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Imaging is central to the clinical surveillance of brain tumors yet it provides

limited insight into a tumor’s underlying biology. Machine learning and other

mathematical modeling approaches can leverage paired magnetic resonance

images and image-localized tissue samples to predict almost any characteristic

of a tumor. Image-based modeling takes advantage of the spatial resolution of

routine clinical scans and can be applied to measure biological differences within

a tumor, changes over time, as well as the variance between patients. This

approach is non-invasive and circumvents the intrinsic challenges of inter- and

intratumoral heterogeneity that have historically hindered the complete

assessment of tumor biology and treatment responsiveness. It can also reveal

tumor characteristics that may guide both surgical and medical decision-making

in real-time. Here we describe a general framework for the acquisition of image-

localized biopsies and the construction of spatiotemporal radiomics models, as

well as case examples of how this approach may be used to address clinically

relevant questions.
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Introduction

While great strides have been made in elucidating the biology of central nervous system

tumors, our understanding of these diseases is far from complete. Brain tumors, including

but not limited to glioblastoma (GBM), are known to have profound variability between

patients (1–4). Intratumoral heterogeneity is rampant as well, and single-cell studies have

identified genotypically and phenotypically distinguishable cellular subtypes even within

the same sample (5–8). Regional nuances in a tumor’s microenvironment add another layer
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of complexity, as two biopsies with the same genotype may have

completely different phenotypes and therapeutic sensitivities (9).

The ability to train machine learning models to predict these

biological characteristics simply from MR images (i.e. radiomics)

would allow us to assess a tumor in its totality and track changes

over time. This would be immensely valuable in the context of CNS

malignancies, where tissue sampling is limited due to the tumor’s

eloquent location and biopsies are unlikely to be representative of

the entire landscape.

Since imaging is a routine component of tumor surveillance and

treatment monitoring, the scalability and value of radiomics models

are enormous. Thus far, the majority of image-based models for the

evaluation of brain tumors have focused on classifying the genomics

across the whole tumor or large regions within the tumor. For

example, several studies have used standard MRI sequences (10–

12), dynamic susceptibility contrast MRI (13, 14), and diffusion

MRIs (15–17) to discriminate between IDH wildtype and IDH

mutant gliomas. Similar approaches have been used to predict

MGMT promoter methylation status (18–23), transcriptomic

subtypes (24, 25), and classify patients as short-, mid-, and long-

term survivors (26). By definition, these whole-tumor approaches

overlook the genomic, transcriptomic, and microenvironmental

heterogeneity that is known to exist within and between tumors

(3–9).

The ability to predict regional changes on a voxel-by-voxel level

has immense potential value, as it would allow for the complete

characterization of intratumoral heterogeneity in the absence of

tissue sampling. However, spatial models are uniquely challenging

to build. Without knowing exactly where a sample was harvested

from, biological and radiographic data cannot be aligned in a

meaningful way. To overcome this limitation, intraoperative

surgical navigation can be used to localize a biopsy’s coordinates

on MRI. In this way, a tissue sample’s imaging features and

characteristics from secondary biological tests (e.g. genomics,

RNA sequencing, etc.) can be combined to train machine learning

models that establish connections between tumor biology and MRI.

This approach can be applied to large cohorts to measure inter-

patient variability, as well as serial imaging from the same patient to

assess intratumoral dynamics over time. This voxelwise approach

has been utilized (20, 27–29), though to a lesser extent, due to the

more tedious nature of the data collection. Here we provide a

framework for collecting image-localized biopsies and leveraging

machine learning to build spatial radiomics models. We also

provide case examples that demonstrate the clinical potential of

these spatiotemporal models.
Framework to generate image-based
machine learning models (Methods)

Any imaging modality (e.g. CT, MRI, PET) can be used to

extract imaging features for training machine learning algorithms.

Since MRI is the clinical gold standard for patients with CNS

tumors, we will discuss a pipeline for the acquisition and

standardization of MRIs, generation of machine learning models

that predict biological characteristics from MRI, and ultimately the
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prediction of biology from new, unseen images for secondary

analysis (Figure 1).
Multiparametric MRI and
image-localized biopsies

Before surgery, each patient undergoes conventional

multimodal MR imaging (T1-weighted with Gadolinium-based

contrast agent, T2-weighted, and fluid-attenuated inversion

recovery sequences). Spoiled gradient recalled-echo (SPGR)

images are obtained for use during surgical navigation. Advanced

sequences are obtained when possible (e.g. perfusion, diffusion

tensor imaging, echo-planar imaging).

Intraoperative navigation loads SPGR and T2/FLAIR images to

stereotactically guide tumor biopsy and/or resection. While several

external landmarks are used to check navigation accuracy

preoperatively, registering a patient’s preoperative images to their

intraoperative anatomy introduces a risk of measurable error.

Immediately preceding tissue collection, surgeons attempt to

validate the accuracy of the navigation system with nearby

anatomic landmarks (i.e., skull, vasculature, ventricles, etc.). If the

navigation and anatomy are aligned with minimal error (<1mm), a

biopsy is collected and the coordinates of the biopsy site are

recorded with accompanying screenshots of the navigation

monitor. Each patient has multiple samples collected with image

localization, all of which are either flash-frozen or embedded in

formalin for biological testing. The coordinates and screenshots

obtained at the time of biopsy harvesting are later co-registered with

the full preoperative MR imaging data for further analysis using

previously-described methods (30). The accuracy of this collection

process is limited by the subjective threshold set by the surgeon and

intraoperative research team. At our institution, the perceived error

between imaging location and anatomical location must be

negligible (<1mm) to qualify for biopsy collection and

downstream analyses. If one was studying a less heterogeneous

pathology where spatial resolution was of a concern, error

thresholding could theoretically be more lenient.
Image registration and normalization

Registration is the process of geometrically aligning two or more

images (or an image with a standardized atlas) such that any given

coordinate represents the same location in every image. Many linear

and non-linear registration tools exist to perform this task (31). At a

minimum, different MRI sequences obtained at a single time point

need to be coregistered for accurate feature extraction. While not

mandatory, registering longitudinal visit-to-visit series data can be

helpful when attempting to visualize changes over the course

of treatment.

Conventional MR images have arbitrary units that are not stable

across patients, protocols, and scanners. Therefore, image

intensities must be normalized to improve the accuracy, test-

retest robustness, and generalizability of the radiomics models.

There are several mechanisms to standardize image intensities
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including histogram-based and statistical normalization methods

(32, 33). N4 normalization, available in the SimpleITK package, is a

popular example of such a bias field correction technique, that

makes use of B-spline approximation of the bias field and assumes

independent Gaussian noise (34). Z score normalization, White

Stripe normalization and Nyul normalization are some other

examples (33, 35). Although some recent work has proposed

caution in the use of such normalization methods as they can

affect the reproducibility of radiomics features (36).
Segmentation and feature extraction

Segmentation refers to the process of delineating regions of interest

(ROI, i.e. biopsy location, contrast-enhancing tumor, or T2/FLAIR-

hyperintense penumbra). Biopsy segmentations can be a 2-

dimensional square (one axial slice) or a 3-dimensional sphere

centered at the imaging coordinate. We formally train individuals to

manually segment tumors using in-house software. Segmentations are

overseen and approved by a team leader to ensure accuracy and

consistency. This manual approach can be tedious and time

consuming, but human expertise is better able to discern between

complex anatomy (i.e., irregular borders, cysts, skip lesions, ventricle

adjacency, etc.) than automated, pattern-based pipelines. Semi-

automatic and automatic segmentation protocols are in development
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and are in high demand. Still, they are still benchmarked against the

gold-standard of expert manual segmentation. Comparable manual or

semi-automated segmentation can be achieved with most modern

personal machines using open-source packages (37).

There are several mechanisms to extract imaging features from

MRI sequences. We use PyRadiomics (38), as it can be implemented

from the command line to extract the average features across a

region (e.g. an entire biopsy ROI) or voxel-by-voxel within a

tumor’s segmentation. First- and second-order intensity-based,

shape, and texture features can be calculated. All of these values

can be extracted before or after applying imaging filters (e.g.

Gaussian, Gabor, wavelet). While the number of options for

feature extraction is vast, adherence to the Image Biomarker

Standardization Initiative guidelines is paramount for the sake of

quality control and reproducibility (39).

Choosing the image sequences to include in radiomic analysis is

a balance between generalizability and oversimplification. For

example, most patients do not routinely obtain complex vascular

imaging but do have standard post-contrast T1 and T2/FLAIR

images. Thus, training models on features extracted from ten

uncommon sequences is extremely unlikely to be adopted in

clinical practice nor be able to be validated against historical data

sets. On the other end of the spectrum, these models are being asked

to find relationships between complex biological features and

numeric voxel intensities. In our experience, at least two imaging
FIGURE 1

Pipeline to generate image-based machine learning models that predict voxelwise intratumoral biology from MRI. As summarized here, these maps
can reveal aspects of tumor biology that can be used to guide diagnosis (e.g. specific genomic characteristics), treatment planning (e.g. extent of
surgical resection to minimize residual tumor cell burden), and even treatment assessment by tracking key biological attributes over time.
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sequences are needed for models to establish a relationship between

these two domains. We tend to start with T1Gd and T2/FLAIR

images and make adjustments based on preliminary model

performance with these widely available sequences.
Machine learning

In the context of CNS tumors where biopsies are typically limited

due to the eloquence of the brain and spine, the number of imaging

features will likely greatly exceed the number of samples. This

increases the risk of overfitting, the phenomenon by which a model

latches onto the details of the training data at the expense of missing

the overall, generalizable pattern. As such, it is imperative to gather as

many patients and samples as possible. While there is no universal

cutoff for the minimum number needed to train and test either a

classification or regression machine learning model, more is better

and fewer than 100 samples would raise concerns for generalizability.

An imaging feature reduction step must be performed to reduce the

likelihood of overfitting, and this step could include: 1) removal of

features with zero or near-zero variance, 2) removal of features that

are redundant or highly correlated with one another, 3) selection of

features that are highly correlated with the target variable, and 4)

calculation of variable importance scores.

After feature selection, a machine learning model can be trained to

answer the clinical question of interest. Classification models (e.g.

discriminant analysis) are trained for the prediction of discrete

variables. To predict continuous variables, regression models (e.g.

linear regression) should be employed. Some models (e.g. random

forest, k-nearest neighbors, support vector machine) can be used in

both contexts. Data should be split randomly into training and testing

cohorts to estimate the performance of the machine learning models

on data not used to train the model. Training data (usually 70% of

samples) is used to develop the model, while testing data (the

remaining 30%) is used for model validation. The target variable

should be represented equally in both the testing and training cohorts.

Machine learning models are assessed by comparing their

predictions to ground-truth (“actual”) values. Classification

models are assessed using a confusion matrix and receiver

operating characteristic curve. Regression models typically report

actual versus predicted correlation coefficients, p-values, and root-

mean-square error values. A model that performs exceptionally well

on training data but poorly on test data suggests that the model may

be overfitted and a reassessment of the feature selection may be

necessary. Small datasets run the risk of over- or under-estimating

model performance based on the way training and test data are split.

Under these circumstances, k-fold cross-validation may improve

the estimates of model performance by maintaining performance

evaluation on unseen small subsets of data and averaging the results

into a single, more generalizable performance estimate.
Pitfalls and challenges

Additional challenges may arise if there is unexpected uncertainty

within the image-localization of the samples. While the standard
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protocol is to locally validate a sample’s location using fixed

anatomical reference points, these points may remain

navigationally accurate while the brain tissue itself shifts during

surgery. This “brain shift” is more common when resecting large

lesions that were imposing significant mass effect, so extra care should

be taken under these circumstances. In such datasets, one might

expand the region within which features are extracted (e.g., increase

from a 5x5 region to a 7x7 region to allow for more uncertainty).

Although we strive to include as much data as possible within

model training for the sake of generalizability to the clinic, we may

occasionally remove patients from analyses if they do not have the

necessary imaging required to generate important model features.

Similarly, samples may be removed from analyses if there is a high

level of uncertainty or technical error (e.g., coordinates not

collected, breakdown in communication in the operating room)

during their collection (40).

For model generation, collecting the initial cohort for training

and validation is by far the rate determining step. To accrue biopsies

requires enthusiastic buy-in from partner neurosurgeons as well as

significant time, labor, and financial resources for analysis and

associated abstraction of longitudinal clinical data. Depending on

the model architecture, computational resources may also need to

be acquired. Model training can also take some time, especially if

using computationally expensive algorithms with parameters that

need to be tuned. Adding a further layer of complexity, once a

satisfactory model has been created, it is difficult to validate the

models using independent datasets because of the inter-institutional

heterogeneity in MRI machines, image acquisition protocols, and

limitations to data sharing. This lack of reproducibility between

institutions is a point of frustration, though many groups are

working on approaches for harmonizing images.
Potential applications
and anticipated results

Image-based models can be built to predict almost any biological

variable of interest. Of the utmost importance to clinical practice is

answering the question, “is this normal or pathologic?” Thus, many

clinical models are interested in predicting categorical variables that

are binary (e.g. pseudoprogression vs. true tumor progression),

nominal (e.g. EGFR deleted, wild type, or amplified), or ordinal

(e.g., grade I-IV). Of more interest to basic science and translational

research is the ability to predict continuous variables. For example,

the percent of malignant cells in a tumor sample, copy number

variation, transcript abundance, and percent cellular composition.

While the potential biological applications are essentially limitless, we

provide a few key examples from the literature in Table 1. Further

examples about future directions that highlight the utility of spatially

informed radiomics are provided below.
Diagnosis: genomic alterations

Numerous genetic alterations and their associated signaling

pathways have been implicated in tumorigenesis, growth, and
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invasion (57). While these mutations and copy number variations

are challenging to discern histologically, they correlate with tumor

subtypes and often reflect the degree of aggression. Several therapies

with genetic targets have garnered attention, but their potential for

clinical utility hinges upon identifying patients whose tumors

harbor these alterations. Surgical biopsies may only be capturing

an unrepresentative minority of the entire tumor landscape. Image-

based models overcome this limitation by predicting the genetic

landscape of the entire tumor. Classification models can be built to

predict clonal subpopulations and track their dynamics

throughout treatment.

As an example, one could build a model that predicts the

presence of CDK4 copy number amplification from imaging. The

overexpression of CDK4 induces an oncogenic transition of neural

progenitor cells into drivers of tumor growth and progression. This

phenotype is known to co-exist amongst other cellular subtypes

within a tumor (6). Since CDK4 inhibition is only effective against

CDK4-overexpressing tumors, image-based models present the

opportunity to identify patients who are uniquely susceptible to

these targeted therapies (58, 59). Spatially-resolved models of some

genomic aberrations in gliomas (e.g. copy number variations in

EGFR, PDGFR, etc.) have already been developed, with accuracies

ranging from 37.5% to 87.% depending on the gene of interest

(Figure 2) (28, 60, 61).
Surgical planning: tumor cell burden
and distribution

By the time a patient receives the formal diagnosis of GBM,

tumor cells can already be found throughout the entirety of their

brain (62). However, the overall distribution of malignant cells can

range from nodular to diffuse (63–65). Together, a tumor’s cellular

distribution and the extent of surgical tumor resection have

implications for prognosis (64–69). Machine learning models can

be trained to predict histology-based estimates of tumor cell density

from imaging (27, 70). In some cases, it may be beneficial to

supplement machine learning with mechanistic models of tumor

biology (71, 72). This can be particularly valuable when biological

processes are well defined and machine learning models may not be

trained on enough samples to fully detect the known relationship.
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In a study that compares a machine learning model, a mechanistic

model, and a hybrid model, the hybrid outperformed the other two

models (p<0.001) and had mean absolute predicted error value less

than half of either model alone. Taken together, these approaches

provide a means to convert routine clinical imaging into maps of

tumor cell density and invasion. Such tools can provide insight to

help balance aggressive surgical cytoreduction (i.e. supramarginal

resection) with sparing functional brain tissue (69).
Treatment assessment: immunotherapies

The profound inter- and intratumoral heterogeneity in GBM

make it challenging to assess treatment response to novel

therapeutics. The results of almost all GBM clinical trials have

been deemed underwhelming because, on average, patient

outcomes are not significantly improved. However, there may be

small groups of patients who are responding to these experimental

therapies but remain undetected when averaged together with such

large, diverse cohorts. Worse yet, treatment response can appear the

same or very similar to tumor progression on routine clinical

imaging, particularly in the case of immunotherapies. This

imaging ambiguity creates a major challenge in clinical decision-

making, as it is unclear whether the immunotherapy is working or a

change in treatment is warranted. There are numerous documented

cases of such circumstances in which surgical biopsies reveal

treatment-related immune infiltrate in the absence of tumor

cells (73).

Image-based machine learning models offer us the opportunity

to identify groups of patients who responded to therapies through a

targeted, hypothesis-driven approach. For example, many

immunotherapies are anticipated to boost a patient’s systemic and

intratumoral T-cell response. T-cell abundance can be estimated

through a var i e t y o f means ( e . g . , flow cy tomet ry ,

immunohistochemistry, RNA sequencing fol lowed by

deconvolution) and used as the biological target variable in the

generation of radiomics models. Image-based models, trained on T-

cell estimates from samples paired with image-localized biopsies,

can be applied to MRIs from immunotherapy trials to measure the

changes in predicted intratumoral T-cell dynamics over the course

of therapy (Figure 3) (29). The ultimate long-term goal of this
TABLE 1 Key examples of clinically-relevant radiomics applications in the literature.

Outcome Variable Type Example references

High grade glioma vs. low grade glioma Binary Zacharaki et al. (2009) (41), Skogen et al. (2016) (42), Vidyadharan et al. (2022) (43)

Radiation necrosis vs. tumor progression Binary Hu et al. (2011) (44), Tiwari et al. (2016) (45), Ismail et al. (2018) (46)

Glioma grade (I-IV) Ordinal Xie et al. (2018) (47), Qi et al. (2018) (48)

Patient survival time Ordinal Baid et al. (2020) (26), Suter et al. (2020) (49), Chato et al. (2021) (50), Karami et al. (2021) (51)

EGFR mutation status Nominal Zinn et al. (2017) (52), Pease et al. (2022) (53)

IDH mutation status Nominal Hsieh et al. (2017) (54), Jakola et al. (2018) (55), Lee et al. (2019) (56), Han et al. (2019) (11)
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FIGURE 2

Spatially-resolved radiomics models can predict tumor regions with genomic alterations. In this illustration, an image-based machine learning model
predicted EGFR amplification on serial imaging of a patient receiving erlotinib, an EGFR-targeting therapy. Notably, the regions which lose contrast
enhancement over the course of therapy are the same regions that were predicted to be EGFR amplified (red). Regions of tumor progression were
in locations that the model predicted to be EGFR wild-type (yellow). These results are consistent with the reality that intra-tumoral heterogeneity
limits the efficacy of targeted therapies to only subregions within a tumor.
BA

FIGURE 3

Illustrative case using image-based modeling to predict intratumoral T-cell abundance (A) before and (B) after the initiation of immunotherapy. Serial
predictions over time may aid in the evaluation of novel immunotherapies, as treatment-responsive patients may go undetected with traditional
methods of clinical trial assessment.
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approach is to identify patients who responded or are responding to

novel therapies. This identification will allow us to effectively

streamline targeted therapies and move us closer towards a reality

of individualized medicine.
Conclusions

Image-based models have the potential to transform the way we

evaluate CNS tumors, prognosticate patient outcomes, and even assess

the efficacy of novel therapeutics. While whole-tumor classification

models have gained popularity and certainly hold value, the innate

intratumoral heterogeneity of these malignancies requires a spatial,

voxelwise approach to truly assess the entire landscape. The collection

of image-localized biopsies in the operating room can be resource-

intensive, and it will require massive amounts of data collection to

validate and apply these spatiotemporal machine learning approaches

on a large scale. However, this effort will pay dividends when

physicians can non-invasively assess a patient’s dynamic tumoral

and microenvironmental landscape in real-time and make

personalized treatment decisions accordingly.
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