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Bone is the most common site of metastasis from breast cancer, which is the

most prevalent cancer affecting women globally. Bone metastasis from breast

cancer severely affects the quality of life of patients and increases mortality. The

molecular mechanisms of metastasis, colonization, and proliferation of breast

cancer cells in bone are complex and involve the interaction between breast

cancer cells and the bone microenvironment. However, the precise mechanism

is not clear at present. In recent years, the Hippo signaling pathway has attracted

much attention due to its important role in regulating the expression of major

effector molecules during tumor development. In particular, studies have found

that the mutation and aberrant expression of the core components of the Hippo

signaling pathway affect breast cancer cell migration and invasion, indicating that

this pathway plays a role in bone metastasis, although the molecular mechanism

of this pathway in breast cancer metastasis has not been fully elucidated. In this

review, we discuss the function of the Hippo signaling pathway, introducing its

role in breast cancer metastasis, especially bone metastasis of breast cancer, so

as to lay a solid theoretical foundation for further research and for the

development of effective targeted therapeutic agents.
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1 Introduction

Breast cancer is the most common malignant disease among women worldwide, and

the leading cause of cancer-related deaths in patients (1). The detection and treatment of

breast cancer have improved due to advancements in imaging technology, surgery, and

medical, biological, and pharmaceutical technology. However, despite these improvements,

the global incidence of breast cancer continues to rise, affecting younger individuals, and

the mortality rate remains high. Importantly, many cancer patients die not because of

tumor growth at the primary site but because of tumor invasion or metastasis to other sites.

Bone metastasis is the most frequent site of metastases for breast cancer (2, 3). Clinically,

bone metastasis often brings great pain to patients and seriously affects their quality of life.
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Furthermore, upon metastasis of the tumor to the bone, the

condition is typically deemed incurable and the overall prognosis

is unfavorable (4). At present, various treatments for breast cancer

bone metastases do not significantly prolong the median survival of

patients. Although great progress has been made in the study of

breast cancer metastasis, the specific mechanism of bone metastasis

is still unclear. Therefore, the elucidation of the mechanisms

underlying breast cancer bone metastasis remains a daunting task.

The Hippo signaling pathway is a highly conserved inhibitory

signaling pathway first discovered in Drosophila melanogaster that

regulates organ development by inhibiting cell proliferation and

promoting apoptosis (5). In recent years, the Hippo signaling

pathway has been found to be closely related to tumorigenesis and

has thus become a new research hotspot (6–8). However, at

present, there are few studies on the role of the Hippo signaling

pathway in breast cancer metastasis, especially bone metastasis,

and the molecular regulatory mechanisms are still unclear. By

reviewing the connection between the Hippo pathway and breast

cancer bone metastasis, we hope to shed light on the pathway’s

crucial roles and provide the groundwork for using it as a target in

tumor treatment.
2 Overview of the Hippo
signaling pathway

The Hippo signaling pathway consists of three parts:

upstream active components, core molecules, and downstream

effector molecules. The upstream active components include

FAT Atypical Cadherin 4 (FAT4, Fat homology), FEMD6 (Ex

homology), neurofibroma protein 2 (NF2, Mer homology), and

Dachsous1/2 (DCHS1/2). The core molecules include

mammalian Sterile 20-like kinase 1/2 (MST1/2, Hippo

homolog), salvador family WW domain-containing protein 1

(SAV1), large tumor suppressor kinase 1/2 (LATS1/2, Warts

homolog), and MOB kinase activator 1 (MOB1). The

downstream effector molecules include yes-associated protein

(YAP) and transcriptional co-activator with PDZ-binding motif

(TAZ). The transcription-related parts include TEA domain

family members (TEADs) (9).

In the normal physiological state, Hippo signaling pathway

activity is strictly regulated. When the Hippo pathway is “turned

on,” MST1/2 or MAP4Ks are activated, which then phosphorylate

and activate Lats1/2 kinase, forming a complex with the scaffold

protein SAV1. It then phosphorylates YAP/TAZ in complex with

another scaffold protein, MOB1, which further binds cytoplasmic

14-3-3 proteins and stays in the cytoplasm, resulting in cytoplasmic

segregation of YAP/TAZ. It is then degraded by the corresponding

protease, ultimately inhibiting cell proliferation (10). In contrast,

when the Hippo pathway is “turned off,” YAP/TAZ are translocated

to the nucleus and interact with TEAD1–4 to regulate gene

expression. This allows the separation of vestigial-like family

member 4 (VGLL4) from TEAD1–4, thereby activating gene

transcription, ultimately promoting tissue growth and inhibiting

apoptosis (11) (Figures 1, 2). If any molecule in this pathway is

mutated or abnormally expressed, the balance between cell
Frontiers in Oncology 02
proliferation and apoptosis will be disrupted, leading to aberrant

tissue proliferation or tumorigenesis.
3 Roles of the Hippo signaling
pathway core molecules YAP/TAZ in
breast cancer metastasis

A significant contributor to tumor lethality and breast cancer

metastasis is a complex pathological process involving a number of

phases that is regulated by numerous genes and signaling pathways

(12). YAP and TAZ are the ultimate nuclear effectors of the Hippo
FIGURE 1

When the Hippo pathway is ON (meaning the kinases are
phosphorylated and active), YAP/TAZ are phosphorylated, resulting
in their binding to 14–3–3 and cytoplasmic retention as well
as degradation.
FIGURE 2

When the Hippo pathway is OFF (meaning the kinases are
unphosphorylated and inactive), YAP/TAZ are dephosphorylated and
accumulate in the nucleus, where they bind with TEADs.
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signaling pathway and play a role in the metastatic spread of tumor

cells and the homing of tumor cells to distant sites (13). Overholtzer

et al. (14) were the first to link YAP/TAZ with breast cancer. An

increasing number of studies have shown that YAP and TAZ play a

very important role in breast cancer metastasis (15, 16).

TAZ levels are elevated in approximately 20% of cancers and

drive tumor invasion and metastasis (17, 18). It has been

demonstrated that TAZ protein expression levels and activity are

upregulated in highly metastatic breast cancers (19). YAP, another

core effector molecule in the Hippo signaling pathway, was first

found to be a driver of metastasis in breast cancer (20). Studies have

shown that YAP expression and activation are positively correlated

with lymph node metastasis in breast cancer (21).
3.1 Effects of YAP/TAZ on EMT

Metastatic tumor cells exhibit increased motility and invasive

capabilities because of epithelial–mesenchymal transition (EMT), a

phenotypic conversion that reduces apico-basal pressure and results

in the acquisition of mesenchymal properties such as high motility

(22). Once YAP/TAZ enters the nucleus, it exerts its oncogenic

function in conjunction with bound TEAD, promoting cell

proliferation and the expression of EMT-related genes (23). Lei

et al. (24) found that TAZ activation induces EMT in normal

mammary MCF10A cells. Protease-activated receptor 1 (PAR1) is a

G Protein-Coupled Receptors (GPCR) family member involved in

cancer cell invasion and metastatic processes. Recent studies have

shown that PAR1 acts as a direct transcriptional target of Twist and

that it can promote EMT in breast cancer cells by inhibiting Hippo

pathway activation by YAP/TAZ (25). In addition, through EMT,

tumor cells acquire cancer stem cell features, promoting tumor

progression and metastasis. There are scholars who argue that TAZ

is essential for maintaining the self-renewal and tumorigenesis of

breast cancer stem cells (BCSCs) (15, 26). Bartucci et al. (27) found

that the expression level of TAZ in BCSCs was higher than that in

differentiated breast cancer cells, and knockout of TAZ in BCSCs

inhibited migration.
3.2 Effects of YAP/TAZ on invasion and
migration of breast cancer cells

Researchers have focused on the role of YAP/TAZ in the invasion

and migration of breast cancer cells. A large number of studies have

found that YAP/TAZ interacts with other proteins to promote invasion

and migration of breast cancer cells. Overexpression of TAZ in

MCF10A cells (in which native TAZ expression levels are low) causes

morphologic changes characteristic of cell transformation and promotes

cell migration and invasion (18). In addition, the TAZ/TEAD complex

can induce transcription of amphiregulin (AREG), which encodes one

of the ligands of the epidermal growth factor receptor (EGFR), to

activate an EGFR- but not EGF-dependent signaling pathway that

drives cell proliferation and migration, while knockdown of AREG

partially attenuates TAZ-dependent migration (28). Interestingly, the

above phenomenon is non-cell-dependent, and AREG expressed upon
Frontiers in Oncology 03
TAZ activation can be secreted extracellularly to activate EGFR in

adjacent cells and cause their proliferation and migration.

Cao et al. (29) observed that the leukemia inhibitory factor receptor

(LIFR), a known suppressor of breast cancer metastasis, is situated

downstream of miR-9 and upstream of Hippo signaling. LIFR was

found to be downregulated in breast cancer cells, and LIFR expression

exhibited a negative correlation with the likelihood of breast cancer

metastasis. Further studies revealed that restoration of LIFR expression

in highly malignant tumor cells inhibits metastasis by triggering the

Hippo signaling pathway kinase cascade, which leads to

phosphorylation, cytoplasmic retention, and functional inactivation

of the transcriptional co-activator YAP; in contrast, loss of LIFR in

non-metastatic breast cancer cells induces migration, invasion, and

metastatic colonization of breast cancer cells through activation of YAP

(30). Similarly, deletion of discs large homolog 5 (DLG5) in breast

cancer cell lines inhibits the Hippo signaling pathway and increases

YAP expression in the nucleus, thus promoting breast cancer cell

proliferation, migration, and invasion (31). Histone deacetylases

(HDACs) have been identified as key regulators of the progression of

multiple types of cancer. An et al. (32) demonstrated that HDAC8

promotes the migration of breast cancer cells in vitro. Specifically,

HDAC8 was found to inhibit the phosphorylation of YAP, which in

turn enhanced the migration of triple-negative breast cancer (TNBC)

cells. Conversely, silencing YAP was shown to attenuate the HDAC8-

triggered migration of TNBC cells.

In addition, it has been found that YAP promotes breast cancer

metastasis mainly through interaction with transcription factors

such as TEAD (20). It has been shown that DNA damage-activated

long non-coding RNA (lncRNA-NORAD) expression is

downregulated in breast cancer and its low expression is

associated with lymph node metastasis and poor prognosis (33).

lncRNA-NORAD expression is significantly inhibited by NORAD

upon migration and invasion of breast cancer cell lines. In breast

cancer, lncRNA-NORAD expression is downregulated, and the

Hippo signaling pathway and the YAP/TAZ–TEAD complexes

result in the suppression of NORAD transcription, which in turn

promotes tumor metastasis and invasion. Shen et al. (21) showed

that focal adhesion (FA) plays a key role in regulating tumor cell

motility and invasiveness and that adherent spot kinase (FAK) is a

key regulator that promotes FA formation whose upregulation and

activation are often associated with breast cancer metastasis and

poor prognosis. Interestingly, thrombospondin 1 (THBS1), a

stimulator of FAK and a direct transcriptional target of the Hippo

signaling pathway, has been observed to increase FAK

phosphorylation, thereby enhancing FA kinetics (34). Further

studies have shown that YAP activates THBS1 transcription in a

TEAD-dependent manner to induce FAK phosphorylation and

promote FA formation, thereby activating tumor cell migration

and invasiveness. Recently, it was found that transforming growth

factor beta (TGF-b) signaling can synergize with YAP/TAZ–TEAD

to regulate breast cancer cell metastasis. Specifically, the TAZ/YAP–

TEAD complex binds to pSMAD2/3 to activate a specific pro-

oncogenic transcriptional program that induces the expression of

the target genes neuronal growth regulator 1 (NEGR1) and

urothelial cancer-associated 1 (UCA1). This consequently

promotes the non-anchorage-dependent growth, migration, and
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tumorigenesis of breast cancer cells (35). The hyaluronan-mediated

motility receptor (RHAMM) has been reported to be a breast cancer

susceptibility gene with tightly controlled expression in normal

tissues but elevated expression in many tumors, contributing to

tumorigenesis and metastasis (36). Further studies revealed that

YAP/TEAD can bind to the RHAMM promoter and control its

transcription, which in turn controls the migration and invasion of

breast cancer cells (37). Chen et al. (38) found that when the

autophagic response was triggered in TNBC cells, YAP was

translocated to the nucleus and the expression of the YAP target

gene anchor protein repeat domain 1 (ANKRD1) was significantly

increased, thus promoting the migration and invasion of TNBC

cells. Conversely, inhibition of YAP translocation to the nucleus was

found to impede the migration and invasion of TNBC cells.

The aforementioned series of studies together show that YAP/

TAZ plays a significant role in fostering metastasis of breast cancer

(Figure 3). In fact, TAZ has been widely recognized as a cancer-

promoting factor, while the function of YAP as an oncoprotein

remains a topic of debate. It has been suggested that YAP is able to

function as either an oncoprotein or a tumor suppressor, depending

on the specific internal environment that is dictated by different

subtypes of breast cancer (39). Notably, although YAP and TAZ are

highly similar in structure, they are not functionally identical and

may play different specific roles mediated by multiple downstream

effectors and upstream regulatory molecules (13). Guan et al. (40)

showed that LATS1/2 plays a crucial role in sustaining ERa
expression through the inhibition of YAP/TAZ, which in turn

facilitates the proliferation of ERa+ breast cancer cells. In

response to this finding, they developed a potent LATS inhibitor,

VT02956. By targeting the Hippo pathway, VT02956 represses

ESR1 expression and inhibits the growth of ER+ breast cancer

cells as well as patient-derived tumor organoids (41). To date, it

remains to be confirmed by clinical and experimental studies with

large samples whether YAP plays the role of oncoprotein or tumor

suppressor in the development of breast cancer metastasis.
4 Role of the Hippo signaling pathway
in breast cancer bone metastasis

Metastasis is defined as the dissemination of neoplastic cells

from the primary neoplasm to secondary sites (42). Breast cancer
Frontiers in Oncology 04
cells disseminate from the original site, invade and translocate into

lymphatic vessels and blood vessels through defective areas in the

extracellular matrix, and metastasize to distant sites (43). The

microenvironment of bones holds various factors that are

essential for the proliferation and metastasis of breast cancer cells,

thereby creating a conducive environment for the spread of breast

cancer to bones. Therefore, bone is the preferred site of breast

cancer metastasis, and it has been reported that 70% of metastatic

breast cancer patients have bone metastases (44–46).
4.1 The Hippo signaling pathway regulates
bone metabolism to promote bone
metastasis in breast cancer

The balance of the intraosseous environment is maintained by

osteoblast-mediated bone formation and osteoclast-mediated bone

resorption (47, 48). If there is an imbalance between these two

processes, two types of bone metastatic tumors, namely osteolytic

and osteoblast metastatic tumors, develop (49). Breast cancer bone

metastases frequently arise from bone destruction caused by

excessive osteoclast bone resorption; so, the predominant form of

bone metastatic tumor is osteolytic (50, 51).

It is noteworthy that the Hippo signaling pathway has been

found to regulate the dynamic balance between osteoclasts and

osteoblasts (52, 53). Osteoclasts are the only known cell type capable

of resorbing bone matrix, and osteoclast activation is the central

cytological mechanism of osteolytic bone metastasis (54). The

Hippo signaling pathway is involved in breast cancer bone

metastases, primarily by controlling the metabolic homeostasis of

bone, as is evidenced by recent findings. Li et al. (55) demonstrated

that receptor tyrosine kinase-like orphan receptor 1 (ROR1)

promotes invasion, osteoclast differentiation induced by cancer

cells in vitro, and bone metastasis in vivo. ROR1 interacts with

human epidermal growth factor receptor 3 (HER3) and can form

heterodimers, and further studies have demonstrated that activation

of the Hippo–YAP pathway is critical for activating the downstream

effects of ROR1–HER3 heterodimers. The specific mechanism

involves the recognition of phosphorylated HER3 at Tyr1307 by

the SH2 domain-containing protein breast cancer anti-estrogen

resistance 3 (BCAR3), which subsequently recruits the adaptor

protein lethal giant larvae homolog 2 (LLGL2), allowing the latter
FIGURE 3

YAP/TAZ act as a promoter in breast cancer cell tumorigenesis.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1188310
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Han et al. 10.3389/fonc.2023.1188310
to be phosphorylated by ROR1. LLGL2 has previously been

reported to play a key role in mediating the cell–cell junction-

triggered Hippo signaling pathway (56). Subsequently, the LLGL2–

MAYA–NSUN6 RNA–protein complex methylates Hippo/MST1 at

the 59th lysine residue (Lys59). This methylation leads to MST1

inactivation, which results in YAP/TAZ activation in tumor cells,

inducing osteoclast differentiation and bone resorption, ultimately

promoting bone metastasis. In addition, Wang et al. (57) found that

high expression of the gene encoding ABL kinase was associated

with breast cancer bone metastasis. Subsequent investigations

demonstrated that knockdown of ABL kinase resulted in

decreased TAZ mRNA expression and reduced binding between

TAZ and its downstream target AXL, a receptor tyrosine kinase that

promotes breast cancer bone metastasis, and breast cancer bone

metastasis was inhibited (58). Bartucci et al. (27) also found that

nuclear expression of TAZ was significantly higher in bone

metastases than in the primary tumor. In these studies, it seems

that the Hippo signaling pathway plays a very important role in

breast cancer bone metastasis. A variety of factors in breast cancer

cells “turn off” the Hippo signaling pathway and YAP/TAZ enters

the nucleus to bind to downstream target genes, stimulating the

development of breast cancer bone metastasis (Figure 4).

In addition, hypoxia-activated HIF-1 in bone marrow may

promote the formation of osteolytic bone metastases by inhibiting

osteoblast differentiation and promoting osteoclastogenesis (59).

This process may be related to the Hippo signaling pathway

regulating breast cancer bone metastasis. It has been shown that

trans-activation of HIF-1 is regulated by the interaction of E-

cadherin and Hippo signaling pathway effectors (60). Research

has revealed that certain genes, such as TFF3, EGLN1, SNAI1,

MMP9, TGFB3, SLC2A3, and CTGF, are subject to direct

regulation by hypoxia (61). Under hypoxic conditions, the

binding of TAZ to the CTGF promoter increases, resulting in a
Frontiers in Oncology 05
HIF-1a-dependent increase in CTGF mRNA levels (62). Hypoxia

enhances the co-localization of TAZ and HIF-1a in the nucleus of

human 1833 cells while interfering with the DNA-binding activity

of the HIF-1 dimer complex (61, 63). In conclusion, HIF-1a
interacts with TAZ and stimulates breast cancer bone metastasis

in a hypoxic microenvironment. It is worth noting that oxidative

stress (OS)/COX-2 may be the molecular link between hypoxic

stimulation, the Hippo pathway, and the transcriptional regulator

Snail. Blocking COX-2 downregulates the expression of HIF-1a and

Snail in the nucleus of hypoxic 1833 cells, and then, TAZ is

phosphorylated by interacting with LATS. The nuclear

localization of LATS promotes TAZ translocation in the

cytoplasm, mediates TAZ phosphorylation and degradation,

inhibi ts TAZ entry into the nucleus , regulates TAZ

transcriptional co-activation, and prevents tumorigenesis (63).

Therefore, hypoxia and HIF play an important role in breast

cancer bone metastasis, and they may be important factors

regulating the EMT status of primary and secondary tumors.

Based on the aforementioned studies, it appears that YAP/TAZ

inhibitors and COX-2 inhibitors hold promise as novel avenues for

drug development, providing new solutions to prevent tumor

progression, reverse the tumor microenvironment, and break the

malignant cycle.
4.2 The Hippo signaling pathway mediates
other signaling pathways to regulate breast
cancer bone metastasis

The Hippo signaling pathway influences the homeostasis of

bone-metabolizing cells by regulating a complex network of core

components; moreover, it maintains the cellular microenvironment

of bone metabolism by interacting with multiple signaling pathways
FIGURE 4

NRG1-induced heterodimerization of ROR1 and HER3 leads to HER3 phosphorylation at Tyr1307, which in turn recruits the LLGL2–MAYA–NSUN6
RNA–protein complex, with lncRNA MAYA binding to both LLGL2 and NSUN6. In this MAYA-mediated mega-RNA–protein complex, ROR1 also
phosphorylates LLGL2. Both p-LLGL2 and MAYA are critical for the recognition of Hippo/MST1 by NSUN6. The methyltransferase NSUN6 in the
complex methylates Hippo/MST1 at Lys59, leading to a reduction of its kinase activity and hypophosphorylation of LATS1/2 and YAP. Then, YAP is
translocated into the nucleus, where it interacts with the transcription factor TEAD to increase the expression of downstream genes such as CTGF,
thereby promoting bone metastasis. In addition, ABL kinase phosphorylation stabilizes TAZ, which is translocated to the nucleus, where it interacts
with the transcription factor TEAD to increase the expression of downstream genes such as AXL, thereby promoting bone metastasis.
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and plays a regulatory role in bone metastasis of tumors (64). b-
Catenin is a key transcriptional regulator downstream of the Wnt

signaling pathway that regulates the expression of osteogenic

proteins such as RUNX2 and Osterix. When the Wnt signaling

pathway is inactivated, b-catenin is phosphorylated and degraded in
the cytoplasm under the action of a degradation complex. YAP/

TAZ is involved in the formation of this degradation complex.

Conversely, when theWnt signaling pathway is activated, its ligands

inhibit the function of the degradation complex, and b-catenin
enters the nucleus and interacts with the YAP/TAZ–TEAD

complex to jointly regulate the expression of downstream target

genes (65, 66). Studies on breast cancer with bone metastasis have

found that bone metastasis tumor cells can not only enhance the

function of osteoclasts and interfere with normal bone remodeling

but can also inhibit osteoblasts and prevent new bone formation

(67). The above processes regulate the proliferation and

differentiation of osteoblasts through interactions between the

Wnt signaling pathway and the Hippo signaling pathway, thus

affecting bone metastasis. Notably, in recent years, Snail and Slug

have been shown to be closely associated with the pluripotency of

mammalian cells and the self-renewal of stem cells, making it

possible to explore the association of Snail and Slug with the

Hippo signaling pathway and their role in the regulation of

cellular function and metabolism (68, 69). Tang et al. (70) found

that Snail/Slug interacts with YAP/TAZ, controlling the self-

renewal and differentiation of bone marrow mesenchymal stem

cells, thereby affecting bone development and formation. Both Snail

and Slug can form a binary complex with YAP or TAZ, which then

regulate the expression of downstream target genes, such as alkaline

phosphatase (ALP), RUNX2, and Osterix (71). So, this process

promotes osteogenesis.

The Hippo signaling pathway has been reported to be associated

with the RANKL/RANK signaling system. It is well known that the

RANKL/RANK signaling system is associated with almost every

step of breast cancer development, from primary tumorigenesis to

the establishment of secondary bone tumors (55). Osteoclast-

mediated bone resorption is a crucial and initial step in the

development of osteolytic lesions in breast cancer (67). The

interplay between the receptor activator of nuclear factor-kappa B

(RANK) and its ligand (RANKL) also plays a significant role in the

development of osteolytic lesions of breast cancer (72). At present,
Frontiers in Oncology 06
research on its signaling pathways regulating osteoblast

differentiation is mainly focused on RANKL-related signaling

pathways. Specifically, increased RANKL levels lead to

hyperactivation of osteoclastogenesis and bone resorption, paving

the way for metastatic clones to invade the bone (43, 73). Tumor

necrosis factor receptor-associated factor 6 (TRAF6) is an

important component of the RANKL/RANK signaling system,

which activates downstream signaling cascades and is one of the

critical factors for osteoclast activation. Ajuba, a member of the

Hippo signaling pathway, interacts with TRAF6 and positively

influences TRAF6 activation, thereby regulating downstream

factors that trigger osteoclast activation and bone resorption (74).

This leads us to hypothesize that when more TRAF6 is recruited in

the presence of Ajuba after RANKL is activated, it triggers massive

osteoclast activation, which leads to osteolysis and thus promotes

bone metastasis (Figure 5). Studies have shown that downstream of

MST and LAST in the Hippo signaling pathway, the transcriptional

co-activators YAP and TAZ bind to members of the TEAD family

of transcription factors to regulate the expression of downstream

target genes, such as connective tissue growth factor (CTGF/CCN2)

and cysteine-rich protein 61 (CYR61/CCN1), and the junctional

CTGF/CCN2 complex plays an important role in promoting

osteoclast formation and osteolytic metastasis in breast cancer

(75). In research on the effect of ectodermal-neural cortex 1

(ENC1) on radioresistance in breast cancer cells and showed that

overexpression of ENC1 promoted intranuclear translocation of

YAP/TAZ, enhanced the expression of GLI1, CTGF, and FGF1, and

promoted the progression of breast cancer cells to bone and brain

metastasis (76). Interestingly, CTGF also binds to osteoprotegerin

(OPG) and RANK to activate the NF-kB signaling pathway and

promote osteoclastogenesis, suggesting that the binding of YAP to

TEAD family transcription factors mediates the execution of the

osteoclastic program (77, 78). In addition, OPG acts as a

pseudoligand for RANKL and competitively binds RANKL to

avoid osteoclastogenesis and thus protects bones. Binding of

TRAF6 to the cytoplasmic region of RANK leads to the activation

of NF-kB, which is then translocated to the nucleus. The

translocated NF-kB, in combination with P65, results in the

interaction of the nuclear factor of activated T cell 1 (NFATc-1)

and c-Fos. This interaction contributes to the transcription and

expression of osteoclast genes, ultimately inducing the formation of
FIGURE 5

When RANKL is activated, it recruits more TRAF6 under the action of Ajuba, stimulating osteoblasts to differentiate into osteoclasts, thereby causing
osteolysis and bone metastasis.
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mature osteoclasts. Notably, in MST2-deficient osteoclast precursor

cells, the NF-kB signaling pathway is in an activated state, and the

RANKL receptor increases NFATc1, Acp5, and OSCAR expression,

ultimately promoting osteoclastogenesis; in contrast, when

osteoclast precursor cells overexpress MST2, the NF-kB signaling

pathway is inhibited and osteoclastogenesis is also inhibited (79). In

addition, the Ras-association domain family (RASSF), an upstream

regulatory protein of MST, possesses a SARAH domain that can

bind to it. RASSF1A, RASSF2, and RASSF8 can inhibit the

transcriptional activity of the NF-kB signaling pathway (80, 81).

Song et al. (82) established an RASSF2-/- mouse model and found

that RASSF2 defects caused developmental delay in mice and

observed a severe osteoporosis phenotype. Moreover, RASSF2

deficiency leads to the overactivation of NF-kB during osteoclast

differentiation. The observed negative correlation between MST2

expression and osteoclastogenesis implies that RASSF2 may play an

essential role in osteoclast formation by binding to the Hippo

signaling pathway protein MST2 and interacting with the

RANKL-mediated NF-kB signaling pathway. It has been reported

that activation of the NF-kB signaling pathway, as well as Jun N-

terminal kinase (JNK), the calcium signaling pathway, MAPK, and

other signaling pathways, can be mediated by the binding of

RANKL to RANK (64, 83). These pathways are known to play a

key role in the development and activation of osteoclasts. Thus, it

seems that the interactions between the abovementioned signaling

pathways and the Hippo signaling pathway affect the activation of

osteoclasts (Figure 6). However, the extent to which this interplay

influences bone metastasis in breast cancer remains unclear and

warrants further investigation.
5 Discussion and conclusion

Bone metastases from breast cancer are associated with a mean

survival period of 2–3 years after diagnosis, and are responsible for

bone pain and skeletal-related events that can significantly impact

the quality of life of the affected individuals (84, 85). Breast cancer
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bone metastasis is a complex process involving interdependent

stages that cannot be attributed to a single mechanism, and its

mechanism of action requires further investigation. The interaction

between the bone microenvironment and tumor cells is an

important cause of bone metastasis, and osteoclasts in the bone

microenvironment play an important role in osteolytic bone

metastasis (86). A variety of molecules and signaling pathways are

involved in regulating the process of bone metastasis and,

ultimately, the formation of osteolytic lesions (87). Considering

the limited effectiveness of currently applied therapies, it is crucial

to understand the mechanisms of breast cancer bone metastasis, to

explore new potential targets, and to develop effective therapeutic

regimens. This review details the role of the Hippo signaling

pathway in breast cancer metastasis, with a specific emphasis on

breast cancer bone metastasis.

The Hippo signaling pathway plays a role in regulating cell growth

and suppressing tumorigenesis through a series of enzymatic kinase

chain reactions. Blockage of this pathway can lead to tumorigenesis.

Studies have found that YAP/TAZ, a downstream effector of the Hippo

signaling pathway, plays an important role in breast cancer metastasis.

TAZ is widely recognized as an oncoprotein; however, further studies

are required to determine whether YAP is an oncoprotein or a tumor

suppressor. Most studies have suggested that YAP is an oncoprotein

and that overexpression of YAP in the nucleus promotes breast cancer

progression and metastasis. The mechanism of action of the Hippo

signaling pathway in breast cancer bone metastasis is mostly related to

osteoclast activation and osteolysis. The Hippo signaling pathway

affects breast cancer bone metastasis by regulating the bone

microenvironment. The core components of this pathway bind to

downstream factors to activate downstream target genes. Recent studies

have established that YAP binds to TEAD to activate CTGF, which

promotes osteoclast activation and breast cancer metastasis.

Interestingly, the Hippo signaling pathway in breast cancer cells can

also affect bone metabolism through the RoR1–Her3–lncRNA

signaling axis and ABL kinase, thus regulating breast cancer bone

metastasis. In the bone marrow hypoxic microenvironment, HIF-1a
interacts with TAZ to promote breast cancer bone metastasis. In
FIGURE 6

In the Hippo and NF-kB signaling pathways, RASSF2 and MST2 suppress IKK and IkBa activities, respectively, blocking the NF-kB signaling pathway.
In the Hippo and MAPK signaling pathways, Ajuba activates TRAF6 and the YAP/TAZ–TEAD complex activates AP1. In the Hippo and calcium
signaling pathways, YAP activates CREB and TEAD-dependent downregulation of calcineurin activity, thus inhibiting NFATc1.
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addition, the Hippo signaling pathway interacts with theWnt signaling

pathway, the Snail/Slug signaling pathway, and RANKL/RANK-related

pathways to regulate the bone microenvironment, which further affects

bone metastasis. Many studies have reported that the interaction

between the Hippo signaling pathway and RANKL/RANK-related

pathways can regulate osteoclast activation and bone resorption, but

the precise regulatory mechanism is not fully understood. We can only

postulate that the Hippo signaling pathway promotes osteoclast

activation through the RANKL/RANK signaling system, which in

turn promotes breast cancer bone metastasis. However, the precise

role of the Hippo signaling pathway in the promotion of bone

metastasis remains to be elucidated, which calls for further

investigation. The current treatments available for patients with bone

metastases from breast cancer are based on disrupting inappropriate

signaling between breast cancer cells and cells in the bone

microenvironment by using bisphosphonates and denosumab (43).

Unfortunately, these medications have severe adverse effects and also

impede normal bone healing by disrupting signaling between

cancerous and non-cancerous cells in the bone microenvironment.

Therefore, future studies should concentrate on the identification of

key upstream regulatory factors of molecular signaling pathways in the

bone microenvironment regulated by breast cancer cells. The Hippo

signaling pathway may offer new possibilities for the development of

effective targeted therapeutic agents.
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