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Background: Muscle-invasive bladder cancer (MIBC) develops lymph node (LN)

metastasis or distant metastasis, leading to recurrence and poor prognosis. The

five-year survival rate of MIBC with LN or distant metastasis is only 8.1%;

therefore, there is an urgent need to identify reliable biomarkers for prognosis

and treatment regimen for patients with bladder cancer (BLCA).

Methods: SEER database was used to select important clinical characteristics for

MIBC. Then, weighted gene co-expression network analysis (WGCNA) was

employed to identify differentially expressed genes (DEGs) to recognize

significant co-expression modules by calculating the correlation between the

modules and clinical data. Furthermore, Cox regression and lasso analysis were

applied to screen prognostic hub genes and establish the risk predictive model.

Bladder cancer cell lines (UMUC3 and 5637) were used for experimental

validation in vitro.

Results: Cox analysis of 122,600 MIBC patients showed that the N stage was the

most important clinical factor. A total of 4,597 DEGswere calculated between N0

and N+ patients, and WGCNA with these DEGs in 368 samples revealed that

expression of turquoise was positively and strongly correlated with the N stage.

Eight genes were identified as important prognostic candidates using lasso

regression based on Cox analysis and STRING database. Combining GEO

datasets, literature, and clinical factors, we identified LAMA2 and RUNX2 as

novel prognostic biomarkers. CCK8 assay showed that depletion of LAMA2 or

RUNX2 significantly inhibited the proliferation of BLCA cells, and flow cytometry

indicated that knockdown of LAMA2 or RUNX2 induced the apoptosis of BLCA

cells. Transwell assay also showed that silencing of LAMA2 or RUNX2 weakened

the migration and invasiveness of BLCA cells.

Conclusions: We constructed a new eight-gene risk model to provide novel

prognostic biomarkers and therapeutic targets for BLCA.
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Background
Bladder cancer (BLCA) ranks 10th among the most prevalent

malignancies globally, with 573,000 new diagnosed cases and

estimated 213,000 deaths (1). Among these BLCA patients,

approximately 75% have diagnosed as non-muscle invasive BLCA

(NMIBC), and the remaining 25% are muscle invasive BLCA

(MIBC). Although NMIBC can usually be managed by

intravesical treatment and transurethral resection, it may recur or

develop aggressive MIBC (2). MIBC often results in lymph node or

distant metastasis, leading to an unfavorable outcome (3). The 5-

year survival rate of MIBC with lymph node or distant metastasis is

only 8.1% (4). Currently, there is no effective treatment for

metastatic BLCA. Therefore, early assessment of LN or distant

metastases could represent an advantage to improve the prognosis.

In clinical practice, TNM (tumor, node and metastasis) staging are

typically used for the prediction of prognosis for patients with BLCA.

The overall survival (OS) of BLCA patients with positive lymph nodes

and a higher clinical stage is poorer (5, 6). However, prognosis is based

on inherent anatomical information, and predicting disease

progression is difficult because of the biological heterogeneity of

BLCA. Therefore, identification of reliable biomarkers is necessary

for prognosis and designing treatment strategies of BLCA patients.

Weighted gene co-expression network analysis (WGCNA) is a

novel systematic biological approach applied to clarify the

connectivity of different gene clustering in a comprehensive

network and evaluate the relationship of gene groups with diverse

characteristics (7, 8). Compared to other calculation, WGCNA can

be used to study hub genes closely associated with clinical

phenotypes, providing a driving force for the discovery of new

molecular biomarkers and therapeutic targets in BLCA (9–12).

In this study, we constructed a new eight-gene prognostic risk

model in MIBC to predict the survival and prognosis of BLCA

based on SEER, TCGA, and GEO datasets using WGCNA and lasso

Cox regression methods. Moreover, we validated this model using

external GEO datasets and identified the functions of the two hub

genes through in vitro experimental assays, which providing

prognostic biomarkers and therapeutic targets for BLCA.
Methods and materials

Data download and processing

SEER is a program that collects information on cancer patients in

the USA, and is sponsored by the National Cancer Institute. We

identified 122,600 MIBC patients and treated with cystectomy before

2016. Next, we used the Cox analysis to filter for important clinical

factors that have an intimate relationship with overall survival. RNA

sequencing from BLCA and clinical information, including gender, age,

grade, tumor stage, and survival time, were downloaded from The

Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/

tcga). Additionally, three datasets (GSE13507, GSE48075, and

GSE48276) and the corresponding clinical information data were

downloaded from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/).
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WGCNA network construction

The “edgeR” R was employed to identify differentially

expressed genes (DEGs) by R software 3.6.1 (13). DEGs were

input to test their availability and construct a network based on

the R package “WGCNA” (7). We included nine clinical

characteristics: age, race, status, M grade, T grade, N grade,

stage, height, and weight. In this study, we constructed an

adjacency matrix used Pearson’s correlation coefficient and

clustered the samples from TCGA, and drew a clinical

characteristics-related sample clustering tree. After calculating

and selecting an appropriate b value (b = 4), we transformed

the adjacency matrix into a topological overlap matrix (TOM).

Finally, based on TOM, we performed average‐linkage

hierarchical clustering and module dendrograms to identify

modules with a minimum gene dendrogram size of 30. The co-

expression module is a collection of genes with high topological

overlap similarity, and we identified significant clinical modules

by calculating the correlation between the modules.
Gene set enrichment analysis for biological
function regression

After identifying the module that contained genes most related

to important clinical characteristics, we continuously calculated

DEGs in GSE48276 and GSE13507 to further filter them. To

investigate the pathways, KEGG pathway analysis and GO

biological processes by applying the clusterProfiler R package

with a threshold p-value of <0.05, minimum count of 5, as

mentioned in previously (14).
Predictive model by lasso regression

The STRING database was applied to estimate protein–protein

interactions. Based on STRING, we first performed a univariate Cox

regression analysis to select prognostic genes related to each other.

To enhance prediction accuracy and interpretability, lasso Cox

regression analysis was carried out to construct prognostic models

with the risk as follows:

Risk score = ExpressionmRNA1×CoefficientmRNA1 + Expression

mRNA2×CoefficientmRNA2 +…ExpressionmRNAn×CoefficientmRNAn.

According to the above model, patients were classified into high-risk

(> median cutoff value) and low-risk groups. Subsequently, we

implemented the Kaplan–Meier survival method to screen the

availability of prognostic model, and a receiver operating characteristic

(ROC) curve to evaluate the prediction accuracy of 1-, 3-, and 5-year OS.

Additionally, we performed univariate and multivariate Cox analyses to

distinguish clinicopathological parameters using the hazard ratio (HR)

positively or negatively, and established a nomogram model using the

package “rsm”. Continuous variables of the risk score and findings of

Cox regression were included in our nomogram model. Finally, we

validated and identified potential prognostic genes from the predictive

model in GEO and TCGA datasets.
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Immune environment analysis in BLCA

Based on the expression of prognostic genes from lasso

regression, patients were classified into diverse groups using the

ConsensusClusterPlus R package with optimal k-means clustering

(15). Subsequently, we applied the ESTIMATE algorithm (https://

sourceforge.net/projects/estimateproject/) to estimate the ratio of

immune stromal components in the tumor microenvironment

(TME), including ESTIMATE, immune, and stromal scores (16).

Additionally, CIBERSORT method was utilized to visualize the

distribution of immune cell types. To further decipher the potential

pathways related to TME, we obtained DEGs by comparing diverse

groups. Gene enrichment analysis was performed on Metascape

database, a powerful gene function annotation analysis tool (17).
Cell culture and transfection

In this study, human BLCA cells (UMUC3 and 5637) were

obtained from Procell company (Wuhan, Hubei, China). UMUC3

cells were maintained in Minimum Essential Medium (MEM; Procell,

Wuhan, Hubei, China), and 5637 cells were maintained in RPMI-1640

Medium (1640; Procell, Wuhan, Hubei, China), supplemented with 1%

penicillin-streptomycin liquid (Biosharp, Hefei, Anhui, China) and

10% fetal bovine serum (FBS; Procell, Wuhan, Hubei, China) and

cultured in the humidified atmosphere with 5% CO2 at 37°C. Small

interfering RNAs (siRNAs) of RUNX2 and LAMA2 were designed and

synthesized from GenePharma Company (Shanghai, China).

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) was used for

transfection according to the manufacturer’s protocol. The transfection

efficiency was confirmed by using quantitative reverse transcription

polymerase chain reaction (qRT-PCR) assay.
qRT-PCR

TRIzol reagent (15596026, Life Technologies, USA) was used to

extract total RNA, following the manufacturer’s instructions. 1000

ng of RNA was subjected to synthesis cDNA by using the reverse

transcription kit (RR037A, Takara, Dalian, China), then we

performed qRT-PCR assay by using the TB Green Premix Ex Taq

Kit (RR820A, Takara, Dalian, China). The 2−DDCt method was used

for relative quantification of genes, and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) gene was used as the internal control

gene. The primer sequences and siRNAs are summarized in

Supplementary Table S3.
Cell counting kit-8 assay

A CCK8 assay kit (BS350B, Biosharp, Hefei, Anhui, China) was

used to detect the proliferation of UMUC3 and 5637 cells.

Approximately 3 × 103 of UMUC3 or 5 × 103 of 5637 cells were
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transfected with relevant siRNAs or scrambled negative control

(NC) in triplicate and maintained in 96-well plates. Ten microliters

of CCK8 reagent were added to each well, then the cells were

incubated at 37°C for about 2 h. Optical density (OD) value at 450

nm was measured.
Analysis of apoptosis by flow cytometry

A FITC Annexin V Apoptosis Detection Kit (556547; BD

Biosciences) was used to detect the apoptosis rate of bladder cells.

UMUC3 or 5637 cells at 1.0 × 105 cells/mL density were seeded into

6-well plates, then cells were transfected with si-LAMA2, si-

RUNX2, or NC within 24 h. After 72 h of transfection, cells were

digested with EDTA-free trypsin and centrifuged, as described

previously (18). The cell pellets were washed twice with

phosphate buffer saline, then stained with 5 µL of propidium

iodide and 5 µL of FITC Annexin V for 30 minutes in the dark.

Finally, 400 µL of binding buffer was added to the cells and flow

cytometry was used to observe the extent of apoptosis. Results were

analyzed using FlowJo_V10.
Transwell assays

Transwell chambers (3422, Coster, Corning, USA) coated

without or with Matrigel matrix (356234, Corning, USA) were

used to detect the migration and invasion of UMUC3 or 5637 cells.

After 24 h of transfection with different siRNAs or NC, UMUC3 or

5637 cells were collected by trypsinization, and diluted at a density

of 4 × 105 cells/mL with serum-free medium. The upper

compartment of chamber was plated with 200 mL of the diluted

cell suspension. The lower compartment was supplemented with

600 mL of medium containing 20% FBS, and the cells were

maintained in an incubator for 24 h.

Cells invading across membrane of the transwell were fixed with

methanol for 15 min, then cells were stained with crystal violet

solution (G1073, Solarbio, Beijing, China) for 15 another minutes.

An inverted microscope (Olympus) was used to capture the images

of stained cells. Five random fields were captured and used for

counting the invading cells under the microscope.
Statistical analyses

All bioinformatics analysis were performed by using R software

3.6.1. We assessed the relationship between the risk score and OS of

patients with BLCA by using univariate or multivariate Cox

proportional hazards regression analysis. All in vitro experimental

data are represented as mean ± standard deviation (SD), and

GraphPad Prism software (version 8.0; San Diego Inc., CA, USA)

was used to perform data analysis. All experiments were independently

repeated for three times, and statistical significance was set at p<0.05.
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Results

Selection of prognostic
clinical characteristics

A flowchart of experimental design and procedures is shown in

Supplementary Figure 1. Out of 122,600 available patients, 92395

(75.4%) were men and 30205 (24.6%) were women, with a mean age

of 69 years. The majority of patients (109091, 88.9%) were white.

Patients who survived for less than three months were excluded,

and a total of 115439 patients were enrolled for further analysis. In

Cox analysis, age (HR = 1.06, 95% CI: 1.05–1.06, and p<0.001), race

(HR = 0.98, 95% CI: 0.96–0.99, and p = 0.007), clinical stage (HR =

1.19, 95% CI: 1.16–1.22, and p<0.001), T (HR = 1.24, 95% CI: 1.21–

1.27, and p<0.001), and N stage were prognostic clinical

characteristics, particularly the N stage (HR = 1.38, 95% CI: 1.36–

1.41, and p<0.001) (Supplementary Figure S2). We downloaded the

clinical data and corresponding gene expression profiles from

TCGA and GEO databases.
Gene co-expression network construction
of BLCA through WGCNA

We first identified that the N stage was the most important

clinical factor and evaluated the relationship between N stage

and other clinical features (Supplementary Figure S3); therefore,

we calculated and screened DEGs under the criteria of p<0.05

between N0 and N+ patients. A total of 4,597 genes were

identified as DEGs in 368 BLCA samples for constructing the

WGCNA network. Then, we merged the clinical features,

including age, height, weight, race, status, T, N, and M stage to

select key modules for DEGs and clinical factors of BLCA

patients. The dendrogram and trait heatmap of those BLCA

patients are shown in Figure 1A. b = 4 was set as the optimal soft

threshold to construct a scale-free network, which ensured a

high degree of scale independence (near 0.9) and low mean

connectivity (close to 0) (Figure 1B). As shown in Figure 1C, we

identified key gene co-expression modules based on the TOM.

The heatmap with the interactions of co-expression modules

indicated that the expression of turquoise, purple, red and brown

modules was significantly and positively correlated with the N

stage (Figure 1D), and the turquoise module presented a

remarkable relationship with most clinical factors including

age, race, T, N and M stages. Therefore, we determined this to

be the key module. After dropping 1424 genes from the turquoise

module, we calculated DEGs related to the N stage in GSE48276

and GSE13507, and believed that the overlapping genes might be

significantly meaningful (Figure 2A). Finally, 114 genes

remained, and GO and KEGG analyses revealed that

these genes participated in EGFR tyrosine kinase inhibitor

resistance, TGF-beta signaling pathways, and focal adhesion

(Figures 2B, C).
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Building the prognostic risk model

Based on Cox analysis and STRING database, 45 genes were

identified as important prognostic candidates for lasso regression. To

develop a signature for prognosis prediction of BLCA, 19 genes

(C1QTNF6, DAB2, ESD, FKBP10, GAD1, INHBA, LAMA2, LGALS3,

MPPED1, OLFML3, PCOLCE, RASD1, RGS12, RUNX2, TIMP2,

TMEM151A, TSSK1B, VAT1, and VEGFA) were obtained to build

the risk model (Figures 3A, B). The CoefficientmRNA of risk score and

enrolled genes were shown in Supplementary Table S1. Patients were

separated into low-risk and high-risk groups according to median

cutoff of the risk score. Moreover, we found that patients may have

significantly worse OS (P = 1.536e-10) with an increase in the risk score

(Figures 3C, D). The ROC curve showed that the risk score had a better

predictive ability than other clinical traits, with AUCs of 0.759, 0.733,

and 0.743 at 1, 3, and 5 years compared with other factors (Figure 3E).

Univariate and multivariate analyses further validated the risk score as

an independent prognostic biomarker (Figure 3F). The constructed

nomogram incorporating the risk score and other clinical traits is

shown in Figure 3G, with C-Dex = 0.74, additionally, we drew the

calibration to further depict the nomogram (Supplementary Figure S4).
Characteristics of immune landscape in
BLCA patients

To explore the potential mechanism of these genes in TME, we

evaluated the relationship of 19 genes in STRING database and

utilized Cytoscape to calculate all degree of nodes of the 19

regulators. Four genes (C1QTNF6, GAD1, TMEM151A, and

MPPED1) were excluded based on STRING database, and six

genes (FKBP10, OLFML3, TSSK1B, ESD, RGS12, and VAT1) were

excluded according to cytoHubba from Cytoscape (DMNC, and

clustering coefficient = 0) (Supplementary Table S2). Pearson’s

correlation analysis was performed to determine the relationships

among eight genes and risk score (DAB2, HGF, LAMA2, LGALS3,

RUNX2 , TIMP2 , VEGFA , and SLIT2) (Figure 4A and

Supplementary Figure S5). Based on the ConsensusClusterPlus R

package, when the consensus matrix k value was equal to 2, there

was the least crossover between TCGA samples. Therefore, we

classified TCGA cohort into two groups by consensus expression

(Figure 4B) and observed a significant difference between clusters A

and B (Figure 4C). We also used the UMAP/PCA/tSNE reduction

methods to re-evaluate the clusters (Supplementary Figure S6).

Furthermore, we plotted a boxplot (Figure 4D) and heatmap

(Figure 4E) to visualize the expression of the eight prognostic

genes in the two clusters. To reveal the potential mechanism of

these genes in TME, we used the ESTIMATE algorithm to apply

Stromal, Immune, and ESTIMATE scores for BLCA samples. When

compared to cluster B, the immune (p = 7.8e-12) and stromal scores

(p = 0.0022) were significantly higher in cluster A, indicating that

these clusters may participate in immune environment regulation

(Figures 4E, F). We also evaluated the relationship between risk
frontiersin.org
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score and immune scores (Supplementary Figure S7). In addition,

we utilized the CIBERSORT algorithm to analyze 22 different

immune cell types among different clusters, which indicated that

the levels of T cells CD4 naïve T cells regulatory (Tregs), T cells

follicular helper, monocytes, dendritic cells activated, and dendritic

cells resting in cluster A were obviously lower than those in cluster

B. Moreover, the levels of T cells CD4 memory activated, T cells

CD4 memory resting, macrophages M0, M1, and M2 were

significantly higher in cluster A, suggesting that these clusters

may strengthen or suppress the distribution of specific immune

cell types, and potentially influence the response to immunotherapy

(Figure 4G). Furthermore, 773 differentially expressed mRNAs were

obtained by comparing clusters with |logFC (fold change) |≥1 and

FDR<0.05, and volcano plots were drawn (Figure 5A) to visualize

the distribution of DEGs. By analyzing Metascape database, we

found that these shared mRNAs were predominantly enriched in

tumor-related activities or pathways. For GO terms, mRNAs were

enriched in collagen fibril organization, sensory organ development,

and skeletal system development. For canonical pathways, mRNAs

were enriched in NABA core matrisome and matrisome-associated

pathways. For Reactome Gene Sets, mRNAs were enriched for

keratinization and GPCR ligand binding (Figures 5B, C). GSEA was

performed for further signaling pathway enrichment analysis, and

in a comparison between clusters A and B, tumor-related pathways

such as the IL-17 signaling pathway, drug metabolism cytochrome
Frontiers in Oncology 05
P450, and cytokine-cytokine receptor interaction were

enriched (Figure 5D).
Identification and verification of hub gene

To further determine the key prognostic immune-related genes,

we continued to calculate the prognostic values of the eight genes in

TCGA and GSE13507, and selected overlapping molecules that

might be significantly meaningful. As shown in Figure 6A (TCGA)

and 6B (GSE13507), DAB2, LAMA2, PCOLCE, RUNX2, and TIMP2

were successfully re-verified to induce poor OS. Furthermore, we

observed that LAMA2, DAB2, and TIMP2 had an intimate

relationship with T, N, and clinical stages (Figure 6C).
Effect of LAMA2 or RUNX2 silencing on
growth, apoptosis, migration and invasion
in BLCA cells

For further functional assays to verify the reliability and

accuracy of our diagnostic model, we selected LAMA2 and

RUNX2 after literature review, which have not been or rarely

studied. In addition, we found that high expression level of

LAMA2 or RUNX2 were associated with advanced clinical stages
D

A B

C

FIGURE 1

Weighted Co-expression Network Construction. (A) Dendrogram and traits heatmap for BLCA patients. (B) Network topology for different soft-
thresholding powers. (C) Cluster dendrogram based on the dynamic tree cut algorithm. (D) Heatmap of the correlation between the clinical features
and module eigengenes.
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of BLCA (Figure 7A) by analyzing the GEPIA database. We

designed and synthesized small interfering RNAs (siRNAs)

targeting LAMA2 and RUNX2. Compared with that in NC-

transfected UMUC3 or 5637 cells, the expression of LAMA2 or

RUNX2 (Figure 7B) was lower in UMUC3 or 5637 cells transfected

with si-LAMA2-2 (named si-LAMA2) or si-RUNX2-1 (named si-

RUNX2). Subsequently, CCK8 assay verified that silencing of

LAMA2 or RUNX2 strikingly suppressed the growth rate of

UMUC3 and 5637 cells (Figure 7B), indicating that both LAMA2

and RUNX2 play vital roles in promoting the proliferation of

UMUC and 5637 cells. Flow cytometry analysis demonstrated

that LAMA2 or RUNX2 could suppress the apoptosis of UMUC3

and 5637 cells (Figure 7C), indicating that the overexpression of

LAMA2 or RUNX2may promote BLCA proliferation by exerting an

anti-apoptotic effect.

The transwell assay also demonstrated that the depletion of LAMA2

or RUNX2 significantly attenuated the migration and invasiveness of

UMUC3 and 5637 cells (Figures 7D, E). Therefore, LAMA2 and

RUNX2 could enhance the migration and invasiveness in BLCA cells.
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Discussion

BLCA is one of the most common urological tumors worldwide

(1). Metastasis leads to poor prognosis of BLCA in patients, and

currently has limited clinical curative effects (19, 20). However, the

precision treatment of BLCA is gaining momentum, and its

development requires the identification of hub genes closely

related to BLCA. In this study, we utilized the Cox analysis to

show that the N stage was the most important independent clinical

factor. Moreover, interestingly, we found the age, and sex have

intimate relationship with N stage with p < 0.001. As shown in

Supplementary Figure S2, younger or black people were easily to get

advanced N stage. Kim et al. (21) identified four key genes by

utilizing 1320 genes to investigate progression-related genes in

BLCA. Catto et al. (22) used artificial intelligence with

immunohistochemical analysis to explore 11 progression-

associated genes. However, these study models are only based on

their clinical centers and without external or experimental

validation, which limits their reproducibility and generalizability.
A B

C

FIGURE 2

Selection of prognostic regulators and pathway function analysis. (A) Venn plot of regulators related to the N stage. (B) GO analyses of DEGs in
turquoise module. (C) KEGG analyses of DEGs in turquoise module.
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WGCNA is a system biology method used to describe

correlation patterns among genes across microarray sequence

data, and it is often used to link modules with external clinical

features and identify important tumor genes (23). Deng et al. (24)

identified LRRC15, TRPM3, CYP1A2, CER1, ATF7, KCNIP1,

PTPRJ, and GDF9 by constructing and estimating two normal

and cancerous states, which were considered as the pivotal genes

in bladder cancer. Luo et al. (25) screened DACT3, TNS1, and

MSRB3 using co-expression network analysis based on the

WGCNA algorithm, which may provide novel therapeutic targets

for BLCA patients with lymph node metastasis. However, these

studies only compared cancerous and non-cancerous tissues or

distant metastasis status. Considering that muscular-invasive

bladder cancer is the most heterogeneous type of BLCA, we

analyzed patients with MIBC using the SEER database and found

that lymph node stage may be the most meaningful clinical factor

affecting the prognosis of operable muscular-invasive bladder

cancer. Tian (26) and Spradling (27) also reported that lymph

node positivity is an independent predictor of recurrence and death

in bladder cancer, which are similar to the conclusion of our study.

WGCNA has been widely used in multiple human cancers as a

novel algorithm for clustering genes with the same function (28,

29). We used the WGCNA algorithm to identify genes closely

related to lymph node metastasis and selected 19 core genes related
Frontiers in Oncology 07
to lymph node metastasis and prognosis of MIBC through lasso

analysis. Furthermore, BLCA is a highly immunogenic tumor, and

immunotherapy is widely used for patients with advanced stage,

recurrence, metastasis, or multi-line treatment failure of BLCA.

TME is an important marker for predicting the efficacy of

immunotherapy, and disturbances in immune response in TME

play a decisive role in the development of bladder cancer. The

constituent immune cells of TME are an important part of tumor

tissue. Lymph node staging is closely related to tumor immune

response and immune microenvironment (30). To explore the

potential mechanism of these 19 genes in TME, we assessed

the relationship of these genes in STRING database and utilized

the Cytoscape assay to calculate all degree of nodes of 19 regulators.

Nine genes were identified as core prognostic factors related to

lymph node metastasis and invasion, and used to evaluate their

relationship with the immune microenvironment of BLCA (31, 32).

Finally, we found that the different expression classifications of

these nine genes formed different clusters of differences in immune

scores. At the same time, immune cells such as T cells CD4 naïve,

follicular helper T cells, and Tregs may be the key factors affecting

the immune score and immune microenvironment.

To further determine core potential genes, we utilized GEO

datasets and combined a variety of clinical data (T staging and

TNM staging), and consulted the literature to select potential core
D
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FIGURE 3

Construction of prognostic risk model. (A, B) Screening candidate crucial genes based on lasso Cox regression. (C) Overall survival analysis of low-
risk and high-risk groups. (D) Distribution of risk scores, alive/dead status, and expression of 19 prognostic candidate genes. (E) The ROC curve of
risk score and clinical traits in 1, 3 and 5 years. (F) Univariate (left) and multivariate Cox analysis (right) of clinical traits. (G) Nomogram construction of
risk score and clinical traits.
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FIGURE 4

Prognostic signature construction. (A) Correlation between eight hub genes. (B) Consensus matrix for k = 2. (C) The KM plot of clusters A and
cluster B (D) The expression of the eight regulatory factors in two clusters. (E) Heatmap of crucial genes from two clusters and ESTIMATE algorithm.
(F) Different expression of Stromal, Immune and ESTIMATE score. (G) Different distribution of 22 TME infiltrating cells in two clusters (*p<0.05,
**p<0.01, and ***p<0.001).
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FIGURE 5

Relationship between two clusters. (A) Volcano plots of DEGs between two clusters. (B) Representative enriched terms of GO function. (C) The
network colored by cluster-ID of GO function. (D) The GSEA analysis of DEGs between clusters 1 and 2.
Frontiers in Oncology frontiersin.org08

https://doi.org/10.3389/fonc.2023.1191398
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jin et al. 10.3389/fonc.2023.1191398
genes that have never or seldom been reported in BLCA. Finally, we

selected LAMA2 and RUNX2 to verify our hypotheses and the

reliability of our research through in vitro experiments. We

demonstrated that LAMA2 and RUNX2 acted as oncogenes to

promote proliferation, migration, and invasion and prevent

apoptosis of BLCA cells.

LAMA2 encodes an alpha 2 chain and is a major component of

basal laminae-a subunit of laminin, which plays important roles in

normal and neoplastic tissues, including proliferation, adhesion, cell

migration, and maintenance of cell shape and differentiation (33).

LAMA2 has recently been identified as a molecular marker of

aggressive ependymoma (34), and a promoter of malignancy in

glioblastomas (GBMs) through the maintenance of GBM stem cell
Frontiers in Oncology 09
compartment; therefore, it can be used as a molecular fingerprint

and a possible therapeutic target for GBMs (35). However,

suppression of LAMA2 expression could promote the

invasiveness of breast cancer cells (36), and low expression level

of LAMA2 predicted poor survival and higher recurrence rate in

patients with hepatocellular carcinoma (37). Therefore, the function

of LAMA2 may be tumor-specific or dependent on the stage of

oncogenesis. However, the role of LAMA2 in bladder cancer has not

been investigated. In this study, we first identified that the mRNA

level of LAMA2 was significantly associated with the prognosis and

clinical stages of bladder cancer. Depletion of LAMA2 significantly

inhibited the proliferation, weakened invasiveness and migration,

and promoted apoptosis of BLCA cells.
A

B

C

FIGURE 6

Identification and verification of hub gene. (A) The KM plot of hub genes and risk score in TCGA. (B) The KM plot of hub genes and risk score in
GSE13507. (C) Expression of eight signatures in different T, N, and clinical stage (ns, not significant; *p<0.05, **p<0.01, and ***p<0.001).
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Runt-related transcription factor 2 (RUNX2), a member of the

RUNX family, regulates developmental processes, including

differentiation, apoptosis, proliferation, and cell lineage

specification (38). The oncogenic functions of RUNX2 were first

identified in regulation of osteogenesis and strongly related to the

progression of osteosarcoma (39). Subsequently, RUNX2 was found

to promote progression and bone metastasis in prostate and breast

cancers. RUNX2 deficiency can attract myeloma cells and promote

myeloma development at new bone sites by secreting metastatic

cytokines and suppressing bone marrow immunity (40). However,

the relationship between RUNX2 and tumor immune

microenvironment in BLCA was largely unknown. In this study,

we first identified the role of RUNX2 in BLCA and comprehensively

assessed its profile in the immune landscape. Downregulation of

RUNX2 significantly inhibited the growth of BLCA cells, promoted

their apoptosis, and weaken their migration and invasiveness,

suggesting that RUNX2 may be a prognostic biomarker and

therapeutic target for BLCA. However, the biological roles of

LAMA2 and RUNX2 and their specific molecular mechanism in

BLCA remain unclear, which inspire us to further elucidate the
Frontiers in Oncology 10
potential underlying mechanism through molecular experiments

and clinical trials.
Conclusion

This study constructed an eight-gene risk signature model by

using lasso regression analysis and WGCNA. The nine-gene risk

signature owned meaningful performance in prognostic

stratification in TCGA and GEO datasets. Furthermore, we

comprehensively profiled immune cell infiltration and the

landscape of tumor environment. Finally, two hub genes (LAMA2

and RUNX2) were identified and successfully verified through in

vitro experimental methods.

Data availability statement

The datasets presented in this study can be found in online
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FIGURE 7

LAMA2 and RUNX2 promote the proliferation, migration, and invasiveness, and inhibit apoptosis of BLCA. (A) High expression of LAMA2 and RUNX2
are associated with advanced clinical stages through analyzing GEPIA database. (B) The silencing of LAMA2 and RUNX2 assessed using qRT-PCR.
(C) CCK8 assay showing the effects of LAMA2 or RUNX2 knockdown on proliferation of UMUC3 cells. (D) Effects of LAMA2 and RUNX2 on apoptosis
of BLCA as determined by flow cytometry. (E) Effects of LAMA2 and RUNX2 knockdown on migration and invasiveness of UMUC3 and 5637 cells,
assessed using Transwell assay (**p<0.01, ***p<0.001, ###p<0.001, n = 3).
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