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Introduction: Drug resistance is a major obstacle in cancer treatment and can

involve a variety of different factors. Identifying effective therapies for drug

resistant tumors is integral for improving patient outcomes.

Methods: In this study, we applied a computational drug repositioning approach

to identify potential agents to sensitize primary drug resistant breast cancers. We

extracted drug resistance profiles from the I-SPY 2 TRIAL, a neoadjuvant trial for

early stage breast cancer, by comparing gene expression profiles of responder

and non-responder patients stratified into treatments within HR/HER2 receptor

subtypes, yielding 17 treatment-subtype pairs. We then used a rank-based

pattern-matching strategy to identify compounds in the Connectivity Map, a

database of cell line derived drug perturbation profiles, that can reverse these

signatures in a breast cancer cell line. We hypothesize that reversing these drug

resistance signatures will sensitize tumors to treatment and prolong survival.

Results: We found that few individual genes are shared among the drug

resistance profiles of different agents. At the pathway level, however, we found

enrichment of immune pathways in the responders in 8 treatments within the HR

+HER2+, HR+HER2-, and HR-HER2- receptor subtypes. We also found

enrichment of estrogen response pathways in the non-responders in 10

treatments primarily within the hormone receptor positive subtypes. Although

most of our drug predictions are unique to treatment arms and receptor

subtypes, our drug repositioning pipeline identified the estrogen receptor
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antagonist fulvestrant as a compound that can potentially reverse resistance

across 13/17 of the treatments and receptor subtypes including HR+ and triple

negative. While fulvestrant showed limited efficacy when tested in a panel of 5

paclitaxel resistant breast cancer cell lines, it did increase drug response in

combination with paclitaxel in HCC-1937, a triple negative breast cancer cell line.

Conclusion: We applied a computational drug repurposing approach to identify

potential agents to sensitize drug resistant breast cancers in the I-SPY 2 TRIAL.

We identified fulvestrant as a potential drug hit and showed that it increased

response in a paclitaxel-resistant triple negative breast cancer cell line, HCC-

1937, when treated in combination with paclitaxel.
KEYWORDS

drug repositioning, drug resistance, primary drug resistance, breast cancer,
drug repurposing
1 Introduction

Breast cancer is the most common cancer diagnosis in women

worldwide and is expected to make up 15.3% of all new cancer cases

in the United States in 2020 (1). While the prognosis for women

with stage I or stage II breast cancer is excellent, 10-15% of newly

diagnosed breast cancers are locally advanced cancers which have

significantly poorer outcomes . Additionally, breast cancer is an

incredibly heterogenous disease and research has shown that

breast cancers with different molecular features can have different

treatment responses (2, 3). Claudin-low breast tumors, for example,

are an aggressive subtype with poor prognosis that are characterized

by their low expression of cell-cell adhesion molecules and

enrichment of mesenchymal and stem cell features (4). Breast

cancers can also be stratified into receptor subtypes based on

immunohistochemistry markers for ER, PR, and HER2, which are

commonly used for therapeutic decision making (5). Several of

these receptor subtypes, which include triple negative, or ER-PR-

HER2- tumors, and HER2+ tumors, represent patient populations

with more aggressive disease even in early stage who could benefit

from improved treatment (6).

While breast cancer treatments have advanced, there is room for

improvement. Drug resistance in cancer is a multi-faceted problem

that involves a variety of biological determinants such as tumor

heterogeneity, tumor burden and growth kinetics, physical barriers,

the immune system, and the tumor microenvironment (7). While

there has been much research into understanding and overcoming

drug resistance, it remains one of the largest challenges in cancer

today and new approaches are needed to tackle this problem.

The I‐SPY 2 TRIAL (Investigation of Serial studies to Predict

Your Therapeutic Response with Imaging And molecular anaLysis

2) is an adaptive phase II clinical trial of neoadjuvant treatment for

women with high risk, locally advanced breast cancer (8–13). The

trial uses an adaptive design to accelerate the clinical trial process

with the goal of identifying optimal treatment regimens for patient

subsets based on HR, HER2, and MammaPrint (6), a genomic test
02
that assigns tumors into categories of high or low risk of metastasis.

While the I-SPY 2 trial has been successful in graduating numerous

drugs, patients who fail to respond to the neoadjuvant treatments in

the trial tend to have worse outcomes (14, 15). Identifying more

efficacious treatments for these non-responder patients with primary

drug resistance may improve patient outcomes.

We applied a computational drug repurposing approach to identify

potential agents to include in the trial for patients unlikely to respond to

agent classes tested in the trial to date. Drug repurposing offers

advantages over traditional drug development by greatly reducing

development costs and providing shorter paths to approval, as drug

safety has already been established during the drug’s original regulatory

process. Our group has previously developed and applied a

computational drug repositioning approach which involves

generating a disease gene expression signature by comparing disease

samples to control samples, and then identifying a drug that can reverse

this disease signature (16). Potential drug hits can be found by using

datasets such as the Connectivity Map (CMap) and the Library of

Integrated Network-Based Cellular Signatures (L1000) which have

generated thousands of drug perturbation expression profiles. This

gene expression based computational drug repurposing approach has

previously been used to identify effective treatments for a number of

different indications, including several cancer types such as breast, liver

and colon cancers (17, 18). It has also been used to predict agents to

reverse drug resistance in acute lymphoblastic leukemia and non-small

cell lung cancer (19, 20).

In this study, we leveraged the I-SPY2-990 mRNA/RPPA data

compendium (21) to extract drug resistance signatures by

comparing the pre-treatment expression profiles of responders to

non-responders within each receptor subtype and treatment arm.

We then applied a computational drug repositioning approach to

identify agents which can reverse these primary drug resistance

signatures, and experimentally tested the top drug hit in a panel of

paclitaxel-resistant breast cancer cell lines. This is the first large

scale attempt to apply this transcriptomics-based drug

repositioning pipeline to the receptor subtypes of breast cancer.
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2 Methods

2.1 I-SPY2 gene expression and
clinical data

I-SPY 2 is a multicenter, phase II adaptive clinical trial for

women with high-risk stage II/III breast cancer. Patients are

classified into receptor subtypes based on hormone-receptor

(HR), HER2, and MammaPrint status and assigned to one of

several investigational therapies or the control regimen using an

adaptive randomization engine which gives greater weight to

treatments with a higher estimated response rate in the patient’s

tumor subtype. The primary endpoint is pathologic complete

response (pCR, no residual invasive disease in breast or nodes) at

the time of surgery. The analysis is modified intention to treat and

patients who do not proceed to surgery, withdraw from the trial, or

receive non-protocol therapy are considered non-pCR.

We used pre-treatment biopsy samples from the closed arms of

the ISPY2 trial (n=990), which were assayed using custom Agilent

array designs (15746 and 32627). Normalized data for each array

was generated by centering the log2 transformed gMeanSignal of all

probes within the array to the 75th percentile of all probes. A fixed

value of 9.5 was added to avoid negative values. Genes with multiple

probes were averaged and ComBat was applied to adjust for

platform-biases (21).

We define drug resistant patients as patients with Residual

Cancer Burden (RCB) III measured at time of surgery and drug

sensitive patients as patients with RCB 0 or I at time of surgery.

While we initially included RCB II patients in the drug resistant

group, we removed the RCB II patients in our final analysis to

achieve better separation in predictive signals distinguishing

responders and non-responders. We kept receptor subtype and

treatments with at least three patients in the resistant and sensitive

groups, resulting in 19 receptor subtype-treatment pairs.
2.2 Differential expression to identify drug
resistance genes

We used limma to perform differential expression between the

drug resistant and drug sensitive samples within treatments and

receptor subtypes. We then filtered the differential expression

results by p-value and log-fold change to generate the resistance

gene lists. We chose a p-value threshold of 0.01 because the

differences between the resistant and sensitive tumors were

relatively subtle and very few genes met the typical q-value cutoff

of 0.05. To identify the optimal log fold change cutoff for each

differential expression gene list, we selected the log fold change

value that best separated the drug resistant and drug sensitive

samples after filtering for p-value < 0.01. Specifically, we iterated

over a range of potential log2 fold change cutoffs (start = 1, end = 0,

step size = 0.1) and applied k-means clustering (k=2) at each cutoff

to identify two clusters of samples. We then calculated the Mathew’s

correlation coefficient (MCC) to evaluate how well the k-means

derived clusters match the actual clinical labels of drug resistant and

drug sensitive samples. We used the log2 fold change cutoff with the
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highest MCC value to generate our drug resistance gene lists. Only

drug resistance gene lists with a sufficient number of genes (>50)

were kept for further analysis.
2.3 Gene set enrichment analysis

For the GSEA analysis, the drug resistance profiles were ranked

by their log fold-change values. We used the fgsea R package (22) to

calculate normalized enrichment scores (NES) and FDR values

from these ranked lists. The NES reflects the degree to which a

gene set is overrepresented at the top or bottom of the ranked list of

genes (the enrichment score) divided by the mean enrichment score

for all dataset permutations. Normalizing the enrichment score

allows for comparison across gene sets. We downloaded the 50

Hallmark gene sets from the MSigDB Collections (23).
2.4 Computational drug repositioning

We applied our previously published drug repositioning

pipeline (16) to identify potential therapeutics to reverse drug

resistance in breast cancer patients. At a high level, the method

works by identifying drugs that have reversed differential gene

expression profiles compared to the drug resistance profile. We

hypothesize that reversing the expression patterns of drug

resistance genes will drive the tumor towards a drug sensitive state.

To prioritize drugs that have the potential to reverse the drug

resistance genes, we used drug perturbation profiles from CMap V2,

which includes 6100 profiles consisting of 1309 distinct chemical

compounds. We applied a filtering step previously described by

Chen et al. (2017) to keep high quality drug perturbation profiles.

We further subset this dataset to include only drug profiles that

were generated using MCF-7, the only breast cancer cell line in

CMap, resulting in a final dataset of 756 profiles.

Our drug repositioning pipeline uses a non- parametric, rank-

based pattern-matching strategy based on the Kolmogorov-Smirnov

(KS) statistic to assess the enrichment of drug resistance genes in a

ranked drug perturbation gene list. We calculate a reverse gene

expression score (RGES) of each drug by matching resistance gene

expression and drug gene expression using the KS test. Significance of

the score is assessed by comparing with scores generated from

100,000 random permutations, and further corrected by the

multiple hypothesis test. FDR < 0.05 was used to select drug hits.
2.5 Validation experiments for fulvestrant

To validate fulvestrant as a compound to overcome drug

resistance, we first selected paclitaxel-resistant breast cancer cell lines

because paclitaxel was used as the standard therapy in the ISPY2 trial.

We selected three paclitaxel-resistant and three paclitaxel-sensitive cell

lines from (24) from within the HR+HER2- and HR-HER2- receptor

subtypes. Daemen et al. only identified 2 Paclitaxel-sensitive cell lines

and 2 Paclitaxel-resistant cell lines for the HR+HER2+ subtype, so we

included all four HR+HER2+ cell lines in our validation experiment.
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Additionally, since Daemen et al. did not identify any Paclitaxel-

resistant HR-HER2+ cell lines in their study, we did not include any

HR-HER2+ cell lines in our validation experiment.

We ordered 13 cell lines from ATCC (Table 1) which were

recovered using the cell media recommended for each cell line by

ATCC. Cell line density was determined by seeding cell lines at

the following densities (625, 1250, 2500, 5000, 10000, 20000) and

then monitoring their growth curves for 72 hours. For the drug

treatment experiments, the cell lines were seeded at the optimal

density determined in the previous cell line density experiments

and incubated overnight before treatment. For the single agent

experiments, the cell lines were treated in triplicate with a top

dose of 10uM in 1:3 dilutions for a total of 12 doses with paclitaxel

(Sigma-Aldrich Product Number T7191), fulvestrant (Sigma-

Aldrich Product Number I4409), and staurosporine which was

used as a positive control. After 72hr, cell line viability was

measured using the CellTiter-Glo Luminescent Cell Viability

Assay following the manufacturer’s instructions. For the

sequential treatment experiments, 1uM of fulvestrant was added

to each well 6 hours before treatment with paclitaxel. The 1 uM

dose and 6 hour time point were chosen based on the dose and

time point used to generate the CMAP profile for fulvestrant. For

the combination treatment experiments, the cell lines were

treated with paclitaxel as described above in combination with

10uM fulvestrant.
3 Results

3.1 Study design and datasets

In this study, we applied our drug repositioning pipeline to the

drug resistance signatures derived from the I-SPY2 trial (Figure 1).
Frontiers in Oncology 04
Pre-treatment samples from ~990 patients in 9 experimental arms

of the trial and concurrent controls were profiled using the Agilent

44K array, as previously described (21). The clinical data for these

samples includes the HR/HER2 receptor subtype of each sample,

treatment, and treatment response including pathologic complete

response (pCR), defined as the absence of invasive cancer in the

breast and lymph nodes, and residual cancer burden (RCB)

information. RCB scores are a continuous variable based on the

primary tumor dimensions, the cellularity in the tumor bed, and the

axillary nodal burden after neoadjuvant therapy. The continuous

RCB score can then be divided into discrete RCB classes (0, 1, 2, 3)

based on predefined cutoffs (25). An RCB of 0 indicates pathologic

complete response while an RCB of 1-3 indicates increasing

amounts of residual cancer. 109 samples were missing RCB

information and excluded from the analysis. The data used in this

study form part of the ISPY2-990 mRNA/RPPA data compendium

(21) recently deposited on GEO (GSE196096). A summary of the

clinical data, including receptor subtype which we define by the HR

and HER2 status of the tumor, is provided in Supplementary

Table 1 and the corresponding arm for each treatment is

provided in Supplementary Table 2.
3.2 Drug resistance gene profiles overlap
at the pathway level and include previously
implicated drug resistance genes

We first classified each pre-treatment biopsy sample from the

ISPY 2 trial as drug sensitive or drug resistant using the RCB class

from the clinical data. We define drug sensitive tumors as having an

RCB of 0 or I and we define drug resistant tumors as having an RCB

of III. While we originally defined resistant tumors as having RCB II

or III, we found a more distinct signal when resistance is defined
TABLE 1 Summary of breast cancer cell line responses to paclitaxel.

Cell line Receptor Subtype ATCC catalog number –log10(EC50) Paclitaxel status

HCC-1937 HR-HER2- CRL-2336 5.24 Resistant*

MDA-MB-231 HR-HER2- HTB-26 5.46 Resistant

MCF-7 HR+HER2- HTB-22 6.77 Resistant*

MDA-MB-415 HR+HER2- HTB-128 6.83 Resistant

BT-474 HR+HER2+ HTB-20 7.44 Resistant

MDA-MB-436 HR-HER2- HTB-130 7.69 Sensitive

BT-549 HR-HER2- HTB-122 7.99 Sensitive*

HCC-38 HR-HER2- CRL-2314 8.11 Sensitive*

MDA-MB-361 HR+HER2+ HTB-27 8.15 Sensitive

ZR-751 HR+HER2- CRL-1500 8.26 Sensitive

HCC-1143 HR-HER2- CRL-2321 8.56 Sensitive

T-47D HR+HER2- HTB-133 8.84 Sensitive*

ZR-7530 HR+HER2+ CRL-1504 9.48 Sensitive
*Indicates that Paclitaxel response matches response in the Daemen et al. paper.
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using RCB III only and RCB II tumors are removed from the data

set (Supplementary Table 3; Supplementary Figure 1).

We performed differential expression analysis between drug

sensitive and drug resistant patients within individual treatments,

by receptor subtype. We analyzed only the receptor subtype-

treatment pairs with a minimum of 3 samples in both the drug

sensitive group and the drug resistant group, which resulted in a

total of 19 subtype-treatment pairs (Table 2). Of note, there was an

insufficient number of HR-HER2+ tumors for our within-treatment

analysis and this receptor subtype was excluded from our study. The

HR-HER2+ subtype has an age-adjusted rate of 5.1 new cases per

100,000 women based on 2016-2020 cases, making it the least

common receptor subtype in breast cancer (26).

We generated drug resistance gene profiles for each receptor

subtype and treatment by filtering the differential expression

analysis results by p-value (0.01) and then selecting the optimal

log-fold change cutoff to achieve maximal separation between the

drug resistant and drug sensitive tumors (see Methods). Drug

resistance gene profiles with fewer than 50 genes were removed as

we had previously found this to be the minimum sufficient number

of genes required for the drug repositioning pipeline (17). The drug

resistance gene profiles for the remaining 17 receptor subtype-

treatment pairs are included in Supplementary Data 1. We also

generated a more general drug resistance profile by comparing all

resistant tumors to all sensitive samples while adjusting for receptor

subtype and treatments, but this profile achieved poor separation of

resistant and sensitive tumors (Supplementary Figure 2).
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We found that few individual genes are shared across the

receptor subtype and treatment drug resistance gene profiles

(Figure 2A). However, of the 18 genes that appear in at least 4 of

the subtype-treatment pair resistance profiles, 11 have been

implicated in drug resistance or drug response based on the

literature (Table 3). For example, SERPINA3, which was present

in five of the drug resistance gene profiles, including paclitaxel with

neratinib and paclitaxel with pembrolizumab in the HR+HER2-

subtype, has been implicated in drug resistance in TNBC cells (27).

Additionally, STC2, which has been implicated in drug resistance in

cervical cancer (30), was in the following four drug resistance gene

profiles: paclitaxel in the HR+HER2- subtype, paclitaxel with

ganetespib in the HR+HER2- subtype, paclitaxel with pertuzumab

and trastuzumab in the HR+HER2+ subtype, and paclitaxel with

trastuzumab in the HR+HER2+ subtype.

We then performed Gene Set Enrichment Analysis (GSEA) (39) to

investigate the differences between the drug sensitive and drug resistant

tumors at the pathway level with the 50 hallmark pathways from

MSigDB (Figure 2B). Similar to previous studies (40, 41), we found an

enrichment of immune pathways in drug sensitive tumors compared to

drug resistant tumors in 14 out of the 17 receptor subtype and

treatment pairs, including as expected the HR+HER2- subtype in the

pembrolizumab treatment. We also found an enrichment of estrogen

response pathways in drug resistant tumors in 12 of the receptor

subtype-treatment pairs, 10 of which are in the hormone-receptor

positive receptor subtypes. The estrogen response pathway has also

been previously implicated in chemoresistance (42).
FIGURE 1

Study overview. Drug resistance gene lists were generated for each subtype and treatment arm by performing differential expression between
responders (RCB 0/I) and non-responders (RCB III). We then compared these drug resistance gene profiles to the Connectivity Map drug
perturbation profiles for the MCF7 breast cancer cell line to identify drugs that can reverse these drug resistance genes. We tested our top hit,
fulvestrant, in paclitaxel-resistant breast cancer cell lines.
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A B

FIGURE 2

Drug resistance gene profiles overlap at pathway level. (A) Heatmap of significant differentially expressed genes in each treatment and receptor
subtype arm. The colored annotation bar on the left side of the heatmap indicates the receptor subtype of the treatment arm. The colors within the
heatmap indicates log-fold change with red indicating significantly upregulated genes and blue indicating significantly downregulated genes. White
indicates that a gene was not differentially expressed in the specific treatment and receptor subtype arm. (B) Gene Set Enrichment Analysis of drug
resistance signatures in treatment and molecular subtype arms using MsigDB’s 50 hallmark pathways. Red boxes indicate enrichment in non-
responders and turquoise boxes indicate enrichment in responders. Significant (q-value < 0.05) normalized enrichment scores (NES) are shown.
TABLE 2 Summary of receptor subtype and treatments.

Treatment Receptor subtype Sensitive Resistant # of genes in resistance profile

Paclitaxel + ABT 888 + Carboplatin HR+HER2- 28 4 109

Paclitaxel + ABT 888 + Carboplatin HR+ HER2- 10 7 182

Paclitaxel + AMG 386 HR- HER2- 30 5 55

Paclitaxel + AMG 386 HR+ HER2- 19 13 165

Paclitaxel + Ganetespib HR- HER2- 24 4 124

Paclitaxel + Ganetespib HR+ HER2- 12 9 85

Paclitaxel HR- HER2- 31 9 69

Paclitaxel HR+ HER2- 22 23 531

Paclitaxel + MK-2206 HR- HER2- 18 3 201

Paclitaxel + MK-2206 HR+ HER2- 7 7 593

Paclitaxel + Neratinib HR- HER2- 16 6 146

Paclitaxel + Neratinib HR+ HER2- 3 3 147

Paclitaxel + Neratinib HR+ HER2+ 17 7 88

Paclitaxel + Pembrolizumab HR+ HER2- 17 7 217

Paclitaxel + Pertuzumab + Trastuzumab HR+ HER2+ 12 3 170

Paclitaxel + Trastuzumab HR+ HER2+ 7 3 176

T-DM1 + Pertuzumab HR+ HER2+ 19 4 157
F
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3.3 Prediction of drug sensitizing agents
based on expression identifies fulvestrant
as a potential therapeutic

We applied a transcriptomics-based drug repositioning pipeline

(16) to compare the drug resistance gene profiles to the Connectivity

Map, a public dataset of drug perturbation profiles, in order to identify

compounds which have the reversed differential gene expression

profiles compared to the drug resistance gene profiles. We

hypothesize that if we can identify a drug which can downregulate

the genes that are upregulated in drug resistance and upregulate the

genes which are downregulated in drug resistance, then this drug may

induce chemosensitivity in resistant breast cancer tumors. Out of 756

high quality gene perturbation profiles in the Connectivity Map dataset

derived from a breast cancer cell line, the median number of significant

drug hits (q-value < 0.05 and RES < 0) per receptor subtype-treatment

pair was 49 (min: 1, max: 256). The drug hits for each receptor subtype

and treatment are reported in Supplementary Data 2.

Although the number of individual genes that overlap across the

drug resistance gene profiles of the different receptor subtype-

treatment pairs was limited, we observed 22 drugs that appeared

as hits in at least 9/17 of the drug resistance gene profiles (Figure 3A;

Supplementary Figure 3).

Of note, we identified fulvestrant as a drug hit that significantly

reversed 13/17 of the drug resistance profiles. It is predicted to

reverse the drug resistance profiles in 5/6 treatment groups for TN;

4/4 for HR+HER2+; and 4/7 for HR+HER2- (Figure 3A).

Fulvestrant is a selective estrogen receptor degrader used in the
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treatment of hormone-receptor positive and HER2- advanced

breast cancer in post-menopausal woman who have not

previously been treated with endocrine therapy. We performed

GSEA on the fulvestrant drug perturbation signature from the

Connectivity Map to investigate the pathways which are reversed

by fulvestrant and examined the enrichment of these pathways in

the drug resistance profiles (Figure 3B). Unsurprisingly, fulvestrant

seems to downregulate the estrogen response pathways and cell

cycle pathways. A previous study also showed that fulvestrant may

reverse drug resistance in multidrug-resistant breast cancer cell

lines independent of estrogen receptor expression (43). For these

reasons, we selected fulvestrant for further validation experiments.
3.4 Fulvestrant validation experiments
demonstrate limited efficacy in breast
cancer cell lines

In order to validate fulvestrant as a drug candidate that can

reverse drug resistance, we first needed to identify a panel of drug-

resistant breast cancer cell lines. We selected cell lines that are

resistant to paclitaxel because paclitaxel is a standard therapy in the

I-SPY 2 trial. The Daemen et al. study screened 90 experimental and

approved drugs, including paclitaxel, in a panel of 70 breast cancer

cell lines. Based on the drug response data from this study, we

selected paclitaxel-resistant and paclitaxel-sensitive breast cancer

cell lines within each receptor subtype. The cell lines selected for the

validation experiments are listed in Table 1 and were ordered from
TABLE 3 Table of genes in drug resistance profiles.

Gene Symbol # of drug resistance profiles Description References

POU2AF1 5 Transcriptional coactivator

SERPINA3 5 Member of the serpin family of proteins (27, 28)

EPHX2 4 Member of the epoxide hydrolase family (29)

STC2 4 Secreted, homodimeric glycoprotein (30)

CHST8 4 Member of the sulfotransferase 2 family

CXCL11 4 CXC chemokine, chemotactic for interleukin-activated T-cells (31)

HAPLN3 4 Member of the hyaluronan and proteoglycan binding link protein gene family (32)

CXCL13 4 CXC chemokine, lymphocyte B chemoattractant (33)

EVL 4 Actin-associated proteins (34)

HSD11B1 4 Microsomal enzyme, reversibly catalyzes conversion of cortisol to cortisone

IDO1 4 Heme enzyme, catalyzes tryptophan catabolism (35)

IL21R 4 Cytokine receptor for interleukin 21 (36)

SEL1L3 4 Protein coding gene

SLC22A5 4 Organic cation and sodium-dependent high affinity carnitine transporter (37)

TNFRSF17 4 Receptor for TNFSF13B/BLyS/BAFF and TNFSF13/APRIL

ZBED2 4 Transcriptional regulator (38)

ANKRD22 4 Protein coding gene

LPPR3 4 Member of the lipid phosphate phosphatase (LPP) family
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ATCC. We were unable to grow three of the cell lines (MDA-MB-

134-VI, BT-483, UACC-812), which were excluded from the drug

response experiments.

Next, we treated the breast cancer cell lines with paclitaxel to

validate the drug responses from the Daemen et al. study (24). We

used the mean EC50 response as the cutoff to separate the resistant

and sensitive cell lines. We identified five cell lines that were

resistant to paclitaxel based on this cutoff, two of which were also

found to be resistant in the Daemen et al. study (Table 1). The

discrepancy between our drug responses and the drug responses in

the Daemen et al. study may be due in part to the different drug

response metrics that were used. The Daemen et al. study used GI50

while we used EC50 to measure drug response. Out of the five cell

lines that we determined to be resistant to paclitaxel, two were HR-

HER2-, two were HR+HER2-, and one was HR+HER2+.

We then tried two different treatment strategies for testing

fulvestrant in the paclitaxel resistant cell lines. In the first treatment

strategy, we treated the paclitaxel resistant cell lines with fulvestrant

for 6 hours before adding paclitaxel. This sequential treatment
Frontiers in Oncology 08
approach gives the cell lines time to become sensitized by

fulvestrant before being treated with paclitaxel. This sequential

treatment approach (Supplementary Figure 4) did not result in a

change in response to paclitaxel in the paclitaxel-resistant cell lines.

In the second treatment strategy, we treated the paclitaxel-resistant

cell lines with both fulvestrant and paclitaxel in combination for 72

hours. Out of the five paclitaxel-resistant cell lines, this combination

treatment strategy resulted in an increase in response in one cell

line, HCC-1937, with an EC50 shift from 3.09e-8 to 5.17e-9 M, and

a decrease in sensitivity in MCF-7, MDA-MB-231, and MDA-MB-

415 (Figure 3C). Interestingly, HCC-1937 is a triple negative breast

cancer cell line, suggesting perhaps an estrogen receptor

independent mechanism of action.
4 Discussion

Drug resistance is the primary factor that limits cures in cancer

patients. In this study, we applied a computational drug
A B

C

FIGURE 3

Drug hits and validation experiments. (A) Heatmap of the 22 most common drug hits (q-value < 0.05 and RES < 0) across treatment and molecular
subtype arms. Color indicates strength of reversal score and white color indicates that drug is not a significant hit in the specific treatment and
molecular subtype arm. (B) GSEA analysis comparing fulvestrant perturbation profile (first column) to the drug resistance profiles using MsigDB’s 50
hallmark pathways. Only pathways that have significant NES scores (q-value < 0.05) in the fulvestrant perturbation profile are shown. (C) Drug
response of paclitaxel alone (black) and fulvestrant and paclitaxel in combination (red) tested in paclitaxel-resistant breast cancer cell lines. The
vertical lines indicate the EC50 values. Fulvestrant and paclitaxel given in combination increases response in the HCC-1937 cell line.
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repositioning approach to identify potential FDA-approved agents

for patients with primary drug-resistant tumors in the I-SPY 2 trial.

We generated drug resistance profiles for each receptor subtype

and treatment by comparing the expression profiles of responder to

non-responder patients. While we were unable to identify genes

that were present across every drug resistance profile, many of the

genes which appeared in multiple drug resistance profiles have been

previously implicated in drug resistance. SERPINA3, which was

upregulated in multiple drug resistance profiles, has been shown to

reduce sensitivity of TNBC cells to cisplatin upon overexpression

(27). Similarly, STC2, which was also upregulated in multiple drug

resistance profiles, has been found to be significantly elevated in

cisplatin resistant cervical cancer cells (30). We were able find

literature support for a number of genes that were present in

multiple drug resistance profiles, suggesting that our drug

resistance profiles are capturing aspects of known biology about

drug resistance.

When we performed gene set enrichment analysis on the drug

resistance profiles, we identified enrichment of estrogen response and

metabolic pathways in resistant tumors compared to sensitive tumors.

This is in line with previous studies which have shown that estrogen can

promote resistance to chemotherapeutic drugs in ER+ human breast

cancer cells through regulation of the Bcl-2 proto-oncogene (42).

Unsurprisingly, the estrogen response pathways were primarily

enriched in the HR+ groups in our analysis. Previous studies have also

shown that metabolic pathways are key mediators of drug resistance in

breast cancer. Fatty acid metabolism, which was enriched in resistant

tumors across multiple receptor subtype and treatments in our analysis,

has previously been implicated in drug resistance through mechanisms

such as increased fatty acid oxidation, which can generate energy for

cancer cells, or decreased membrane fluidity, which can affect drug

uptake (44). Oxidative phosphorylation was also found to be enriched

across multiple receptor subtype and treatments, similar to previous

studieswhichhave shown that tamoxifen-resistantMCF-7breast cancer

cells display increased levels of oxidative phosphorylation (45).

We identified potential drug candidates by searching for drugs in

the CMAP dataset that can significantly reverse these drug-resistance

profiles. Fulvestrant was our most common drug hit and it was

predicted to significantly reverse 85% of the drug resistance profiles.

An in vitro study using multi-drug resistant breast cancer cell lines

showed that fulvestrant can induce sensitivity to doxorubicin (43).

Interestingly, they found that this response was independent of the ER

statusof thebreast cancer cell lines andmay involvean interactionwith

P-glycoprotein. Sirolimus, also knownas rapamycin,was another drug

that appeared acrossmultiple drug resistance profiles. Previous studies

have shown that sirolimus may enhance the effects of chemotherapies

in breast cancer cell lines (46) and osteosarcoma cell lines (47).

Additionally, MK-2206 targets the same pathway and was shown to

beeffective in the I-SPY2 trial (10).Whilewe selected fulvestrant to test

in vitro because it appeared as a hit in the greatest number of drug

resistance profiles, the other drughitsmay bepromising candidates for

reversing drug sensitivity in breast cancer.

For the validation experiments, we first selected breast cancer

cell line that were either sensitive or resistant to paclitaxel based on

the Daemen et al. study (2015). We then validated the drug

responses by treating these cell lines with paclitaxel and we
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identified five cell lines that are paclitaxel-resistant. We treated

these paclitaxel-resistant breast cancer cell lines with fulvestrant and

paclitaxel, both sequentially and in combination. While fulvestrant

showed limited efficacy in a majority of the cell lines, fulvestrant in

combination with paclitaxel did increase drug response in one triple

negative cell line, HCC-1937, suggesting the potential of fulvestrant

as a combination treatment for drug-resistant tumors within

specific genetic contexts. However, 3 out of the 5 cell lines

showed a decrease in sensitivity to the combination therapy

compared to paclitaxel alone, which was unexpected. It would be

interesting to explore the gene expression profiles of the

combination treatment versus paclitaxel alone to better

understand the reason behind this result. It is also worth noting

that the HR+HER2- cell lines did not respond to fulvestrant, which

was unexpected, especially since one of the cell lines, MCF-7, was

used to generate the CMap drug perturbation profiles used for

prediction. It is possible that a higher dose or a longer pre-treatment

time with fulvestrant may be necessary to induce a response in these

cell lines. Alternatively, these cell lines may reflect hormone

receptor-positive tumors that do not respond to chemotherapy, as

identified in previous clinical trials (48).

Our study has several limitations which we discuss here. First, the

drug perturbation data used to make the predictions was derived from

MCF-7, a single HR+HER2- cell line. Had the drug perturbation data

includedmultiple breast cancer cell lines spanning the different receptor

subtypes, the predictionsmay have been improved. Second, the primary

tumorexpressionprofiles fromthe I-SPY2studyare frompre-treatment

samples only. Thus, the drug resistance profiles that we generated

primarily reflect intrinsic drug resistance rather than adaptive drug

resistance, the latter of which would require post-treatment samples.

Additionally, after stratifying the I-SPY 2 patient samples by receptor

subtype and treatment, the number of sampleswithin some groupswere

relatively small, limiting the power of the study. Similarly, our validation

experiments were performed in a limited number of breast cancer cell

lines. Future experiments should incorporate more patient samples,

including post-treatment samples, to generate more robust drug

resistance profiles to inform predictions, which should be based on

more diverse cell lines that better capture breast cancer heterogeneity.

Wealsohope to test additional drughits in a larger panel of breast cancer

cell lines, suchas thepanelused inDaemenet. al, tobetterunderstand the

genomic context contributing to drug response. Generating drug

resistance profiles for this panel of cell lines would also be useful for

understanding differences in cell line viability and determining the

similarities and differences between drug resistance mechanisms in cell

lines and human tumor samples. Lastly, for future in vitro experiments,

wewould explore longer pre-treatment times and awider range of doses

for the drug hits.

In summary, we used a computational drug repurposing

approach to identify potential agents to sensitize drug resistant

breast cancers. We generated drug resistance profiles for each

receptor subtype and treatment in the I-SPY 2 trial and found

that estrogen response and metabolic pathways are enriched in

resistant tumors and immune pathways are enriched in sensitive

tumors. We then compared these drug resistance profiles to the

drugs in CMAP and identified drug hits for each resistance profile.

We tested fulvestrant in a panel of five paclitaxel-resistant breast
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cancer cell lines and found that it increased drug response in

combination with paclitaxel in the cell line HCC-1937.
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