampling method technique is also applied (i.e., bootstrapping, cross-validation)

1.73

10 Calibration statistics +1 if a calibration statistic and its statistical significance is reported (i.e. calibration-in-the-large/
slope)
+1 if a resampling method technique is also applied (i.e., bootstrapping, cross-validation)

0.6

11 Prospective +7 for prospective validation of a radiomics signature in an appropriate trial 0.46

12 Validation −5 if validation is missing
+2 if validation is based on a dataset from the same institute
+3 if validation is based on a dataset from another institute
+4 if validation is based on two datasets from two institutes
+4 if study validates a previously published signature
+5 of validation is based in three or more datasets from distinct institutes

2.33

13 Gold standard +2 if comparison to the current gold standard is carried out 2

14 Potential clinical utility +2 if a potential application in a clinical setting is reported 1.2

15 Cost-effectiveness analysis +1 if the cost-effectiveness of the clinical application is reported 0

16 Open science and data +1 if scans are open source
+1 if region of interest (ROI) segmentations are open source
+1 if code is open source
+1 if representative segmentations and features are open source

0
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predictive accuracy is evaluated by an internal testing set. In order

to generalize trained model, some studies utilize other datasets in

addition to the main dataset and use it as a testing set (external

testing set) and the predictive accuracy of the trained model is

evaluated again. Therefore, in studies with various testing sets, we

selected two testing sets (or cohorts) and considered them as

separate studies for evaluation of predictive accuracy.
4.1 Radiomics model analysis

4.1.1 Diagnostic accuracy
In radiomics model analysis, we used 12 studies with 14 cohorts.

For 14 cohorts included in radiomics model analysis, the mean

value and 95% CIs of pooled sensitivity, specificity, PLR, negative

likelihood ratio and DOR for radiomics models’ predictive accuracy

for LNM were 0.75 [0.67, 0.82], 0.80 [0.73, 0.86], 3.9 [2.7, 5.6], 0.31

[0.23, 0.42], and 13 [7, 23], respectively. The radiomics models’

analysis showed an overall AUC of 0.85 [0.81, 0.86]. Forest plot of

pooled sensitivity and specificity of radiomics models is shown in

Figure 3, and SROC curve is illustrated in Figure 4.

4.1.2 Heterogeneity analysis
The I2 test showed that sensitivity (I2 = 79.23%) and specificity

(I2 = 86.08%) both have a high heterogeneity. For threshold analysis,
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the Spearman’s correlation coefficient was measured as 0.046 with a

p-value of 0.875, indicating the absence of a threshold effect.

4.1.3 Subgroup analysis
Subgroup analysis was done in order to explore the heterogeneity

causes (provided in Table 4) by comparing various study variables.

Studies whose sensitivity and specificity were extracted by top left

method (n = 6) compared to studies that did not (n = 8) had a higher

sensitivity (0.78 vs. 0.73, p = 0.21) and specificity (0.82 vs. 0.79, p = 0.14)

with a joint analysis p-value of 0.65. Studies that used 3D VOI (n = 8)

compared to studies with a 2D ROI (n = 6) had a higher sensitivity (0.78

vs. 0.71, p = 0.27) but a lower specificity (0.74 vs. 0.85, p = 0.00) with a

joint analysis p-value of 0.15. Arterial phase CT scan (n = 4) has a higher

sensitivity (0.84 vs. 0.71, p = 0.65) and specificity (0.91 vs. 0.77, p = 0.90)

than venous phase (n =10) with a joint analysis p-value of 0.01. Studies

(n =3) with tumor and LNs as the ROI have a higher sensitivity (0.81 vs.

0.74, p = 0.06) and specificity (0.86 vs. 0.79, p = 0.98) than studies with

only the tumoral ROI (n =11) with a joint analysis p-value of 0.49.

Automatic drawn (n = 3) regions of interest have a higher sensitivity

(0.77 vs. 0.75, p = 0.31) and specificity (0.91 vs. 0.76, p = 0.98) compared

to manual segmentation (n = 11) with joint analysis p-value of 0.31.

4.1.4 Publication bias
No publication bias was found in radiomics model studies based

on deeks funnel plot (p = 0.23) (Figure 5).
FIGURE 2

Risk of bias (left) and applicability concerns (right) of included studies using QUADAS-2 checklist.
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4.2 Combined model analysis

4.2.1 Diagnostic accuracy
In combined model analysis, we used 10 studies with 12

cohorts. For 12 cohorts included in radiomics nomogram

analysis, the mean value and 95% CIs of pooled sensitivity,

specificity, PLR, negative likelihood ratio and DOR for

radiomics nomogram predictive accuracy for LNM were 0.81

[0.75, 0.86], 0.85 [0.79,0.89], 5.2 [3.7, 7.4], 0.23 [0.16, 0.31], and

23 [13,42] respectively. The radiomics models’ analysis showed an
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overall AUC of 0.90 [0.87, 0.92]. Forest plot of pooled sensitivity

and specificity of combined models is shown in Figure 6, and the

SROC curve is illustrated in Figure 7.
4.2.2 Heterogeneity analysis
The I2 test showed that sensitivity (I2 = 78.96%) and specificity

(I2 = 83.32%) both have a high heterogeneity. For threshold analysis,

the Spearman’s correlation coefficient was measured as −0.081 with

a p-value of 0.803, indicating the absence of a threshold effect.
FIGURE 4

SROC of radiomics models.
FIGURE 3

Forest plot of radiomics models.
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4.2.3 Subgroup analysis
Subgroup analysis was done in order to explore the

heterogeneity causes (provided in Table 5) by comparing various

study variables. Studies whose sensitivity and specificity were

extracted by top left method (n = 5) compared to studies which

did not (n = 7) had a higher sensitivity (0.83 vs. 0.79, p = 0.05) and

lower specificity (0.83 vs. 0.86, p = 0.00) with a joint analysis p-value

of 0.43. Studies that used 2D VOI (n = 7) compared to studies with

3D ROI (n = 5) had a higher sensitivity (0.84 vs. 0.75, p = 0.00) and

specificity (0.85 vs. 0.84, p = 0.00) with a joint analysis p value of

0.20. Arterial phase CT scan (n = 3) have a higher sensitivity (0.86

vs. 0.80, p = 0.20) and specificity (0.94 vs. 0.83, p = 0.91) than

venous phase (n = 8) with a joint analysis p value of 0.14. Studies

(n = 1) with tumor and LNs as the ROI have a higher sensitivity

(0.89 vs. 0.80, p = 0.36) and specificity (0.91 vs. 0.84, p = 0.07) than

studies with only tumoral ROI (n =11), with a joint analysis p-value

of 0.56. Automatic drawn (n = 2) ROI has a higher sensitivity (0.85
Frontiers in Oncology 11
vs. 0.80, p = 0.28) and specificity (0.96 vs. 0.83, p = 0.20) compared

to manual segmentation (n = 10) with joint analysis p-value of 0.07.

4.2.4 Publication bias
Deek’s funnel plot has shown a publication bias in combined

model studies (p = 0.05) (Figure 8). Therefore, we performed

sensitivity analysis.
4.2.5 Sensitivity analysis
We eliminated included cohorts in combined model analysis

one by one, and the changes were observed. Eliminating the study

by Z. Sun et al. (25). showed that increased p-value significantly,

thus, reducing publication bias (Table 6). It can be explained by the

large number of participants in the study. Also, the top left method

used for calculation of sensitivity and specificity is also can be

a reason.
TABLE 4 Subgroup analysis in radiomics model studies.

Variable n Sensitivity p1 Specificity p2 Joint model analysis

LRT
chi2

P-value I2

Top left method Yes 6 0.78 [0.69–0.88] 0.21 0.82 [0.73–0.92] 0.14 0.87 0.65 0

No 8 0.73 [0.63–0.82] 0.79 [0.70–0.88]

Segmentation dimension 3D (VOI) 8 0.78 [0.70–0.87] 0.27 0.74 [0.65–0.84] 0.00 3.74 0.15 47

2D (ROI) 6 0.71 [0.60–0.83] 0.85 [0.78–0.92]

Phase Arterial 4 0.84 [0.75–0.93] 0.65 0.91 [0.84–0.99] 0.90 9.37 0.01 54

Venous 10 0.71 [0.62–0.79] 0.77 [0.69–0.84]

Tumoral or nodal segmentation Tumoral 11 0.74 [0.66–0.82] 0.06 0.79 [0.71–0.86] 0.05 1.42 0.49 0

Tumoral and nodal 3 0.81 [0.67–0.95] 0.86 [0.74–0.98]

Automatic or manual segmentation Automatic 3 0.77 [0.62–0.92] 0.31 0.91 [0.84–0.98] 0.98 5.52 0.06 64

Manual 11 0.75 [0.66–0.83] 0.76 [0.69–0.83]
fr
p, p-value; ROI, region of interest; VOI, volume of interest.
FIGURE 5

Funnel plot of publication bias based on Deek’s asymmetry test in radiomics model studies.
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5 Discussion

This meta-analysis investigated the utility of radiomics-based

models based on CT scan images for the prediction of LNM

occurrence in GC patients preoperatively. Our analysis showed

that radiomics-based models have a promising potential for the

prediction of positive LNM in GC. However, the relatively low

quality of performing and reporting of radiomics studies in GC is

currently suboptimal to allow radiomics to be widely adopted in

clinical applications. Nevertheless, it has become evident that

radiomics approaches have a promising role in the discrimination

of target lesion classes in GC patients at high risk for LNM. Thus, if

studies follow the same methodological guidelines more strictly and
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also use large and comprehensive datasets from several centers, we

may create an excellent opportunity for radiomics application for

more tailored therapies, thus reaching better clinical outcomes.

Recently, the radiomics approach as a non-invasive diagnostic

tool offered a new perception for clinicians in disease management,

especially in the field of oncology. Therefore, a growing number of

papers investigated radiomics applicability in cancers of different

organs such as gastrointestinal, respiratory, neurological, and breast

(30). Focusing on the prediction of LNM in cancers, a previous

meta-analysis of 12 studies (793 patients) by Longchao Li et al. (31)

culminates that MRI-based radiomics models have a promising

diagnostic accuracy in cervical cancer with a pooled sensitivity,

specificity, and AUC of 80%, 76%, and 0.83, respectively.
FIGURE 6

Forest plot for combined models.
FIGURE 7

SROC of combined model studies.
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Limitations of study conduction reported by authors were a limited

number of subjects and recruitment centers with a high rate of

heterogeneity, especially different magnetic resonance protocols

and imaging equipment technology among studies. Another

meta-analysis by Jing Zhang et al. (32) with 13 studies (1,618

patients) examined LNM presence based on machine learning–

based radiomics of dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) in breast cancer. Their analysis showed that

the pooled sensitivity, specificity, and AUC were 82%, 83%, and

0.89, which offers a good discrimination ability of radiomics

models. The authors reported that the small number of patients,

significant heterogeneity, and low-quality assessment scores were

the major limitations of the studies.

Generally, radiomics studies select patients and consider them as a

main dataset for model construction. The main dataset is randomly

divided into training and internal testing sets. First, the radiomics

model learns the unseen mathematical pattern and structure of the
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dataset from the training set. The developed model needs to be

evaluated and tested for its performance and generalizability. There

are two types of testing datasets: internal and external testing sets.

Internal testing is derived from the same dataset from which the

training dataset was taken. The second type is external testing, which is

selected from a different institution and region. Therefore, the

developed model uses testing sets for performance evaluation. Using

external testing helps radiomics approach to be more generalized and

comprehensive in order to have a role in clinical practice. Three studies

(three of 15) used an external testing set. Furthermore, we can integrate

radiomics models established by imaging features with other clinical

data and develop a new model called the “combined model” (30).

In the current study, we separate analyses based on the radiomics

model and combined model separately. Some studies used both radiomics

model and combined model. Others used only one of them. The

sensitivity, specificity, and AUC of the radiomics model were

approximately 75%, 80%, and 0.85, indicating good performance. It is
TABLE 5 Subgroup analysis in combined model studies.

Variable n Sensitivity p1 Specificity p2 Joint model analysis

LRT
chi2

P-value I2

Top left method Yes 5 0.83 [0.75–0.90] 0.05 0.83 [0.76–0.90] 0.00 1.69 0.43 0

No 7 0.79 [0.70–0.87] 0.86 [0.80–0.91]

Segmentation dimension 3D (VOI) 5 0.75 [0.67–0.83] 0.00 0.84 [0.77–0.91] 0.00 3.26 0.20 39

2D (ROI) 7 0.84 [0.78–0.89] 0.85 [0.78–0.91]

Phase Arterial 3 0.86 [0.76–0.95] 0.20 0.94 [0.87–1.00] 0.91 3.92 0.14 49

Venous 8 0.80 [0.73–0.87] 0.83 [0.78–0.88]

Tumoral or nodal segmentation Tumoral 11 0.80 [0.75–0.86] 0.36 0.84 [0.79–0.89] 0.07 1.16 0.56 0

Tumoral and nodal 1 0.89 [0.72–1.00] 0.91 [0.80–1.00]

Automatic or manual segmentation Automatic 2 0.85 [0.74–0.96] 0.28 0.96 [0.91–1.00] 0.20 5.46 0.07 63

Manual 10 0.80 [0.74–0.86] 0.83 [0.78–0.87]
fr
p, p-value; ROI, region of interest; VOI, volume of interest.
FIGURE 8

Funnel plot of publication bias based on Deek’s asymmetry test in combined models.
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evident that pathological confirmation of LNM, which is the reference

standard of included studies, is determined postoperatively. Thus, if we

need to tailor therapies regarding LNs status, it is better to determine it

before surgery. Radiomics models have an excellent ability to forecast

three-fourths of LNM-positive patients preoperatively without unnecessary

invasive interventions. Moreover, a specificity of 80% gives us a good level

of certainty that positive LNMpatients predicted by radiomics model need

therapy optimization. A combined model integrating radiomics features

and clinical variables, is associated with an improvement in predictive

ability.Overall sensitivity, specificity, andAUCof 81%, 85%, and 0.90 show

that an adjunct of clinical variables to radiomics features can help us to

improve predictive capacity. Taken together, we conclude that

incorporating radiomics features with other clinical variables provides

better diagnostic performance.

Despite this, an apparent heterogeneity was found among the

studies. Thus, we explored possible heterogeneity sources using

subgroup analysis to pave the way for upcoming studies.

Spearman’s correlation coefficients were not the heterogeneity

sources. We were concerned about the difference between studies

with calculated top left method and studies which did not. Results

showed that the calculated top left point had a slightly better

performance. CT scan phase differences were also explored, and

results showed that the arterial phase has a better outcome than the

venous phase in both radiomics and combined models. Image

segmentation is a crucial process in radiomics approach, since

radiomics features will be extracted from the delineated areas (33).

3D segmentation had only a better sensitivity in radiomics models.

Otherwise, 2D segmentation had an overall higher value than 3D

segmentation. Surprisingly, selecting the largest imaging plane for

segmentation showed that 2D segmentation not only has better results
Frontiers in Oncology 14
but also it is less time consuming and simple. Segmentation of the

tumoral area has shown to have a better predictive performance

compared to tumoral and nodal areas in both radiomics and

combined models. Although manual segmentation of the ROI is

preferred in the majority of studies, automatic and semi-automatic

segmentations discriminate better than manual segmentation in both

radiomics and combined models.

Despite the promising results in this study, the RQS scores of

studies were low to moderate ranging from 11 to 24 of 36 possible

scores. Only three studies tested the model’s performance

externally. Of note, only one study used a prospective dataset

(25). QUADAS-2 quality assessment revealed some issues to be

optimized in upcoming papers, for example, mentioning the

consecutive or random sampling of patients, reporting the

blindness of readers to the pathological status of samples, and

reporting the interval between the index test and reference test.
6 Limitation

This review highlights some limitations in studies as reflected by

methodological assessment. We had to exclude a number of studies

that achieved the inclusion criteria but did not have enough data to

analyze, which indicates a pitfall in reporting results. Studies

acquired a significant heterogeneity score, which was similar to

previous diagnostic radiomics meta-analyses (31, 32).

Also, included studies presented a relatively small and wide range

of patient numbers. The majority of datasets were selected

retrospectively, which can contribute to selection bias. In addition,

patient recruitment from one center restricted results from being
TABLE 6 Results of sensitivity analysis.

Study eliminated Sensitivity I2 Specificity I2 PLR NLR DOR AUC Deek’s P-value

Y. Wang 2019 (16) 0.82 81.84 0.85 85.57 5.3 0.21 25 0.90 0.06

X. Gao A 2020 (17) 0.81 81.51 0.85 85.36 5.5 0.23 24 0.90 0.07

L. Wang 2021 (18) 0.81 81.49 0.85 84.48 5.3 0.22 24 0.90 0.06

J. Li, 2020 (20) 0.82 82.56 0.85 85.63 5.4 0.22 25 0.90 0.05

S. Liu 2021 (19) 0.81 80.07 0.84 84.56 5.2 0.23 23 0.89 0.06

X. Wang 2021 (21) 0.80 77.90 0.84 82.60 5.0 0.23 21 0.89 0.08

Z. Sun 2021 (25) Validation set 1 0.82 59.83 0.86 45.90 5.7 0.22 26 0.91 0.76

Z. Sun 2021 (25) Validation set 2 0.81 82.18 0.85 85.45 5.4 0.22 25 0.90 0.06

X. Gao B 2020 (26) 0.82 82.80 0.84 83.95 5.1 0.21 24 0.89 0.07

Q. Zeng 2022 (28)
Internal validation set

0.81 81.10 0.84 83.30 5.1 0.22 23 0.90 0.07

Q. Zeng 2022 (28)
External validation set

0.81 80.90 0.85 85.18 5.4 0.23 24 0.90 0.07

X. Guan 2022 (27) 0.76 51.91 0.83 78.08 4.5 0.29 16 0.78 0.00

Z. Sun 2021 (25) Validation set 1 and 2 0.82 63.98 0.86 50.65 6.0 0.21 29 0.91 0.80

Q. Zeng 2022 (28)
External and internal validation set

0.81 83.01 0.85 85.36 5.3 0.23 23 0.90 0.09
AUC, area under the ROC curve; DOR, diagnostic odds ratio; NLR, negative likelihood ratio; PLR, positive likelihood ratio.
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generalized and reproducible. Four studies (four of 15) used more than

one center for patient selection. Additionally, studies used different CT

scanning protocols. We only could overcome the arterial and venous

phase differences by subgroup analysis but still the high heterogeneity

of CT scanning protocols and techniques between studies could not be

overcome by subgrouping.Moreover, inmost studies, the GC stage and

LN station were not considered in image analysis and modeling.

Therefore, the extracted and selected features are different, which

obviously affects the performance of models and also leads to inter-

study heterogeneity. In addition, the segmentation methods and

software used in studies can affect models. Taken together, the main

obstacle in studies was the heterogeneities in study methodologies.

Therefore, it shows the necessity of establishing a unified standard and

guideline for radiomics accomplishment, and more importantly, future

explorations should adhere to the standards.
7 Conclusion

Our analysis demonstrated that the CT scan–based radiomics

approach seems promising for predicting LNM in GC patients before

surgery and has an excellent diagnostic accuracy for surgery planning

and personalized therapy. Nevertheless, high heterogeneity of studies

indicates the necessity of a unified guideline for radiomics conduction

in upcoming research. Therefore, so far it is crucial to consider

radiomics limitations in clinical application.
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