
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Pranav Kumar Prabhakar,
Lovely Professional University, India

REVIEWED BY

Hiu Chuen Lok,
The University of Sydney, Australia
Miranda Lynch,
Hauptman-Woodward Medical Research
Institute, United States

*CORRESPONDENCE

Michael S. Petronek

michael-petronek@uiowa.edu

Charvann K. Bailey

baileych@grinnell.edu

RECEIVED 13 March 2023

ACCEPTED 25 May 2023
PUBLISHED 15 June 2023

CITATION

Petronek MS, Bayanbold K, Amegble K,
Tomanek-Chalkley AM, Allen BG, Spitz DR
and Bailey CK (2023) Evaluating the iron
chelator function of sirtinol in non-small
cell lung cancer.
Front. Oncol. 13:1185715.
doi: 10.3389/fonc.2023.1185715

COPYRIGHT

© 2023 Petronek, Bayanbold, Amegble,
Tomanek-Chalkley, Allen, Spitz and Bailey.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 15 June 2023

DOI 10.3389/fonc.2023.1185715
Evaluating the iron chelator
function of sirtinol in
non-small cell lung cancer
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and Charvann K. Bailey2*

1Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of
Iowa, Iowa City, IA, United States, 2Department of Biology, Grinnell College, Grinnell,
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A distinctive feature of cancer is the upregulation of sirtuin proteins. Sirtuins are

class III NAD+-dependent deacetylases involved in cellular processes such as

proliferation and protection against oxidative stress. SIRTs 1 and 2 are also

overexpressed in several types of cancers including non-small cell lung cancer

(NSCLC). Sirtinol, a sirtuin (SIRT) 1 and 2 specific inhibitor, is a recent anti-cancer

agent that is cytotoxic against several types of cancers including NSCLC. Thus,

sirtuins 1 and 2 represent valuable targets for cancer therapy. Recent studies

show that sirtinol functions as a tridentate iron chelator by binding Fe3+ with 3:1

stoichiometry. However, the biological consequences of this function remain

unexplored. Consistent with preliminary literature, we show that sirtinol can

deplete intracellular labile iron pools in both A549 and H1299 non-small cell lung

cancer cells acutely. Interestingly, a temporal adaptive response occurs in A549

cells as sirtinol enhances transferrin receptor stability and represses ferritin heavy

chain translation through impaired aconitase activity and apparent IRP1

activation. This effect was not observed in H1299 cells. Holo-transferrin

supplementation significantly enhanced colony formation in A549 cells while

increasing sirtinol toxicity. This effect was not observed in H1299 cells. The

results highlight the fundamental genetic differences that may exist between

H1299 and A549 cells and offer a novel mechanism of how sirtinol kills

NSCLC cells.

KEYWORDS

cancer therapy, iron metabolism, non-small cell lung cancer (NSCLC), iron,
cancer biology
Introduction

Globally, lung cancer is one of the leading causes of cancer deaths. Approximately

80%–85% of all lung cancer diagnoses are non-small cell lung cancer (NSCLC), and the 5-

year overall survival remains approximately 28% (1). Such a despondent figure indicates a
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need for more effective treatment. Historically, treatments for

cancer consisted of radiotherapy and chemotherapy, which have

had limited success, treating NSCLC (2, 3). More contemporary

techniques like targeted therapy allow researchers to exploit

distinctive characteristics of cancer cells for more precise

treatment (4). One consistent attribute of lung cancer cells is the

overexpression of sirtuin 1 and 2 (SIRT1/2) proteins compared to

normal human bronchial epithelial cells where enhanced SIRT1/2

expression has been correlated with a poor prognosis in NSCLC

patients (5, 6). SIRTs are class III nicotinamide adenine

dinucleotide (NAD)+-dependent histone deacetylases that

modulate senescence, cell cycle regulation, apoptosis, and

oxidative stress response (7). By using NAD+ as a cosubstrate for

their modulation of histone deacetylation, targets such as H3K9ac

or non-histone targets like Foxo3a and sirtuins are critical for

mediating cell survival (8). Current literature reveals that targeted

inhibition of SIRT1 and 2 proteins in cancer is beneficial for

constraining their growth and defense mechanisms—making

them more susceptible to apoptosis.

Sirtinol is a SIRT 1 and 2 pharmacological inhibitor that was

discovered during cell-based screening of Saccharomyces cerevisiae

yeast by accessing Sir2p inhibition (9). Its potent inhibition of

SIRT1 and 2 and has been investigated as an anticancer agent (10).

Sirtinol induces senescence and apoptosis in MCF-7 breast cancer

cells and H1299 NSCLCs (11, 12). Although sirtinol is not currently

a mainline therapeutic used to treat NSCLCs, several studies show

its potential for use in the clinic. For example, Fong et al. showed

that sirtinol is cytotoxic to NSCLC cells in a dose-dependent

manner after 24 and 48 h treatment (13). This study also showed

that sirtinol reduces the proliferation of cancer cells by pausing the

cell in the G1 phase of the cell cycle. Sirtinol also enhances the

cytotoxicity of traditional chemotherapeutic agents like gemcitabine

and cisplatin (14, 15), while reducing inflammation in normal

epithelial cells, suggesting selective sensitization (16).

Recently, sirtinol was also discovered to be an intracellular iron

chelator (17). This observation evolved from evaluating the

chemical structure of sirtinol relative to other iron-chelating

molecules [e.g., desferrioxamine (DFO) or deferasirox] (7).

Sirtinol’s structure contains a 2-hydroxynaphthalenyl moiety that

is connected to a benzamide through an aldiminic nitrogen atom

(Figures 1A, B). This group can provide a tridentate O – N – O

donor moiety that is often observed in other iron-chelating
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molecules. Crystallography analysis showed that sirtinol can

function as a tridentate iron chelator by binding a single Fe3+

atom with 3:1 (sirtinol:Fe3+) stoichiometry to form an octahedral,

high-spin (S = 5/2) Fe3+ complex comprised of five donor oxygen

atoms and one donor nitrogen atom (Figure 1C) (17). This is a

critical finding as iron chelation may serve as an important drug

effect associated with the cytotoxicity of sirtinol. However, the

biological significance of sirtinol’s iron-chelator function remains

unclear. Thus, it was hypothesized that sirtinol can impair iron

metabolism in NSCLC cells and this study aimed to evaluate the

biological significance of the chelator function of sirtinol in NSCLC.

Iron metabolism is a critical feature of a multitude of cellular

functions central to cancer progression (18). It is altered in a wide

array of cancer types with cancer cells typically harboring an iron

dependency as compared to their normal tissue counterparts. Iron

metabolism is altered in human NSCLC tumor tissue with increased

hepcidin expression (19). Increased transferrin receptor (TfR)

expression has also been observed in human NSCLC tumors (20).

These data suggest that NSCLC tumors accumulate iron

preferentially. Iron chelation therapy may be an attractive

anticancer therapeutic strategy. For example, deferoxamine has

recently been shown to selectively induce mitochondrial

dysfunction in cancer cells (21).

In this study, A549 and H1299 NSCLC cells were used to

evaluate the chelator function of sirtinol. These cells represent two

widely used NSCLC in vitro models with varying clinically relevant

genetic backgrounds (Table 1). Importantly, A549 cells harbor

mutations that have been observed in aggressive lung tumors.

STK11 comutations as observed in the A549 cells are relatively

frequent with both KRAS (54%) and KEAP1 (27%), where STK11

comutations are associated with worse clinical outcomes (27). Thus,

A549 cells provide an in vitromodel of an aggressive NSCLC tumor.
Results

First, the proposed chelator function was evaluated in this in

vitro NSCLC model. Consistent with this function, a 72 h treatment

of sirtinol caused decrease in intracellular labile iron in both H1299

and A549 cells (Figure 2). Importantly, the decrease in labile iron by

sirtinol is the same effect as observed by DFO. An interesting

observation was that this effect was greater in the A549 cells (79.2%
FIGURE 1

The structures of sirtinol and desferrioxamine (DFO) and its iron coordination sites. (A, B) The structures of sirtinol (A) and DFO (B). The putative iron
coordination site within both structures are highlighted in blue. (C) Tridentate, octahedral, high-spin Fe3+ complex formed from the binding of
sirtinol to a free Fe atom. Blue numbers represent independent sirtinol molecules bound to the Fe atom.
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decrease) as compared to the H1299 (36.3% decrease). Thus, we

have been able to recapitulate the ability of sirtinol to serve as an

iron chelator to a differential effect in these genetic subtypes

of NSCLC.
Sirtinol alters iron metabolic features in
non-small cell lung cancer cells

Because of the initial validation of the sirtinol iron chelator

function, it was hypothesized that this would result in metabolic

alterations associated with labile iron regulation. Aconitase was first

interrogated as it is an iron-dependent tricarboxylic acid (TCA)-

cycle intermediate that utilizes a complete [4Fe-4S]2+ cluster for the

isomerization of citrate to isocitrate (28). Under conditions of

limited intracellular iron availability, the cluster will be in an

incomplete [3Fe-4S]+ form leading to enzyme inactivation (29).

In both A549 and H1299 cell lines, a significant decrease in

aconitase activity (>50% reduction in enzymatic activity, p< 0.05)

was observed (Figure 3A), further indicating that sirtinol’s chelator

activity can sequester iron to impair the activity of iron-

dependent enzymes.

Converse to its TCA-cycle function, in an inactive [3Fe-4S]+

form, aconitase can function as iron-responsive protein-1 (IRP1).

IRP1 responds to intracellular Fe levels to promote either

stabilization or degradation of TfR and ferritin heavy-chain (FtH)

mRNAs (30). When there is limited intracellular iron availability,

IRP1 binds to iron response elements (IREs) to maintain
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homeostasis by binding at the 3’ end of TfR mRNA to enhance

stability and promote translation (31–33) or the 5’ end of FtH to

repress translation (34, 35). Interestingly, a sirtinol concentration–

dependent increase in TfR protein levels and FtH repression cells

was observed in A549 cells that was not apparent in H1299 cells

(Figures 3B, C). This further supports the hypothesis that the

chelator function of sirtinol disrupts iron metabolism by limiting

intracellular iron availability, although the biological effects appear

to present as a cell type–dependent effect. Therefore, it appears that

sirtinol may be able to impair the IRP-IRE system through its

chelator function; however, this requires further validation. Based

on the observed iron metabolic perturbations, the temporal-

dependent changes in intracellular iron were interrogated. Using

this colorimetric assay, sirtinol was observed to chelate iron in both

H1299 and A549 cell lines, as relative labile iron concentrations

were decreased in both cell lines acutely (Figure 3D). In A549 cells,

the labile iron pool was decreased acutely (within 6 h) while

noticeable decreases did not occur in H1299 cells until 24 h

sirtinol treatment was used. Interestingly, after the acute decrease

in labile iron in A549, there was an apparent adaptive response

where labile iron continued to increase above the basal level until

72 h. A similar trend was not observed in the H1299 cells as labile

iron was decreased through 48 h until a slight increase from 48 to

72 h occurred but remained below the basal level. These results

are consistent with the cell type–specific adaptive response that

occurred in the A549 cells. These results further support the

iron chelator function of sirtinol, and these observations may

represent a fundamental difference in iron metabolic regulation

and response to perturbations between NSCLC cell lines with

variable genetic backgrounds.
Sirtinol impairs iron-dependent colony
formation in A549 cells

Based upon sirtinol’s induced iron-metabolic shifts, the

biological relevance of these findings was interrogated by
FIGURE 2

Sirtinol behaves like DFO to chelate iron in non-small cell lung cancer (NSCLC). Effects on labile iron in H1299 and A549 cells by a 50 µM 72 h
treatment of sirtinol and DFO using a calcein–AM flow cytometry probe. Conversely, 3 h, 50 µM ferrous ammonium sulfate was used as a positive
control. Error bars represent the mean ± SEM of n = 3 replicates. Statistical analysis was done using a one-way ANOVA with a post-hoc Tukey’s test
for individual comparisons.
TABLE 1 Genetic differences in cell lines used in this study.

Genetic Background
(mutant frequency, %)

A549 H1299

KRAS (17%) (22) G12S mutant (23) Wild type

STK11 (27%) (22) Q37 mutant (24) Wild type

KEAP1 (15%) (25) G333C mutant (26) Wild type
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investigating its effects on iron-dependent colony formation. First,

the effects of holo-transferrin [hTf; di-ferric transferrin; Tf-(Fe3+)2]

on NSCLC plating efficiency were assessed. Interestingly, a

significant increase in plating efficiency (40%–60%) was observed

in A549 cells following a 24 h supplementation of cell culture media

with hTf while there was no effect in H1299 cells (Figure 4A). Thus,

A549 cells exhibit a pattern of iron dependency to facilitate colony

formation, while H1299 cells do not. Similarly, sirtinol enhanced

cell-killing in A549 cells supplemented with hTf but had little to no

effect in H1299 cells (Figure 4B). Therefore, the chelator function of

sirtinol appears to play a role in sirtinol’s cytotoxicity but is largely

context dependent.
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Discussion

This study has shown that sirtinol can function as an

intracellular iron chelator to induce iron metabolic changes.

Importantly, the chelator function of sirtinol has been further

validated in NSCLC cells as sirtinol exhibited the same effects on

labile iron as DFO. The ability of sirtinol to deplete intracellular

labile iron is consistent with the previous literature that sirtinol can

function as a tridentate iron chelator (17). Furthermore, sirtinol has

been observed to deplete intracellular labile iron acutely leading to

an adaptive response; however, the adaptive response is cell line

dependent. The adaptive response that we observed, primarily in
FIGURE 3

Sirtinol alters iron metabolic features. (A) Relative aconitase activity in A549 and H1299 cells following a 24 h treatment of 50 µM sirtinol. Aconitase
activity was evaluated by measuring the rate of appearance of nicotinamide adenine dinucleotide phosphate (NADPH) at 340 nm in the presence of
citrate and isocitrate dehydrogenase. Error bars represent the mean ± SEM of n = 3–4 experiments where *p< 0.05 using an unpaired, Welch’s T-
test. (B) A549 and H1299 NSCLC cells were treated for 24 h with 0–50 µM sirtinol and then harvested for evaluation of the transferrin receptor (TfR)
and ferritin (FtH) expression using a Western blot approach. (C) Western blot quantification TfR and FtH changes in A549 and H1299 cells. (D) A549
and H1299 NSCLC cells were treated for 6, 24, 48, or 72 h with 50 µM sirtinol and then harvested for evaluation of labile iron pool concentrations
using a colorimetric ferrozine-based assay. Each timepoint was normalized to an untreated control. Dashed black line indicates baseline measures.
Error bars represent mean ± SD from triplicate measures.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1185715
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Petronek et al. 10.3389/fonc.2023.1185715
A549 cells, is consistent with decreased aconitase activity (i.e.,

enhanced IRP1 activation) leading to increased TfR stability and

decreased FtH translation. This is likely due to the sequestering of

iron leading to an incomplete [3Fe-4S]+ cluster in aconitase (30).

Thus, it can be hypothesized that a disruption in the IRP-IRE

system results in an increase in TfR stability leading to increased

iron uptake via receptor-mediated endocytosis (36, 37). Meanwhile,

the decrease in FtH expression indicates decreased iron storage

capacity, as ferritin is the primary iron storage enzyme of the cell

(38). Further experiments are required to elucidate the effects of

sirtinol on the IRP-IRE system. However, an adaptive response to

increase iron uptake and decrease storage would explain the

temporally dependent increases in labile iron observed for

extended sirtinol treatments in A549 cells. The increase in labile

iron at 72 h observed using ferrozine is slightly contradictory to the

calcein-AM results. This is likely due to the nature of each

individual assay as calcein-AM can bind iron irrespective of its

oxidation state but is unable to remove iron from other complexes,

while ferrozine is Fe2+-dependent and utilizes ascorbic acid to

convert all of the iron in a highly acidic (pH ≈ 4–4.5) solution to

convert all of the iron to Fe2+. Thus, the ferrozine results at 72 h may

be more reflective of the total iron accumulated within the cells in

addition to the iron bound to sirtinol, while the calcein-AM results

are more likely to reflect the amount of iron remaining to be

chelated after treatment. This hypothesis is based on the notion that
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sirtinol iron binding permits iron recycling allowing for the iron to

be reduced to Fe2+ under the acidic conditions. This would be

consistent with previously reported literature that a sirtinol-Fe3+

complex can enhance oxidation of the DCFH fluorescent probe,

indicating that this is a redox-active chelator capable of catalyze

redox reactions (39). Based on these observations, the iron-chelator

capacity of sirtinol previously described chemically appears to have

biological importance and is a drug effect that should be considered

when evaluating the therapeutic effects of sirtinol (17).

An unexpected discovery is the iron-dependent differences

observed between A549 and H1299 NSCLC cells. Consistently, a

more pronounced iron-metabolic disruption has been observed in

the A549 cells throughout this study. A major, correlative difference

between these two cell lines is their KRAS/STK11/KEAP-1

mutational status. A549 cells are KRAS/STK11/KEAP-1 mutant

cells resulting in constitutive activation of NRF2 (40, 41) while

H1299 cells are not (42). This is of particular interest because

KEAP-1 mutant NSCLC cells, such as A549, are particularly

aggressive and exhibit therapy resistance as patients with tumors

harboring this mutational profile appear to have worse clinical

outcomes (42–44). A recent retrospective study of NSCLC patients

showed that KEAP-1 was a negative prognostic marker in

advanced-stage (stage IIIB–IV) tumors (HR = 1.40, 95% CI: 1.23–

1.61, p< 0.001, N = 4,779) (44). Therefore, strategies aimed at

enhancing clinical responses in mutant tumors may be of critical
FIGURE 4

Sirtinol impairs iron-dependent colony formation in A549 cells. (A) Plating efficiency (%) of A549 and H1299 cells following a 24 h supplement of
200 µg ml-1 holo-transferrin (hTf). Error bars represent mean ± SD (n = 3) with *p< 0.05 using a paired, two-tailed Welch’s T-test. (B) Clonogenic
survival of A549 and H1299 cells treated for 24 h ± sirtinol (50 µM) ± hTf (200 µg ml-1). Error bars represent mean ± SD (n = 3) with *p< 0.05 using a
one-way ANOVA test.
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importance in managing NSCLC. Interestingly, we have observed

that STK11/KRAS/KEAP-1 mutant A549 cells exhibit a pattern of

iron-dependent clonogenicity that the chelator function of sirtinol

can exploit while the H1299 tumors do not. While this finding is

intriguing, it also represents a significant limitation of our study.

Because of the concurrent mutations observed in the A549, it is

currently unclear to what extent each mutation contributes to the

differential iron metabolic regulation observed in these cells.

Future studies should be designed to evaluate each of these

mutations independently and assess their impacts on iron

metabolic regulation.
Conclusions

In summary, it has been observed that the chemical iron-chelator

function of sirtinol has biological consequences. It has been shown

that sirtinol can chelate iron in NSCLC cells leading to a decrease in

labile iron acutely and a cell line–specific adaptive response

characterized by a decrease in aconitase activity leading to a shift

toward IRP1 activation, enhanced TfR stability, and repressed FtH

translation. Intriguingly, KRAS/STK11/KEAP-1 mutant cells exhibit

iron-dependent colony formation that can be inhibited by sirtinol,

which does not occur inH1299 cells. Overall, it can be concluded that

the chelator function of sirtinol has context-dependent biological

consequences that may contribute to its toxicity in NSCLC.
Materials and methods

Cell culture

A549 and H1299 cells were grown to 80% confluence before

experimentation at 21% O2. Cells were treated with sirtinol

prepared in 50mM stocks in DMSO and stored at −80°C for the

appropriate concentration and time. For iron supplementation, 10

mg ml-1 of human holo-transferrin (T0665 Sigma-Aldrich, St.

Louis, MO) prepared in H2O was added directly to the cell

culture media at a concentration of 200 μg ml-1. For experiments

testing the combination, both sirtinol and holo-transferrin were

added simultaneously. For colony formation assays, cells were

treated, washed, and trypsinized. Following trypsinization, cells

were counted and plated as single cells in a 6-well dish (≈500

cells per well). Cells were left undisturbed for 7–10 days to allow for

colony formation. Colonies were then washed with 70% EtOH for

fixation and stained with Coomassie blue. Stained colonies (≥50

cells) were counted under a microscope.
Labile iron pool measures with
flow cytometry

Intracellular labile iron pool measures were performed using a

Calcein-AM fluorescent dye. Cells were harvested by trypsinization.

After cell harvesting, cell pellets were washed in phosphate buffered
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saline (PBS) and then resuspended in 500 nM Calcein-AM diluted

in PBS. Samples were incubated for 15 min at 4% O2 (37°C, 5%

CO2). Following incubation, extracellular Calcein-AMwas removed

by washing with PBS, and cells were resuspended in 1 ml PBS.

Following incubation 10,000 cells were analyzed on an LSR II Flow

Cytometer (BD Biosciences; lex = 488 nm, lem = 515/20 nm). The

labile iron pool was quantified using the following formula:

relative LIP (A :U : ) =  
MFItreatment

MFIcontrol

� �−1

An inverse normalization was done to approximate the labile

iron pool because calcein-AM functions as a “turn-off” probe.
Colorimetric labile iron assay

Labile iron and total iron concentrations were done using a

ferrozine-based colorimetric assay. Cells were homogenized in 1X

RIPA lysis buffer (Sigma-Aldrich; R0278). Cells were centrifuged at

maximum speed for 10 min to remove cell debris, and 100 μl of the

supernatant was then diluted 1:1 in ferrozine buffer (5 mM

ferrozine, 1.25 M ammonium acetate, and 10 mM ascorbate) and

centrifuged again at maximum speed for 10 min to remove any

protein aggregates. This step is critical as the acidic nature of the

buffer (pH ≈ 4–4.5) will result in protein aggregation that can cause

the samples to become cloudy and alter the absorbance profile,

resulting in an experimental artifact. Thus, samples with remaining

protein aggregates were removed from analysis. The supernatant

was then placed in a single well of a clear 96-well plate. Following

dilution, the 96-well plate was evaluated for the formation of a Fe2

+-ferrozine complex by monitoring the absorbance at 562 nm and

Fe concentration was calculated using Beer’s Law:

A562(A :U : ) = ϵ562*½Fe�*L
where A562 is the measured absorbance at 562 nm, ϵ562 is the

molar extinction coefficient for a Fe2+-ferrozine complex = 27,900

M-1 cm-1, [Fe] is the calculated Fe concentration (M), and L is the

pathlength for 200 μl of liquid ≈ 0.55 cm.
Western blotting

Total protein (25 mg) was electrophoresed on a 4%–20%

gradient gel (Bio-Rad) at 150 V for approximately 1.5 h. The

separated proteins were transferred onto polyvinylidene difluoride

(PVDF) membranes (Millipore, Billerica, CA) and non-specific

binding was blocked using 5% non-fat dry milk in PBS-Tween

(0.2%) for 1 h at room temperature. The membranes were

incubated with primary antibodies (ferritin-heavy chain, 1:1,000

from Abcam, Cambridge, MA, TfR, 1:1,000, Invitrogen, Camarillo,

CA) at 4°C overnight. B-actin served as a loading control (1:4,000;

Sigma-Aldrich). Following three 5 min TBS-Tween washes, the

membranes were probed with secondary antibodies (mouse anti-

rabbit; 1:10,000; Sigma-Aldrich, St. Louis, MO) that were
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conjugated with horseradish peroxidase for 45 min. The washed

membranes were incubated with a Super Signal West Pico

Chemiluminescent Substrate (Thermo Scientific, Rockford, IL)

and exposed to CareStream BioMax MR Film (CareStream

Health, Rochester, NY). Quantification of Western blots were

performed in ImageJ.
Aconitase activity

Exponentially growing cells were scraped and frozen as dry

pellets until assayed for total aconitase activity adapted from as

previously described (45). Briefly, cell pellets were resuspended in

50 mM Tris-HCl, pH 7.4 with 0.6 mMMnCl2, and 5 mMNa-citrate

and sonicated 3 × 10 s each. Protein was quantified by the Lowry

method (46). Aconitase activity was measured as the rate of

appearance of NADPH (at 340 nm; Beckman DU 800

spectrophotometer, Brea, CA) for 45 min during the reaction of

200 mg total sample protein with 200 mM NADP+ and 10 U

isocitrate dehydrogenase.
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