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Lung cancer is the leading cause of cancer death in the United States and

worldwide, and amajor source of cancer health disparities. Lung cancer cell lines

provide key in vitro models for molecular studies of lung cancer development

and progression, and for pre-clinical drug testing. To ensure health equity, it is

imperative that cell lines representing different lung cancer histological types,

carrying different cancer driver genes, and representing different genders, races,

and ethnicities should be available. This is particularly relevant for cell lines from

Black men, who experience the highest lung cancer mortality in the United

States. Here, we undertook a review of the available lung cancer cell lines and

their racial and ethnic origin. We noted a marked imbalance in the availability of

cell lines from different races and ethnicities. Cell lines from Black patients were

strongly underrepresented, and we identified no cell lines from Hispanic/Latin(x)

(H/L), American Indian/American Native (AI/AN), or Native Hawaiian or other

Pacific Islander (NHOPI) patients. The majority of cell lines were derived from

White and Asian patients. Also missing are cell lines representing the cells-of-

origin of the major lung cancer histological types, which can be used to model

lung cancer development and to study the effects of environmental exposures

on lung tissues. To our knowledge, the few available immortalized alveolar

epithelial cell lines are all derived from White subjects, and the race and

ethnicity of a handful of cell lines derived from bronchial epithelial cells are

unknown. The lack of an appropriately diverse collection of lung cancer cell lines

and lung cancer cell-of-origin lines severely limits racially and ethnically inclusive

lung cancer research. It impedes the ability to develop inclusive models, screen
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comprehensively for effective compounds, pre-clinically test new drugs, and

optimize precision medicine. It thereby hinders the development of therapies

that can increase the survival of minority and underserved patients. The noted

lack of cell lines from underrepresented groups should constitute a call to action

to establish additional cell lines and ensure adequate representation of all

population groups in this critical pre-clinical research resource.
KEYWORDS

lung cancer, cell lines, underrepresented, diversity, cancer health disparities, lung
adenocarcinoma, squamous cell lung cancer, in vitro models
Introduction

Lung cancer remains the leading cause of cancer death in the

United States (1, 2) and in the world (3) and is a prominent source

of cancer health disparities (4). In the United States, Black men have

the highest rate of lung cancer mortality among all groups (5). Lung

cancer deaths in the United States have steadily declined due in

large part to a decrease in smoking rates, particularly within Black

men and women (4, 6). As a result, the gap in lung cancer deaths

between Black and White men is slowly closing (1). Yet Black men

in the United States still show a 12% higher lung cancer incidence

rate and a 15% higher lung cancer death rate compared to White

men (4, 6). Many factors are thought to contribute to this disparity,

including socioeconomic factors, such as a lower frequency of

screening, lack of awareness of and access to molecular testing,

lack of awareness and participation in clinical trials, mistrust of the

medical profession, and lack of diversity in the biomedical

workforce (7–9). Importantly, genetic differences between Black

and White subjects likely also play a role (10–14), with further

studies required to uncover additional associations (15). It has been

determined that genetics can affect lung cancer risk (16, 17), for

example through differences in nicotine and carcinogen uptake (18–

24) or the strength of detoxification responses (10, 25–27). Genetic

background/ancestry can also affect the nature of driver mutations

acquired by tumors (28–32), tumor mutational burden (33), and

patient response to therapy (34). Given the numerous possible

effects of genetic background on lung cancer development,

pathology, and treatment, it is vital that race/ethnicity be

considered in lung cancer research (35).

There are many established model systems to study lung cancer

in vitro or in vivo (36). Among these, lung cancer cell lines represent

a versatile and relatively affordable resource that can be widely

disseminated to the scientific community (36, 37). Cell lines can be

used to gain molecular insights into the development and

progression of lung cancer and to pre-clinically test prospective

lead candidate drugs (36, 37). Given the disproportionate impact of

lung cancer on Black individuals as documented in the United

States (4–6), we investigated the availability of lung cancer cell lines

from Black and other underrepresented population groups, in order
02
to determine whether available cell lines adequately represent the

diversity in histological type, gender, race, and ethnicity required for

optimal lung cancer research. The current review summarizes

our findings.
Lung cancer types

An important consideration for the use of cancer cell lines is

that they must represent the diversity of cancer types for a given

organ. In the case of lung cancer, the major histological types of

lung cancer should be represented. Historically, four major

histological types were designated: lung adenocarcinoma (LUAD),

squamous cell carcinoma (LUSQ), small cell lung cancer (SCLC),

and large cell carcinoma (LULCC) (Figure 1). Based on the 2015

World Health Organization reclassification of the 2004-designated

lung cancer histological types, these four groups were reclassified

into three major types: Lung adenocarcinoma, squamous cell

carcinoma, and neuroendocrine tumors (40–42), the latter

including small cell lung cancer and large cell carcinoma. Lung

adenocarcinoma (LUAD), arising in the air sacs (alveoli) of the

distal lung, is the most frequently occurring histological type and

commonly presents in the following subtypes: lepidic, acinar,

papillary, micropapillary, and solid (42). In addition, LUAD can

present as invasive mucinous, colloid, fetal, enteric, and minimally

invasive (42). Squamous cell lung cancer (LUSQ) is thought to arise

in the airways, is the second most common major lung cancer type,

and shows clearly present squamous morphologic patterns. LUSQ

can be subclassified as keratinizing, nonkeratinizing, and basaloid.

Within neuroendocrine tumors, the most common type is small cell

lung cancer (SCLC), a very aggressive cancer that is thought to arise

mainly from rare pulmonary neuroendocrine cells [though therapy-

resistant lung adenocarcinoma can recur as SCLC, through genetic

alterations and a possible stem cell intermediate (43, 44)]. Large cell

lung carcinomas (LULCC) are poorly differentiated and when

neuroendocrine morphology or staining patterns are seen, large

cell lung cancers are referred to as large cell neuroendocrine

carcinomas. Large cell carcinomas lacking neuroendocrine

markers have been largely reclassified and assigned to other
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groups depending on immunohistochemical analyses, leaving only

a small group of highly undifferentiated cancers designated as large

cell carcinomas (~ 1%) (42).

We used data from the Surveillance, Epidemiology and End

Results (SEER, https://seer.cancer.gov/) program, a large United

States-based cancer registry that at present includes over 331

million subjects from 17 regions, to assess lung cancer mortality

for different races/ethnicities for the main histological types

(Figure 2). The data shows LUAD as the most common

histological type across all gender and racial/ethnic categories.

Black men and White women show the highest age-adjusted

mortality rates for LUAD. Squamous cell lung cancer is the

second most common histological type, with Black men and

women showing the highest age-adjusted mortality rates for

LUSQ. Age-adjusted mortality rates for SCLC are highest for

White men and women, while for LULCC they are highest

for Black men. Cell lines have been established from the most

common lung cancer types (36), with lung adenocarcinoma cell

lines predominating because cultures were relatively easy to

establish. It should be noted that the histological classifications of

cell lines are based on the WHO classification in use at the time the

lines were established and may thus not fully match

current designations.
Cell lines as model systems

Lung cancer cell lines allow the in vitro study of human lung

cancer, and are especially important for facilitating research when
Frontiers in Oncology 03
tumor samples are difficult to obtain. SCLC is one such case; it is

rarely surgically resected because patients usually present with

metastases. In principle, cell lines can be propagated indefinitely

and relatively cheaply and are easily disseminated, which allows

different labs to study the same cells and compare their results, for

example in drug screens. Another advantage of cancer cell lines is

that they are pure populations of cells, lacking contaminating

stroma and other cell types, thereby allowing detailed genetic and

epigenetic studies. This lack of context also has its drawbacks, but

these can be addressed using certain culture conditions and model

systems as described in a later section.

The first cancer cell line to be cultured was the HeLa cell line,

derived from Henrietta Lacks, a black woman with cervical cancer

(46). Important ethical questions have been raised about the fact

that the cells were obtained at the time without informed consent

from the patient (47). The establishment of the HeLa cell line was a

scientific breakthrough, and HeLa cells have been widely used in

academic and biotech laboratories (47). The demonstrated ability to

culture tumor cells from a human patient set the stage for

subsequent work establishing cell lines from many kinds of

cancer, including lung cancer cell lines.

Due in large part to intensive efforts by Drs. Gazdar, Minna, and

Carney to optimize methods to derive cell cultures from patient

lung tumors, a large number of cell lines were established (37, 48).

With their collaborators, these investigators ultimately cultured

more than 200 lung cancer cell lines of different histological

types, initially at the National Cancer Institute (NCI-designated

lung cancer cell lines), and later at UT Southwestern Medical Center

at the Hamon Cancer Center (HCC-designated cell lines).
BA

FIGURE 1

Major lung cancer histological subtypes. (A) Pie chart showing mortality data indicating the proportion of different histological subtypes. Mortality
data was obtained from the Surveillance, Epidemiology, and End Results (SEER) Program based on 17 registries in different regions of the United
States (www.seer.cancer.gov). SEER*Stat Database: Incidence-Based Mortality - SEER Research Data, 17 Registries, Nov 2021 Sub (2000-2019) -
Linked To County Attributes - Time Dependent (1990-2019) Income/Rurality, 1969-2020 Counties, National Cancer Institute, DCCPS, Surveillance
Research Program, released April 2022, based on the November 2021 submission. Mortality was calculated via incidence-based mortality (IBM), a
method to capture population-level mortality which can be attributable to particular tumor types or other variable reported to SEER registries. IBM
calculations were done as described (38). ICD-O-3 morphology codes were grouped together to form the main histologic subtypes, as described
(39). LUAD, Lung adenocarcinoma; LULCC, Lung large cell carcinoma; LUSQ, Lung squamous cell cancer; NOS, Lung cancer, not otherwise
specified; Other, Other specified carcinoma, including but not limited to carcinoid carcinoma, adenosquamous carcinoma, salivary gland-type
carcinomas; SCLC, Small cell lung cancer. (B) Hematoxylin and eosin-stained sections of different lung cancer types at 400x magnification.
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Combined with the efforts of other investigators across the world,

over 400 lung cancer cell lines have been reported (36). Many of

these cell lines have been cultured for decades, raising concerns

among some investigators that the lines might experience genetic

drift. Fortunately, the genetic and epigenetic alterations seen in lung

cancer cell lines have remained relatively stable over time (37). It

has also been asked how well the obtained cell lines represent the

tumors from which they are derived. A comparison between a large

number of lung cancer cell lines and primary lung cancers has

demonstrated that many key genetic and epigenetic changes seen in

lung cancer tumors have also been observed in cell lines (37).
Cell line quality and authentication

Two important considerations when using cell lines for research

are cell line quality and authenticity. The presence of contaminating

microorganisms, particularly mycoplasma, and the cross-

contamination with other cell lines can invalidate performed

research (49, 50). Mycoplasma is a type of infectious prokaryote

lacking a rigid cell wall. While primary cells can be contaminated,

laboratory personnel can also be a source of infection (49). Infection

can affect cell growth and physiology, thereby nullifying

experimental results and making it imperative that cultures be

routinely tested so that contaminated cultures be discarded (49,

51–54). If discarding is not an option because a cell line is rare or
Frontiers in Oncology 04
even irreplaceable, treatment with antibiotics may be considered

(55). Authentication of cell lines is also of critical importance. A

previous lack of cell line authentication has resulted in large

numbers of publications based on incorrect cell types, including

many cell lines found to be, in truth, HeLa cells (56). Thus, cell lines

should be obtained from reliable sources and should be routinely

authenticated through DNA fingerprinting, i.e., the use of short

tandem repeats (STRs) (47, 51, 53, 54, 57) (see Table 1 for useful

web sites). Journals and granting agencies can help minimize

misidentification by requiring authors to authenticate cell lines

used in publications (58, 59), such as required by the National

Institutes of Health (https://grants.nih.gov/grants/guide/notice-

files/not-od-15-103.html). Current recommendations are to test

cell lines for mycoplasma and authenticity when they first reach a

new laboratory, before publication, and every two months while

in culture.
Representation of different races/
ethnicities in current lung cancer cell
line collections

We investigated the availability of lung cancer cell lines

representing different races/ethnicities using the resources listed

in Table 2. We identified over 800 lung cancer cell lines

(Supplementary Table 1). A substantial fraction of these are
FIGURE 2

Race and ethnicity-specific mortality data for lung cancer histological subtypes. Mortality data was obtained from the Surveillance, Epidemiology,
and End Results (SEER) Program based on 17 registries in different regions of the United States (www.seer.cancer.gov). SEER*Stat Database:
Incidence-Based Mortality - SEER Research Data, 17 Registries, Nov 2021 Sub (2000-2019) - Linked To County Attributes - Time Dependent (1990-
2019) Income/Rurality, 1969-2020 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2022, based on the
November 2021 submission. Mortality rates are given for each group per 100,000 individuals in that group. Mortality rates were calculated via
incidence-based mortality (IBM), a method to capture population-level mortality which can be attributable to particular tumor types or other variable
reported to SEER registries. IBM calculations were done as described (38). ICD-O-3 morphology codes were grouped together to form the main
histologic subtypes, as described (39). Rate ratio comparison for mortality between individual race/ethnic groups compared to the overall rate of the
respective gender were requested as outputs from SEER*Stats, which utilizes the Tiwari method (45). Taking into account a Bonferroni correction for
the 40 comparisons, made, we considered the rate ratio significantly different compared to the “All” rate of their respective gender (orange bars) for
p-value<0.00125. *,Significantly higher than the All rates for that gender; *,Significantly lower that the All rates for that gender. LUAD, Lung
adenocarcinoma; LULCC, Lung large cell carcinoma; LUSQ, Lung squamous cell cancer; SCLC, Small cell lung cancer.
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isogenic (derived from the same parental line) or derived from

different sites of the same patient. We identified almost 200 lung

cancer cell lines from White subjects (Supplementary Table 1A),

6.5-fold more than the 31 cell lines available from Black patients

(Table 3, Supplementary Table 1B). One of the 31 cell lines appears

to be a duplicate (NCI-H2108 lists identical patient age, gender,

cancer histology, and cell line STR analysis to NCI-H2107). Of the

30 unique Black lung cancer cell lines, 6 were derived from lung

adenocarcinomas, 4 from squamous cell cancers, 11 from SCLCs,

and the remainder were from unspecified non-small cell lung

cancers (3), adenosquamous carcinomas (2), large cell carcinomas

(2), a carcinoid tumor, a giant cell carcinoma, and a

mucinoepidermoid carcinoma. Ancestry information was

available for 24 of these lines, and showed African ancestry,

ranging from 56% to 91%.

We identified 390 cell lines from Asian lung cancer patients

(Supplementary Table 1C), of which 20% appear to be non-unique

(e.g. from different metastatic sites in the body of a given patient), or

sister cell lines derived through manipulation of the original

cell line.

We did not identify any cell lines representing H/L, AI/AN, or

NHOPI individuals. It is possible that H/L ethnicity has not been

properly documented for existing cell lines and thus, that such cell

lines might be present in the current collection. However, while cell

line race can be retrospectively examined using ancestry

informative markers (single nucleotide polymorphisms that help

infer ancestry admixtures (70–73)), H/L individuals in the Unites

States represent an admixture population that may include White,

Black, and AI/AN components and would be difficult to genetically

identify. Going forward, ethnicity information would need to be

documented at the time of sample collection.
Frontiers in Oncology 05
We found almost 300 cell lines for which race/ethnicity is

unknown (Supplementary Table 1D). Thus, there may be Black,

AI/AN, and NHOPI cell lines among these unclassified lines and it

may be worth determining their genetic ancestry (70–73).

We noted that the number of cell lines developed from men was

over 2-fold higher than cell lines developed from women, and this

excess was most prominent for the cell lines developed from Asian

individuals (almost 7-fold) (Supplementary Table 1). This

difference exceeds what might be expected based on the higher

frequency of lung cancer detected in males, and indicates a disparity

in the representation of female individuals in lung cancer cell lines.

Overall, we conclude that there is a marked lack of cell lines from

underrepresented populations and an underrepresentation of cell

lines from women.
Cell lines representing the cells-of-
origin of different types of lung cancer

In addition to cell lines derived from tumors, it is also important

to establish cell lines derived from the cells-of-origin for the

different lung cancer histological types. These cells can be useful

for modeling the sequential development of the different lung

cancer histological types and the effects of environmental

exposures on lung cel ls from the airway or alveolar

compartments. Genetic background can affect lung cancer

predisposition as well as the metabolism and detoxification of

tobacco smoke components (10, 18–27, 74). Thus, just as we need

lung cancer cell lines from different races and ethnicities, we need

cell-of-origin cell lines from different races and ethnicities to

appropriately model lung cancer development. Normal lung cells

derived from humans are not immortal and will undergo

senescence when propagated in vitro (75). Immortalized cell lines

must therefore be created using either viral genes such as Simian

Virus 40 large T antigen (SV40LgT) (76, 77) or human

papillomavirus E6+E7 genes (78), or overexpression/modification

of human genes that allow cell cycle progression and prevent

telomere shortening and the resulting senescence (79).

LUAD arises from alveolar epithelium, and to model human

lung adenocarcinoma development in vitro, human immortalized

alveolar epithelial cells are required. Four immortalized alveolar

epithelial cell lines (hAECs) were established using SV40LgT

antigen (80, 81). Race is only known for 3 of these cell lines,

which were derived from White subjects (81). In addition, a

polyclonal alveolar epithelial cell line of unknown race/ethnicity

was established using a proprietary cocktail of 33 immortalization

genes (82) and from it, a monoclonal cell line (Arlo) was recently

derived (83). It will be important to develop additional

immortalized alveolar epithelial cell lines for other racial/ethnic

groups, given that LUAD is the most common lung cancer

histological type in the United States for both genders and all

races and ethnicities (Figure 2).

Human bronchial epithelial cells, the putative cells of origin of

LUSQ, have been immortalized with SV40LgT, resulting in the

BEAS-2B cell line (84), and by using overexpression of the

telomerase gene in combination with either overexpression of G1
TABLE 2 Resources from which lung cancer cell line information was
obtained.

Resource Name Web site

ATCC: The Global Bioresource Center https://www.atcc.org/

cBioPortal for Cancer Genomics https://www.cbioportal.org/

Expasy - Cellosaurus. https://www.cellosaurus.org/

Wellcome Sanger Institute. Cell model
Passports. A Hub for Preclinical Cancer
Models.

https://
cellmodelpassports.sanger.ac.uk/
passports?tissue=lung
Additional data was obtained from the literature (36, 37, 50, 60–69).
TABLE 1 Cell line verification web sites.

Goal Web site

Identify cell lines https://www.atcc.org/search-str-database

Identify cell lines https://www.cellosaurus.org/

Identify cell lines https://www.dsmz.de/services/human-and-animal-cell-
lines/online-str-analysis

Find mislabeled
cell lines

https://www.atcc.org/the-science/authentication/
reclassified-cell-lines
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cell cycle kinase CDK4 or short hairpin RNA-based knockdown of

cell cycle regulatory proteins p16INK4A and p14ARF. The latter

yielded human bronchial epithelial cells (HBECs) and small

airway epithelial cells (SAECs) (85, 86). BEAS-2B, HBEC, and

SAEC cell lines can be useful to model the development of

squamous cell lung cancer or determine the effects of

environmental exposures on airway cells. To our knowledge, the
Frontiers in Oncology 06
race/ethnicity of the individuals from whom the cell lines were

derived is unknown. Thus, ancestry tests of these lines would be

useful, as would establishing more of these types of cell lines

representing diverse races.

The availability of methods to establish immortalized alveolar

and airway cells allows progress to be made in deriving additional

cell lines from racially and ethnically diverse subjects. However,
TABLE 3 Lung cancer cell lines from Black patients.

Name Sex Age Histol. Type Smoking % African Mutations

201T M 68Y LUAD U 89 TP53

HCC1195 M 47Y LUAD U 70 TP53, NRAS

HCC122 M 48Y LUAD U U U

NCI-H23 M 51Y LUAD U 68 TP53, KRAS, STK11, ATM

NCI-H1373 M 56Y LUAD SM (30 py) 72 TP53, KRAS

NCI-H1648 M 39Y LUAD SM 69 TP53

NCI-H125* M 61Y LUADSQ U U TP53

NCI-H513 M 61Y LUADSQ U 84 U

HLF-a** F 54Y LUSQ U 91 U

NCI-H1385 F 49Y LUSQ SM (33 py) 69 KRAS

HCC15 M 47Y LUSQ U 77 TP53, RB1, NRAS, EP300, CTNNB1

HCC1897 M 47Y LUSQ U 77 U

NCI-H64 F 48Y SCLC SM (30 py) 68 TP53

NCI-H128 M 60Y SCLC U 70 TP53

NCI-H220 M 51Y SCLC NS U U

NCI-H250 M 34Y SCLC NS 91 TP53, RB1

NCI-N390 M 49Y SCLC U U U

NCI-H748 M 62Y SCLC SM (30 py) 86 TP53, BRCA2

NCI-H1048 F 53Y SCLC NS 70 TP53, RB1, PIK3CA

NCI-H1339 F 49Y SCLC U 71 TP53

NCI-H1963 M 56Y SCLC U 56 TP53, RB1

NCI-H2107 M 36Y SCLC U U TP53

NCI-H2108*** M 36Y SCLC SM (26 py) U U

NCI-H835 F 48Y LUCART NS 80 U

HCC1359 F 55Y LUGCC U 86 TP53

HCC3051 M 63Y LULCC U U U

NCI-H810 M 51Y LuLCC U 82 TP53, DDR2

NCI-H292 F 32Y LUMEC U 81 NF2

EMC-BAC-1 M U NSCLC U 74 TP53, STK11

NCI-H2110 U U NSCLC NS 83 U

NCI-H2172 F U NSCLC NS 82 U
*Cell line discontinued; **Cell line reported to be contaminated; ***Duplicate cell line (H2107); Sex: M, Male; F, Female; Age: Y,Years; Subtype: LUAD, Lung adenocarcinoma; LUADSQ, Lung
adenosquamous carcinoma; LUCART, Lung carcinoid tumor; LUGCC, Lung giant cell carcinoma; LULCC, Lung large cell carcinoma; LUMEC, Lung mucoepidermoid carcinoma; LUSQ, Lung
squamous cell cancer; NSCLC, non-small cell lung cancer; SCLC, Small cell lung cancer; Smoking: NS, non-smoker; SM, Smoker; py, pack years; U, Unknown; % African: Percentage African
ancestry; U, Unknown; Mutations: known mutations are indicated; U, Unknown. Additional information can be found in Supplementary Table 1B.
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there is one important cell type for which no immortalized human

cell lines have yet been established: pulmonary neuroendocrine

(PNE) cells, the main cell-of-origin of SCLC (87). Immortalized

PNE cells would be an important added tool to study the

development of SCLC and may be especially relevant for studies

of Black SCLC, as this type of cancer may arise at an earlier age in

Black subjects than in other races (88, 89). However, PNE cells are

rare (less than 1% of lung epithelial cells) making their isolation and

immortalization challenging. One possible strategy is to derive these

cells from induced pluripotent stem cells (iPSCs), a feat that was

recently achieved (90).

Derivation of cell line types from induced pluripotent cells has

also been used to obtain bronchial epithelial cells (91) and alveolar

epithelial cells (92–94). The availability of racially/ethnically diverse

iPSCs (95) provides an opportunity to derive diverse cell lines

representing lung cancer cells-of-origin. However, iPSC-derived cell

populations can consist of mixed cell types, and considerable time

and expertise are required to differentiate them correctly (96, 97).

Whether the epigenomes of such iPSC-derived cells fully match

those of the corresponding adult differentiated cell types would also

need to be determined. Using cell lines with the correct initial

epigenome is particularly relevant in studies of the effect of

environmental exposures (98). Epigenetic changes play a role in

the development of all cancer types (99) and can be driven by

environmental exposures such as tobacco smoke (100, 101). Using

cell lines with epigenomes matching the natural cells-of-origin is

also highly relevant for the study of disease-risk single nucleotide

polymorphisms (SNPs) (98). Most risk SNPs, including those for

lung cancer, lie in intergenic regions or introns, and likely affect risk

by introducing changes in epigenetic regulatory elements (102). If

cells differentiated from iPSCs do not epigenetically match their

normal mature counterparts, regulatory elements may be missing or

altered, thus affecting the correct interpretation of risk SNP

epigenetic environments.
Applications of lung cancer cell lines
and immortalized lung cell lines

Lung cancer cell lines and cell-of-origin cell lines can be used in

a wide variety of ways to study lung cancer (36). In the simplest

form, they can be grown on Petri dishes in two-dimensional culture

or, in the case of classic SCLC cell lines, in suspension (48). Such in

vitro cultures can be useful for the study of cancer driver and tumor

suppressor genes, epigenetic changes in cancer cells, the effects of

environmental exposures, and the investigation of lung cancer risk

SNPs, among other topics. Cell lines provide a relatively pure

population of cells compared to heterogeneous tumor or tissue

samples that can contain variable amounts of contaminating blood

cells and stroma. This simplification can greatly facilitate analyses

and provides one powerful strategy to leverage cell-based models.

However, it lacks the complexity arising from growth in three-

dimensional space or from the interactions with other cell types,

such as fibroblasts and blood vessels. Growth of pure cell lines with

a defined medium in three dimensions can provide the next level of
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complexity, while the addition of fibroblasts, endothelial, and blood

cells can further simulate in vivo characteristics. Even further

advanced are three-dimensional models, so-called “organs-on-a-

chip”, which may incorporate an air-liquid interface and/or the

movement associated with breathing (103, 104). Organ-on-a-chip

devices allow epithelial cells to be coated on a main channel and

supportive cells or endothelial cells on a parallel secondary channel

separated by a thin porous membrane (105). They can be used to

study cancerous cells or cancer cells-of-origin, and should be

considered for drug testing as the cellular microenvironment can

affect cancer cells’ susceptibility to drugs (106, 107).

No matter how advanced an in vitromodel is, it will not provide

a natural tumor microenvironment identical to that found in vivo.

To achieve the latter, implantation of cell lines into model

organisms such as mice is required. To avoid rejection,

immunocompromised (“nude”) mice or humanized mice need to

be used. Such models, known as xenografts, can be made using

human cancer cell lines, primary patient tumors, or even circulating

tumor cells (108). Subcutaneous implantation is often used; while

not fully mimicking the natural microenvironment, it allows easy

monitoring of tumor size and thereby any therapeutic responses.

However, if the cells used do not capture the racial and ethnic

diversity of lung cancer patients, all models will fall short in moving

lung cancer research forward for all population groups.
Discussion

Lung cancer cell lines and cell lines from lung cancer cells-of-

origin are a key part of the research toolkit needed to advance

knowledge on the development, progression, diagnosis, and

treatment of lung cancer. However, in order to ensure that the

knowledge gained, tools developed, and treatments devised are

applicable to the population regardless of race or ethnicity, we

need to ensure that cell lines representing all groups are available. In

particular, cell lines representative of Black males should be at hand

as Black males show the highest rates of lung cancer death. Here, we

investigated the availability of lung cancer cell lines from

underrepresented minority populations. We identified over 800

lung cancer cell lines, including ~200 unique lung cancer cell

lines from White subjects and over 300 from Asian subjects. This

contrasted with just 30 unique lung cancer cell lines available from

Black patients. No lung cancer cell lines from H/L, AI/AN, or

NHOPI individuals were identified, though some maybe present

among the almost 300 lung cancer cell lines of unknown race/

ethnicity. It is important to carry out ancestry analyses of existing

cell lines to verify which race these lines best represent. In addition,

a concerted effort should be made to generate more cell lines from

women and underrepresented groups, and to document ethnicity at

the time of tissue collection. Expanding the cell line repertoire is

even more relevant for cell-of-origin lines, of which there are very

few, and to our knowledge none from underrepresented groups.

It should be considered that certain racial/ethnic groups may

have cultural objections to donating cells or tissues. Those desires

should be respected, even if it means that population groups may
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not be represented in research. It is also important to keep in mind

that broadly defined race/ethnicity groups do not capture the

heterogenicity of admixed populations. For example, an analysis

of Hispanic men in Florida showed that while lung cancer mortality

rates were lower than those of White men, they were 50% higher in

Puerto Rican than non-Puerto Rican men (109). Once cell lines

from all groups willing to participate have been collected and

represent all three major lung cancer types and cells-of-origin

(from both men and women), thought should be given to key

subpopulations that may merit disaggregation.

One short-term way to partially alleviate the current paucity of

lung cancer cell lines representing different racial/ethnic groups is

to use genome engineering to derive isogenic cell lines from

the handful of underrepresented cell lines available. Cancer driver

genes present in the cell lines can be replaced by other driver genes

to generate cell lines in which the effects of different driver genes

within a similar genomic context can be examined. This would

expand the cell line repertoire available for molecular and drug

development studies. However, to do this in a biologically

meaningful way, the key cancer driver genes present in the

different racial/ethnic populations of lung cancer patients must be

identified. Unfortunately, cancer driver genes in underrepresented

populations are under-studied. For example, in the public database

The Cancer Genome Atlas (https://www.cancer.gov/ccg/research/

genome-sequencing/tcga), the number of sequenced lung cancer

samples from White patients outnumbers that of Black patients by

almost 9:1. Thus, data on driver mutations in underrepresented

patients must also be expanded. Clearly, much work remains to be

done. The first step is to highlight current shortcomings in

knowledge and resources, and to disseminate information to lung

cancer patients of all races and ethnicities about the need for cell

lines representing lung cancer in their communities. Explaining

how lung cancer cell lines and cell-of-origin lines can be used to

improve research and develop new therapies for people of the

patients’ own racial/ethnic backgrounds can help patients make an

informed decision about whether to participate. In addition, it

would be beneficial if the donations of tissues/cells were discussed

with patients by researchers and/or clinicians from their own racial/

ethnic group, supporting mutual trust and a better understanding of

research goals (7–9). To this end, all races and ethnicities should be

well-represented in the medical and biomedical research

professions. Thus, we need to build not only the tools, but also

foster the success of clinicians and biomedical researchers who can

advocate for the establishment and implementation of those tools.
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