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Background: Accurate preoperative assessment of surgical difficulty is crucial to

the success of the surgery and patient safety. This study aimed to evaluate the

difficulty for endoscopic resection (ER) of gastric gastrointestinal stromal tumors

(gGISTs) using multiple machine learning (ML) algorithms.

Methods: From December 2010 to December 2022, 555 patients with gGISTs in

multi-centers were retrospectively studied and assigned to a training, validation,

and test cohort. A difficult case was defined as meeting one of the following

criteria: an operative time ≥ 90min, severe intraoperative bleeding, or conversion

to laparoscopic resection. Five types of algorithms were employed in building

models, including traditional logistic regression (LR) and automated machine

learning (AutoML) analysis (gradient boost machine (GBM), deep neural net (DL),

generalized linear model (GLM), and default random forest (DRF)). We assessed

the performance of the models using the areas under the receiver operating

characteristic curves (AUC), the calibration curve, and the decision curve analysis

(DCA) based on LR, as well as feature importance, SHapley Additive exPlanation

(SHAP) Plots and Local Interpretable Model Agnostic Explanation (LIME) based on

AutoML.

Results: The GBM model outperformed other models with an AUC of 0.894 in

the validation and 0.791 in the test cohorts. Furthermore, the GBM model

achieved the highest accuracy among these AutoML models, with 0.935 and

0.911 in the validation and test cohorts, respectively. In addition, it was found that

tumor size and endoscopists’ experience were the most prominent features that

significantly impacted the AutoML model’s performance in predicting the

difficulty for ER of gGISTs.

Conclusion: The AutoML model based on the GBM algorithm can accurately

predict the difficulty for ER of gGISTs before surgery.

KEYWORDS

automated machine learning, predictive models, endoscopic resection, gastrointestinal
stromal tumors, difficulty
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Introduction

Gastric gastrointestinal stromal tumors (gGISTs) are the most

common mesenchymal tumors of the gastrointestinal tract (1).

Endoscopic resection (ER) is a minimally invasive and effective

treatment option for small GISTs, but the procedure can be

challenging for larger and more complex tumors (2, 3). To ensure

the safety and efficacy of ER, it is essential to predict the difficulty of

the procedure beforehand accurately. Traditional methods of

predicting difficulty rely on subjective assessment by experienced

endoscopists, which can be influenced by interobserver variability

and other factors. Su et al. (4) have made the first-ever prediction of

the difficulty in ER of gGISTs by constructing a nomogram. The

area under the receiver operating characteristic (ROC) curves

(AUC) and the accuracy of this model in predicting surgical

difficulty were found to be 0.756 and 0.798, respectively.

Although the model has demonstrated exemplary performance,

finer models could yield even better results.

Machine learning (ML) is becoming increasingly prevalent in

medicine because of its efficient computing algorithms, which

enable the learning of valuable insights from vast amounts of

clinical data (5, 6). Previous studies (7–11) have established the

immense potential of ML in developing models for disease

diagnosis, predicting prognosis, analyzing survival rates, and

other medical applications. Automated machine learning

(AutoML), a new type of ML, intelligently chooses from a range

of algorithms and hyperparameters to create customized models

based on specific target data (12, 13). Compared to traditional ML,

AutoML utilizes intelligent early stopping, regularization,

hyperparameter optimization, and cross-validation techniques,

allowing for the development of more accurate models in less time.

In this study, we aimed to provide a dataset consisting of clinical

and endoscopic features of patients with gGISTs from multiple

centers. We used this dataset to train, validate, and test a series of

machine learning models to predict the difficulty for ER of gGISTs.
Material and methods

Patients

We conducted a retrospective analysis of consecutive patients

who underwent ER of gGISTs at the First Affiliated Hospital of

Soochow University between December 2010 and December 2022.

The patients were randomly divided into training and validation

cohorts in a 7:3 ratio. In addition, we gathered information on

patients who received ER of gGISTs at Changshu Hospital Affiliated

to Soochow University, No.1 People’s Hospital of Kunshan, and

No.2 People’s Hospital of Changshu from January 2017 to

December 2022. This data was used to create the test cohort for

the study. The main inclusion criteria were (1): diagnosis of gGIST

through pathological and immunohistochemical examination after

surgery (2); regular preoperative blood routine, coagulation tests,

and electrocardiogram results (3); absence of lymph node or distant

metastasis in patients. Patients who met any of the following criteria
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were excluded from the study (1): lesions with a high risk of

malignancy based on EUS evaluation (2); patients with

synchronous lesions in multiple locations (3); patients with

multiple lesions in the stomach (4); patients with poor

cardiopulmonary function and unable to undergo anesthesia and

surgery (5); incomplete medical records of the patient. Our

institutions received ethical approval for the clinical research

study protocol from the ethics committee. Before the ER

procedure, all patients were thoroughly informed about the

advantages and potential risks and provided with a signed written

consent form. The reporting of this study conforms to STROBE

guidelines (14).
Endoscopic equipment and procedures

Based on the nature of the lesion, we employed three distinct ER

techniques: endoscopic submucosal dissection (ESD), endoscopic

full-thickness resection (EFTR), and submucosal tunnel endoscopic

resection (STER). ESD is employed to treat gGISTs that arise from

either the muscularis mucosae (MM) or muscularis propria (MP)

and protrude into the lumen. If GISTs originate from the deep MP

with extraluminal growth or tumors that cannot be separated from

the serosal layer during ESD, EFTR can be utilized as a treatment.

STER is mainly used for gGISTs that grow in the gastroesophageal

junction or greater curvature of the stomach, where a submucosal

tunnel can be quickly established. Comprehensive information

regarding ER procedures can be found in the previous publication

(15–17). Although the endoscopists involved in the procedures had

varying degrees of experience with ER of gGISTs, all cases were

performed by senior endoscopists with extensive experience. These

endoscopists had previously completed over 5,000 gastroscopy and

colonoscopy procedures and more than 200 EMR procedures for

gastrointestinal polyps before performing ER for gGISTs. In our

study, an endoscopist was considered experienced in ER of gGISTs

once he or she had carried out a cumulative sum (CUSUM) of 50

such procedures. General anesthesia and endotracheal intubation

were administered to all patients. All patients were placed in the left

lateral position. The ER procedures utilized either a dual knife (KD-

650L; Olympus®, Japan), an insulated-tip knife (KD-611L;

Olympus®, Japan), or a combination of the two. A single-channel

endoscope (GIF-Q260J, Olympus®, Japan) equipped with a

transparent cap on its tip was employed. The energy output was

achieved using a High-frequency electric coagulation and

electrocautery device (ERBE® VIO 200D). Other equipment

utilized during the procedures included metallic clips, nylon loops

(LeClampTM® Loop-20 and Loop-30; Leo, Changzhou, China),

over-the-scope clips (OTSC), injection needles, hot biopsy forceps,

and a carbon dioxide insufflator.
Postoperative management

Following surgery, specimens were preserved in a 10% formalin

solution, and immunohistochemical staining (including CD117,
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CD34, and Dog-1, among others) was conducted to confirm the

diagnosis. Typically, patients receive nasogastric decompression

after surgery to prevent postoperative complications. They are

instructed to fast for two days, or three days or more in the case

of EFTR patients, depending on their postoperative status. Blood

routine, CRP, and/or calcitonin tests were carried out after surgery,

and all patients were administered proton pump inhibitors, gastric

mucosal protective agents, nutritional support, and fluid

replacement. When patients exhibited abdominal pain or muscle

tension, a CT or orthostatic X-ray scan was performed to rule out

postoperative perforation. Antibiotic therapy or surgical treatment

was administered based on their condition. For patients who

experienced intraoperative perforation or postoperative infection,

antibiotics were prescribed.
Data collection

Patient information, such as gender, age, history of smoking or

alcohol consumption, primary symptoms, medical history,

American Society of Anesthesiologists (ASA) score (18), body

mass index (BMI), tumor size, location, shape, depth of invasion,

boundary characteristics, procedure duration, intraoperative and

postoperative complications, R0 resection rates, ER technique used,

modified National Institutes of Health (NIH) risk criteria (19),

number of days of postoperative fasting, and length of hospital stay

following surgery, were gathered from electronic medical records of

our institutions.
Definitions

A difficult case was defined as meeting one of the following

criteria: an operative time ≥ 90 min, severe intraoperative bleeding,

or conversion to laparoscopic resection. The operative time was

determined from the point at which the submucosal injection began

to the completion of the closure of the defect. The origin of the

tumor was identified based on preoperative endoscopic

ultrasonography (EUS) examination. Tumors with a round, oval,

or nodular shape were categorized as having a regular shape,

whereas those with a branching shape were designated as having

an irregular shape. Severe intraoperative bleeding was characterized

by repeated endoscopic hemostasis, a postoperative decrease in

hemoglobin levels exceeding 2 g/dL, or necessitating surgical

assistance (20, 21). Tumor characteristics, such as tumor size and

location, were assessed based on preoperative endoscopic

ultrasound examination or abdominal-enhanced computed

tomography (CT) scans. Postoperative complications included

delayed bleeding, delayed perforation, and postoperative infection.

Delayed bleeding was defined as clinical evidence of bleeding that

occurred after ER, as evidenced by hematemesis or melena, a

decline in hemoglobin levels of more than 2.0 g/dL within 24

hours, or the need for endoscopic therapy (22). Delayed perforation

was verified through X-ray or CT. Postoperative infection was

determined by a postoperative body temperature exceeding 37.5°

C and/or an increase in inflammatory indicators such as blood
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routine, CRP, or calcitonin (23). R0 resection was defined as the

surgical removal of a tumor with no residual cancerous tissue detected

in the margins of the excised tissue, as confirmed by histological

examination of the specimen’s radial and deep margins (24).
Automated machine learning

AutoML analysis was carried out using the H2O package installed

from the H2O.ai platform (www.h2o.ai), which automatically selects

and combines suitable algorithms into several ensemble models. The

set of algorithms comprises a randomized grid of Gradient Boosting

Machines (GBMs), a randomizedgridofDeepNeuralNetworks (DLs),

a default RandomForest (DRF), and a fixed grid ofGeneralized Linear

Models (GLMs). Hyperparameter optimization was conducted

through a 5-fold cross-validation grid search on the training set,

where various combinations of hyperparameters included in the grid

searchwere evaluated based on their AUCs.AutoMLvisualizationwas

presented through feature importance, SHapley Additive exPlanation

(SHAP), and Local InterpretableModel Agnostic Explanation (LIME)

techniques. Through SHAP analysis, it was possible to determine the

key features that significantly influenced themodel predictions and the

extent of their contribution to the overall model performance for a

specific prediction (25). By randomly selecting examples from the test

set, LIME analysis illustrated the contribution of each feature toward

predicting the outcome (26).
Statistical analysis

Categorical variables were expressed as frequencies and

percentages, and the Chi-square test or Fisher exact test was used

to compare groups. Continuous variables were expressed as the

median and interquartile ranges (IQR), and a comparison between

the two groups was made using the Mann-Whitney U test. To

address the issue of multiple collinear relationships among the

explanatory variables, a univariate analysis was performed using the

least absolute shrinkage and selection operator (LASSO) regression

model with the minimum criterion. The model was then further

refined using a binary logistic backward stepwise regression

analysis. The predictive performance of the resulting model was

evaluated using the areas under the receiver operating characteristic

curves (AUC), calibration curve, and decision curve analysis

(DCA). Furthermore, a nomogram was constructed based on the

independent risk factors identified in the multivariate analysis. The

statistical significance level was set at P < 0.05. R software (version

4.1.0) was utilized for conducting all the statistical analyses.
Results

Baseline characteristics of patients
and lesions

In this study, a total of 555 patients were enrolled, out of which

97 cases (17.5%) experienced difficulty in the whole cohort. Figure 1
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illustrates the study protocol in the form of a flow chart, while

Table 1 presents the features of 555 gGISTs in the developing and

test cohorts. In the developing dataset, there were 195 men (45.2%)

and 236 women (54.8%). The proportion of patients aged < 60 years

in the difficult group was 43.0%, while in the non-difficult group, it

was 51.7%. In the test dataset, the proportion of female patients with

gGISTs is higher than that of male patients (62.9% vs. 37.1%). No

significant differences were observed between the two groups of

three datasets in terms of sex, age, history of smoking or alcohol

consumption, medical history, ASA score, and BMI (P > 0.05).
Univariate and multivariate logistic
regression analysis

By utilizing the LASSO regression model with a minimum

criterion attained through 5-fold cross-validation, four variables out

of 17 were selected and designated as independent risk factors. This

approach was employed to address the issue of multiple collinear

relationships among the explanatory variables, as depicted in

Supplementary Figure 1. A logistic model comprising of four

variables (tumor size, invasion depth, location, and endoscopists’

experience) was ultimately established and presented as both a

nomogram and a score system, suitable for clinical utilization

(Figure 2). The calibration curves pertaining to the training set,

validation set, and test set are depicted in Supplementary Figure 2,

and the mean absolute errors being 0.021, 0.035 and 0.043,

respectively. The calibration curves provided evidence that the

LASSO model’s estimated risk was in close proximity to the

actual risk, implying a considerable level of dependability. The
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DCA plots of the LASSO model in the test set demonstrated that

when the threshold probability of a difficult procedure predicted by

the LASSO model was between 20% and 100%, an intervention

might add more benefit (10% - 80%) (Supplementary Figure 3). The

DCA plots of the AutoML models are presented in Supplementary

Figure 4, and the net benefit of these models is about 80%.
Automated machine learning analysis

Using four ML algorithms (GBM, DL, GLM, and DRF), 64

models were constructed, with the stacked ensemble models being

excluded due to limited interpretability. The GBM model

outperformed the other models, exhibiting the highest AUC

values and accuracy, and consequently deemed the most optimal

model. Figure 3 indicates that tumor size was identified as the most

crucial feature, followed by endoscopists’ experience, invasion

depth, location (cross-sectional), shape, BMI, location

(longitudinal), primary symptom, history of smoking, and sex, in

that order of importance. Additionally, tumor size, endoscopists’

experience, invasion depth, and location (longitudinal) were

identified as the common important variables shared by the GBM

and logistic regression models. Figure 4 displays the SHAP

contribution plots generated by GBM algorithms, illustrating the

ten most significant variables, namely tumor size, endoscopists’

experience, location (cross-sectional), sex, shape, invasion depth,

location (longitudinal), boundary, BMI, and age. As a variable’s

value approaches 1, the likelihood of a patient having a difficult

procedure increases. For example, the red dots in the SHAP plot

corresponding to tumors ≥ 3.0cm are predominantly located on the

right side of the zero axis, indicating that patients with tumors

larger than 3.0cm are more likely to experience a difficult procedure.

As shown in Table 2, the GBM algorithm outperformed the DL,

DRF, and GLM algorithms in the validation cohort regarding AUC,

with a higher value of 0.894 compared to 0.881, 0.858, and 0.854,

respectively. Furthermore, the accuracy values for the GBM

algorithm were the highest compared to the DL, DRF, and GLM

algorithms, with 0.935, 0.870, 0.854, and 0.878, respectively. Among

these 5 models, the DRF model has the highest sensitivity, with

values of 1.000 in both the validation and test sets, but the lowest

specificity, with values of 0.847 and 0.862, respectively. The LASSO

model has the lowest sensitivity in both the validation and test sets,

with values of 0.739 and 0.556, respectively. The DL and GLM

models have intermediate performance in terms of AUC,

sensitivity, specificity, and accuracy among these models. A LIME

plot based on the GBM model for the test cohort showcased the

impact of various significant variables on the difficulty for ER of

gGISTs. For example, based on the GBM model, Figure 5

demonstrates that case 2 had a predicted probability of 0.94 for

experiencing a difficult procedure. Tumor size greater than 3.0cm

was identified as the most critical predictor for difficult procedures,

followed by irregular tumor shape, invasion depth beyond MP,

history of alcohol consumption, and tumor location in the upper

third of the stomach. Conversely, the effect of the experienced

endoscopist and male gender had a mitigating effect on

these factors.
FIGURE 1

Flow chart of the study. gGISTs, gastric gastrointestinal stromal
tumors; GBM, gradient boost machine; DL, deep neural net; GLM,
generalized linear model; DRF, default random forset; LASSO, least
absolute shrinkage and selection operator.
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TABLE 1 Demographic and clinical characteristics of patients in training, validation and test groups.

Variables The developing dataset (n=431) The test dataset (n=124)

Difficulty
(n=79)

Non-difficulty
(n=352)

P-value Difficulty
(n=18)

Non-difficulty
(n=106)

P-value

Gender, n (%) 0.118 0.485

Male 42 (53.2) 153 (43.5) 8 (44.4) 38 (35.8)

Female 37 (46.8) 199 (56.5) 10 (55.6) 68 (64.2)

Age, yesrs, n (%) 0.164 0.093

< 60 34 (43.0) 182 (51.7) 12 (66.7) 48 (45.3)

≥ 60 45 (57.0) 170 (48.3) 6 (33.3) 58 (54.7)

Primary symptom, n (%) 0.501 0.028*

Asymptomatic 16 (20.3) 73 (20.7) 4 (22.2) 26 (24.5)

Abdominal discomfort 60 (75.9) 273 (77.6) 12 (66.7) 80 (75.5)

Hemorrhage 3 (3.8) 6 (1.7) 2 (11.1) 0

Smoking, n (%) 0.828 0.775

Yes 25 (31.6) 107 (30.4) 5 (27.8) 33 (31.1)

No 54 (68.4) 245 (69.6) 13 (72.2) 73 (68.9)

History of drinking, n (%) 0.836 0.969

Yes 16 (20.3) 75 (21.3) 4 (22.2) 24 (22.6)

No 63 (79.7) 277 (78.7) 14 (77.8) 82 (77.4)

Hypertension, n (%) 0.649 0.916

Yes 27 (34.2) 111 (31.5) 6 (33.3) 34 (32.1)

No 52 (65.8) 241 (68.5) 12 (67.7) 72 (67.9)

Coronary disease, n (%) 0.168 0.824

Yes 21 (26.6) 69 (19.6) 3 (16.7) 20 (18.9)

No 58 (73.4) 283 (80.4) 15 (83.3) 86 (81.1)

Diabetes, n (%) 0.096 0.768

Yes 26 (32.9) 84 (23.9) 4 (22.2) 27 (25.5)

No 53 (67.1) 268 (76.1) 14 (77.8) 79 (74.5)

ASA score, n (%) 0.693* 1.000*

I 64 (81.0) 292 (83.0) 16 (88.9) 90 (84.9)

II 15 (19.0) 59 (16.8) 2 (11.1) 16 (15.1)

III 0 1 (0.3) 0 0

BMI, kg/m², n (%) 0.143 0.368

< 18.5 19 (24.1) 57 (16.2) 6 (33.3) 20 (18.9)

18.5-23.9 39 (49.4) 169 (48.0) 8 (44.4) 54 (50.9)

≥ 24.0 21 (26.6) 126 (35.8) 4 (22.2) 32 (30.2)

Location 1, n (%) <0.001 0.115

Upper 71 (89.9) 235 (66.8) 14 (77.8) 60 (56.6)

Middle 5 (6.3) 79 (22.4) 2 (11.1) 38 (35.8)

Lower 3 (3.8) 38 (10.8) 2 (11.1) 8 (7.5)

(Continued)
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TABLE 1 Continued

Variables The developing dataset (n=431) The test dataset (n=124)

Difficulty
(n=79)

Non-difficulty
(n=352)

P-value Difficulty
(n=18)

Non-difficulty
(n=106)

P-value

Location 2, n (%) 0.843 1.000

Lesser curvature 30 (38.0) 118 (33.5) 5 (27.8) 27 (25.5)

Greater curvature 5 (6.3) 30 (8.5) 2 (11.1) 11 (10.4)

Anterior 30 (38.0) 141 (40.1) 7 (38.9) 44 (41.5)

Posterior 14 (17.7) 63 (17.9) 4 (22.2) 24 (22.6)

Shape, n (%) <0.001 0.693

Regular 59 (74.7) 324 (92.0) 15 (83.3) 92 (86.8)

Irregular 20 (25.3) 28 (8.0) 3 (16.7) 14 (13.2)

Invasion depth, n (%) <0.001 0.001

MP (within) 52 (65.8) 313 (88.9) 10 (55.6) 92 (86.8)

MP-ex 27 (34.2) 39 (11.1) 8 (44.4) 14 (13.2)

Boundary, n (%) 0.037 0.707

Clear 64 (81.0) 315 (89.5) 14 (77.8) 78 (73.6)

Unclear 15 (19.0) 37 (10.5) 4 (22.2) 28 (26.4)

Size, cm, n (%) <0.001 <0.001

≥ 3.0 36 (45.6) 29 (8.2) 6 (33.3) 4 (3.8)

2.0-3.0 25 (31.6) 90 (25.6) 8 (44.4) 16 (15.1)

< 2.0 18 (22.8) 233 (66.2) 4 (22.2) 86 (81.1)

Experience, cases, n (%) <0.001 0.005

< 50 46 (58.2) 97 (27.6) 12 (66.7) 34 (32.1)

≥ 50 33 (41.8) 255 (72.4) 6 (33.3) 72 (67.9)

Endoscopic tecnique, n (%) 0.068* 0.266*

ESD 30 (38.0) 182 (51.7) 6 (33.3) 56 (52.8)

EFTR 48 (60.8) 164 (46.6) 12 (66.7) 48 (45.3)

STER 1 (1.3) 6 (1.7) 0 2 (1.9)

Modified NIH risk criteria, n (%) <0.001* <0.001*

Very low 30 (38.0) 271 (77.0) 2 (11.1) 84 (79.2)

Low 25 (31.6) 63 (17.9) 8 (44.4) 16 (15.1)

Intermediate 19 (24.1) 17 (4.8) 8 (44.4) 4 (3.8)

High 5 (6.3) 1 (0.3) 0 2 (1.9)

Operative time, min, median (IQR) 105.0 (95.0,124.0) 52.0 (41.0,64.0) <0.001 95.0 (90.0,102.5) 60.0 (50.0,72.0) <0.001

Conversion, n (%) 14 (17.7) 0 <0.001* 0 0 NA

Severe intraoperative bleeding, n (%) 14 (17.7) 0 <0.001* 4 (22.2) 0 <0.001

Postoperative hospitalization, days, 6.0 (5.0,8.0) 6.0 (5.0,6.0) <0.001 7.0 (6.0,8.3) 5.0 (4.0,6.0) <0.001

median (IQR)

Postoperative fasting, days, 3.0 (3.0,5.0) 3.0 (2.0,3.0) <0.001 3.0 (2.8,5.3) 2.0 (2.0,3.0) <0.001

(Continued)
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Discussion

This study aimed to evaluate the difficulty for ER of gGISTs

using multiple ML algorithms. A total of 555 patients with gGISTs

were retrospectively studied and assigned to a training, validation,

and test cohort. Five algorithms were employed in building models,

and the GBM model outperformed other models with an AUC of

0.894 in the validation cohort and 0.791 in the test cohort. The

AutoML model based on the GBM algorithm can accurately predict

the difficulty for ER of gGISTs before surgery, and tumor size and

endoscopists’ experience were identified as the most prominent

features that significantly impacted the performance of the AutoML

model. This study provides a machine learning-based approach for

accurately predicting the surgical difficulty for ER of gGISTs.

Accurate preoperative assessment of surgical difficulty is crucial

to the success of the surgery and patient safety. By predicting the

difficulty of the surgical procedure before surgery, surgeons can

better prepare for the surgery, optimize the surgical plan, and ensure
TABLE 1 Continued

Variables The developing dataset (n=431) The test dataset (n=124)

Difficulty
(n=79)

Non-difficulty
(n=352)

P-value Difficulty
(n=18)

Non-difficulty
(n=106)

P-value

median (IQR)

R0 resection, n (%) 55 (69.6) 339 (96.3) <0.001 12 (66/7) 96 (90.6) 0.005

Postoperative complications, n (%) 21 (26.6) 37 (10.5) <0.001 10 (55.6) 6 (5.7) <0.001
fron
ASA, American Society of Anesthesiologists; BMI, body mass index; MP, muscularis propria; MP-ex, MP with exophytic growth; ESD, endoscopic submucosal dissection; EFTR, endoscopic
full-thickness resection; STER, submucosal tunnel endoscopic resection; NIH, National Institute of Health; IQR, interquartile ranges; *Fisher’s exact test; “NA” means no statistical analysis
was performed.
FIGURE 2

Nomogram of the LASSO model for predicting the difficulty for
endoscopic resection of gGIST. LASSO, least absolute shrinkage and
selection operator; gGISTs, gastric gastrointestinal stromal tumors.
FIGURE 3

Variable importance of the GBM model in the training cohort,
showing that tumor size was the most important feature, followed
by endoscopists’ experience (CUSUM), invasion depth, etc.
FIGURE 4

SHAP of the GBM model in the training cohort. As a variable’s value
approaches 1, the likelihood of a patient having a difficult procedure
increases. SHAP, SHapley Additive exPlanation; GBM, gradient boost
machine.
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patient safety during the operation (27, 28). Su et al. (4) are the only

ones who have predicted the difficulty for ER of gGISTs so far. Their

study defined a difficult procedure as an operative time greater than 90

minutes or severe intraoperative bleeding. However, previous studies

have suggested that conversion to laparoscopic or open surgery

indicates difficult surgery (29–31) because it may increase operative

time, blood loss, and postoperative recovery time, thereby increasing

the risk topatients.Therefore,meetingone of the following criteriawas

used todefine a difficult case in this study: operative timeof 90minutes

or more, severe bleeding during the surgery, or the need to convert to

laparoscopic resection or open surgery.

The SHAP analysis revealed that in our study, the most crucial

feature of the GBM model is tumor size. The result agreed with the

findings of the logistic regression model in our study and aligned

with the risk factors for the endoscopic surgical difficulty reported

in the literature (4, 32). According to the studies by Su et al. (4) and

Jian et al. (32), ER was challenging for tumors larger than 3.0 cm in
Frontiers in Oncology 08
size. In treating gGISTs with larger tumor sizes, the limited

operating space in the ER results in poorer functional space and

surgical field of view. Consequently, endoscopists must frequently

adjust the angle of the endoscopic incision and the volume of air in

the stomach cavity to achieve complete tumor removal. Therefore,

for gGISTs with larger tumor sizes, ER should be performed by

experienced endoscopists, as this study found that surgical

experience is also an essential factor affecting the difficulty of the

procedure. Experienced endoscopists may have better technical

proficiency and higher success rates, enabling them to adapt

better to the surgical environment, accomplish surgical tasks

more effectively, and reduce the incidence of surgical

complications. Sun et al. (33) reported that the learning curve for

ER of gastric submucosal tumors was approximately 32 cases, while

Yoshida et al. (34) retrospectively analyzed the learning curve of 7

novice endoscopists in ER of gastric lesions and found that a stable

state could be reached after completing around 30 cases. To account

for potential variations in the learning curves of different

endoscopists, a minimum threshold of 50 GIST excisions was

established in this study to ensure that the endoscopists had

adequate experience conducting ER for gGISTs. In this study, we

divided tumor size into three groups: < 2.0cm, 2.0-3.0cm, and ≥

3.0cm, and endoscopists’ experience into <50 cases and ≥50 cases.

The larger the tumor, and the less experience the endoscopist has,

the more difficult the surgery becomes. Therefore, we recommend

that endoscopists lacking surgical experience should choose lesions

with smaller diameters for surgical intervention.

We utilized five different ML algorithms to construct predictive

models with high accuracy. Our models achieved superior AUC and

accuracy compared to the nomogram model built by Su et al. (4).

Furthermore, by accurately assessing the surgical difficulty for ER of

gGISTs, this study can assist doctors in understanding potential

challenges prior to surgery, thereby improving the success rate of

the operation and patient safety. Additionally, this multi-center

research boasts a larger sample size and higher external validity and

reduces potential biases caused by the unique circumstances of a

single research center. However, our study had some limitations.

First, our study may have had selection bias and information bias

due to its retrospective nature. Future research could use a

prospective study design to more accurately evaluate the
TABLE 2 Comparison of AutoML models and logistic regression analysis in predicting the difficulty for ER of gGISTs in the validation cohort.

AUC Sensitivity Specificity Accuracy PPV NPV LR+ LR-

AutoML

GBM 0.894 0.917 0.937 0.935 0.611 0.990 14.536 0.089

DL 0.881 0.769 0.882 0.870 0.435 0.970 6.509 0.262

DRF 0.858 1.000 0.847 0.854 0.217 1.000 6.556 0

GLM 0.854 0.900 0.876 0.878 0.391 0.990 7.264 0.114

Logistic regression analysis

LASSO 0.835 0.739 0.930 0.894 0.708 0.939 10.559 0.281
frontier
ER, endoscopic resection; gGIST, gastric gastrointestinal stromal tumor; AutoML, automated machine learning; PPV, positive predictive value; NPV, negative predictive value; LR+, positive
likelihood ration; LR-, negative likelihood ration; AUC, areas under the receiver operating characteristic curves; GBM, gradient boost machine; DL, deep neural net; DRF, default random forest;
GLM, generalized linear model; LASSO, least absolute shrinkage and selection operator.
FIGURE 5

LIME of the GBM model in the test cohort. LIME, Local Interpretable
Model Agnostic Explanation.
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effectiveness of different ML algorithms in predicting the difficulty

for ER of gGISTs. Second, this study did not consider the

postoperative prognosis and patient recovery. Future research

could incorporate these factors to comprehensively evaluate the

clinical application value of ML models in predicting the difficulty

for ER of gGISTs. Third, the advancements in novel medical devices

and surgical techniques may affect the difficulty of ER, and the

factors influencing surgical difficulty may also change. Therefore, it

is crucial to keep pace with the latest developments when studying

the difficulty for ER of gGISTs. Fourth, due to differences in

procedural steps, the difficulty levels of ESD, EFTR, and STER

endoscopic techniques may vary. Conducting more in-depth

research on individual endoscopic techniques could aid in

identifying and analyzing the specific difficulties associated with

each technique. Fifth, due to the low prevalence of gGISTs, our

validation cohort consisted of only 123 cases and the test cohort

included 124 cases. Adding more samples later would be better.

In conclusion, our study evaluated the difficulty for ER of

gGISTs using ML algorithms. The GBM model outperformed

others, achieving high accuracy in predicting ER difficulty. Tumor

size and endoscopists’ experience were identified as influential

factors. The GBM-based AutoML model shows promise for

preoperative assessment, but further validation on diverse datasets

and consideration of new medical technologies are needed to

enhance its clinical applicability.
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SUPPLEMENTARY FIGURE 1

A chart showing the penalties for predictive factors indicating the level of
difficulty for endoscopic resection of gGISTs was derived through LASSO

regression analysis. Left: Regression coefficients. With the value of l
increasing, the absolute values of coefficients decrease. Right: Identification

of the optimal l value in the LASSO regression analysis was achieved by 5-fold
cross-validation. (The left vertical line is drawn using the minimum criterion

and the right vertical line is drawn using the 1_se criterion. In our study, LASSO

regression model with minimum criterion was used in the univariate analysis
in order to solve such multiple co-linear relationships among the explanatory

variables. LASSO: least absolute shrinkage and selection operator; gGIST,
gastric gastrointestinal stromal tumors.

SUPPLEMENTARY FIGURE 2

Calibration curve of the LASSO model in the training, validation and test set,

with the mean absolute errors being 0.021, 0.035 and 0.043, respectively.

SUPPLEMENTARY FIGURE 3

Decision curve analysis of the LASSO model in the test set. The DCA plots

demonstrated that when the threshold probability of a difficult procedure
predicted by the LASSO model was between 20% and 100%, an intervention

might add more benefit (10% - 80%).

SUPPLEMENTARY FIGURE 4

Decision curve analysis plots of 4 AutoMLmodels in the test set, indicating net
benefits of around 80%. (A) DL model; (B) GBM model; (C) GLM model; (D)
DRF model.
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