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Introduction: The implementation of small-molecule and immunotherapies in

acute myeloid leukemia (AML) has been challenging due to genetic and

epigenetic variability amongst patients. There are many potential mechanisms

by which immune cells could influence small-molecule or immunotherapy

responses, yet, this area remains understudied.

Methods: Here we performed cell type enrichment analysis from over 560 AML

patient bonemarrow and peripheral blood samples from the Beat AML dataset to

describe the functional immune landscape of AML.

Results: We identify multiple cell types that significantly correlate with AML

clinical and genetic features, and we also observe significant correlations of

immune cell proportions with ex vivo small-molecule and immunotherapy

responses. Additionally, we generated a signature of terminally exhausted T

cells (Tex) and identified AML with high monocytic proportions as strongly

correlating with increased proportions of these immunosuppressive T cells.

Discussion: Our work, which is accessible through a new “Cell Type” module in

our visualization platform (Vizome; http://vizome.org/), can be leveraged to

investigate potential contributions of different immune cells on many facets of

the biology of AML.
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Introduction

AML is a blood cancer with an average 5-year survival of

approximately 29% (1) and is characterized by an uncontrolled

expansion of abnormal myeloid-lineage cells commonly referred to

as “blasts”. In the United States for the year 2020, there were 60,530

new cases of leukemia of which AML encompassed roughly 1/3

(19,940), but disproportionately accounted for nearly half of the

deaths (11,180 of 23,100 all leukemia) (SEER). AML is a genetically

heterogeneous cancer, with the most commonly mutated genes,

FLT3, NPM1, and DNMT3A, only encompassing approximately

30% of all AML patients (2). While targeted therapy discoveries

have expanded greatly in the past decade, there are still many

confounding variables that dampen responses in patients.

Understanding these underlying variables affecting drug response

is critical to achieving durable remissions by treating patients with

tailored drug regimens.

As a blood cancer, AML cells are uniquely situated to interact

with a plethora of immune cells either in the bone marrow or in the

periphery. Numerous reports have described different mechanisms

by which AML cells interact with immune cells to disrupt

homeostasis via secretion of and/or increased responsiveness to

pro-inflammatory cytokines (3–5), and promotion of T cell

exhaustion (6–8). Furthermore, groups have begun investigating

the connection between certain somatic mutations and expansion of

immunosuppressive cell types, such as TP53 mutations and

increased Tregs (9) or DNMT3A mutations attenuating TH1

macrophage polarization (10). However, these studies are limited

by small patient cohorts or restricted to murine models. This

prompted us to describe the functional immune landscape of

AML via deconvolution of bulk RNA-seq from 560 AML patient

samples and mapping to an expansive dataset of clinical

annotations and ex vivo drug responses.
Results

Immune landscape of AML

To assess the immune landscape of AML we scored bulk RNA-

seq data to annotate proportions of various cell types using the xCell

R package (11) in 560 AML patients within the Beat AML dataset

(12) (Figure 1A, Supplementary Figure S1A). These cell type

proportions can be explored and visualized using our Beat AML

data visualization platform, Vizome (http://vizome.org/). As

expected, we found bone marrow aspirate samples had decreased

proportions of lymphoid populations as compared to the peripheral

blood samples (Supplementary Figures S1B–E). We validated the

accuracy of the xCell scores by comparing with flow cytometry

measurements from clinical hematology/pathology testing and

found strong correlation of xCell predictions with flow cytometry

measurements for all cell types (Figures 1B–E). To investigate

potential overlap with patient features, we performed hierarchical

clustering of patients and cell types using the ConsensusClusterPlus

R package (13) (Figure 2A). We evaluated the resulting clusters and

found that k=8 clusters had the greatest stability (Supplementary
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Figures S2A, B). We further characterized these clusters based on

their specific diagnosis and mutational status. We first annotated

clusters with specific diagnoses for each specimen (Figure 2B).

Intriguingly, Cluster 1, which had higher proportions for multiple

CD4 and CD8 T cell lineages, was also enriched for transformed

specimens and had the lowest proportion of de novo AMLs of all the

clusters. Next, we assessed mutational patterns in each cluster

(Figure 2C). We found that the T cell high cluster 1 was enriched

for RUNX1 and EZH2 mutations. Conversely, Cluster 8, which had

the lowest scores for T cell lineages were enriched for PDS5B and

TP53 mutations. TP53 mutated AMLs have previously been

reported to be associated with increased immune suppression (9,

14) and TP53 mutations are associated with a significantly worse

prognosis and outcome (2, 9). Additionally, Williams et al. found

that TP53 mutations were enriched in patients with higher

expression of inhibitory immune checkpoint molecules on T cells

in AML patients (15). Taken together, we identified clusters of AML

patients who exhibit low T cell signatures that are associated with de

novo TP53 mutant AMLs.
Immune cell signatures predictive
of small-molecule responses and outcome

We next determined cell type correlations with ex vivo small-

molecule responses in the same patient samples. We restricted

correlations to only include inhibitors with greater than 20 unique

patient responses. This cutoff yielded 152 unique inhibitor

monotherapies (Figure 3A). We and others previously described

BETi and venetoclax or palbociclib as having opposing responses in

monocytic AMLs, whereby BETi sensitivity is highest in monocytic

AMLs (16) whereas venetoclax (17–21) and palbociclib (16) are

most sensitive in undifferentiated AMLs. We were able to replicate

these patterns of response as both venetoclax and palbociclib

exhibited resistance in samples with high monocyte scores

whereas the BETi, OTX-015, showed sensitivity in samples with

high monocyte scores, thus, validating this approach. We identified

many novel correlations between inhibitor responses and different

cell types. Focusing on responses in samples with high proportions

of Tregs, the top three inhibitors with increased effectiveness were

NVPAEW-541, BMS-754807, and metformin, which target insulin

signaling pathways via inhibition or downregulation of the IGF-1

receptor (Figure 3B). Additionally, we can focus on the responses of

a single drug globally. Examination of the FDA approved

hypomethylating agent (HMA), azacitidine (Figure 3C), reveals

that resistance correlates with increased scores of adipocytes

(r=0.18), monocytes (r=0.17), and neutrophils (r=0.16), whereas,

Th1 cells (r=-0.13) and MPP cells (r=-0.17) correlate with

azacitidine sensitivity. We next evaluated patient outcomes versus

individual cell type proportions. We found that Treg signatures

significantly correlate with worse survival in bone marrow aspirates,

whereas, TH2 T cell and macrophage signatures correlate with

worse survival in peripheral blood specimens (Figures 3D, E).

Tregs have been previously shown to be correlated with a worse

prognosis in AML (6, 22). In total, we describe a novel, publicly

available tool with which one can utilize to interrogate inhibitor-
frontiersin.org
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immune cell interactions and how they may influence survival

in AML.
Monocyte high patient samples have
decreased ex vivo responses to ICB
therapy and higher Tex signatures

We next asked whether any cell type signatures predicted ex vivo

immune checkpoint response. Lamble and Kosaka et al. (8) recently

evaluated the efficacy of ICB therapy in 49 bone marrow aspirate

samples within the Beat AML database. Of those, 18 had

dysfunctional T cells – as determined by reduced proliferative

capacity and cytokine secretions. Of these samples with

dysfunctional T cells, 9 were rescuable with ex vivo treatment with

anti-PD1 blockade, and 6 were refractory. We first asked whether any

xCell cell type scores significantly differed between these two groups

and found that monocytes were significantly higher in anti-PD1
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refractory samples (Figure 4A).We found this particularly interesting

as Van Galen et al. (25) had previously noted that monocytic AMLs

had immunosuppressive features. ICB therapy is thought to

specifically re-invigorate progenitor exhausted T cells (TPEx) and

retain the highest anti-tumor activity (23, 26). Conversely, exhausted

CD8 T cells (Tex), which terminally differentiate from TPEx, have

reduced effector function and anti-tumor activity. Additionally,

patients with higher TEx/TPex ratios are resistant to ICB therapy

(27, 28). Thus, given our previous data suggesting that monocytes/

monocytic AMLs correlate with ex vivo anti-PD1 resistance and that

anti-PD1 resistance has been linked to increased proportions of

exhausted CD8+ T cells, we generated a custom T cell exhaustion

signature using previously deposited sequencing data (24, 29, 30) to

investigate whether this Tex signature correlates with higher

proportions of monocytes or monocytic differentiation programs

(Figure 4B). We then asked which cell types correlated with our

Tex score, excluding CD8+ T cells, and indeed found that monocytes

significantly positively correlated whereas undifferentiated myeloid
FIGURE 1

Immune landscape of AML. (A) Heatmap representing log2 transformed immune cell proportion estimations calculated by xCell for 252 AML patient
sample peripheral blood aspirates. Cell types are grouped by Euclidean distance and patient samples by correlation. When known, relapse versus de
novo status, ELN2017, and specific diagnosis annotations, as defined in 2, are denoted on left axis. (B-E) Comparison of clinical cell type proportions
as determined by clinical flow cytometry, which was mined from electronic medical records of hematology/pathology clinical flow cytometry results
(2, 12), at specimen acquisition versus xCell estimations for (B) monocytes, (C) neutrophils, (D) eosinophils, and (E) CD8+ T cells versus lymphocytes.
Significance determined by Pearson correlation. Solid black line represents the linear line of best fit and the dotted lines on either side represent the
95% confidence interval.
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cells such as HSCs, GMPs, and CMPS negatively correlated

(Figure 4C). We next asked whether this Tex score predicted ex

vivo responses to anti-PD1 therapy by correlating Tex scores with

PD-1 response designations. Finally, we determined mutational

correlation with TEx scores. We restricted this analysis to only

include mutations which were recurring in at least 5 different

specimens. This left 27 total recurring genetic mutations. For this

set, we evaluated spearman correlations for all mutations and their

associated Tex score. We found that FLT3-ITD and NPM1 were

significantly negatively correlated with Tex scores. No mutations

correlated positively with Tex scores, suggesting that the T cell
Frontiers in Oncology 04
exhaustion is potentially uncoupled to mutation status in AML

(Figure 4D). However, this may also be driven by sampling errors

due to the small number of mutations. In summary, we find that high

monocyte scores are correlated with resistance to anti-PD1 therapy

ex vivo.
Discussion

The contributions of non-leukemia cells towards drug response

and survival is an actively growing field but has many remaining
FIGURE 2

Stochastic clustering identifies correlates with diagnosis and mutational status. (A) xCell scores were used to generate clusters of patients using the
ConsensusClusterPlus R package. Each column represents a single patient and each row corresponds to a cell type. Patients were clustered using
PAM with Euclidean distance. An additional heatmap demonstrating the corresponding Van Galen cell types which were previously calculated12 are
overlaid at the top. (B) Disease stage was determined from clinical annotations to annotate the 8 clusters identified in a. by Consensus Cluster. (C)
Mutation frequencies were calculated as a proportion of the total number of patients in the respective cluster. The cohort frequency was calculated
from the samples in all 8 clusters and subtracted from the individual cohort frequency to determine the change in frequency for each cluster. Data is
represented Log2 transformed. Top 3-4 mutations are highlighted and color-coded red.
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questions. Here we survey the immunemicroenvironment of AML to

better understand underlying mechanisms of drug – immune cell

interactions and provide a tool for leukemia researchers to interrogate

this axis. Utilizing in silico approaches we characterize the

microenvironment of ~600 AML patient bone marrow and

peripheral blood aspirates. We validated these approaches using

available clinical flow cytometry data, where available, and found

that xCell deconvolution accurately predicted cell type proportion.

Our data identified TP53 and PDS5B mutated AMLs as potentially

being less immunologically active with dramatically decreased
Frontiers in Oncology 05
proportions of naïve and effector CD8+ T cells. Additionally, we

find that the T cell enriched cluster are primarily transformed AMLs,

highlighting the potential importance of immune dysregulation in

relapsed and transformed settings. We further correlated 152 small-

molecule inhibitors with cell type proportions and identified

numerous interactions. We were able to validate these approaches

by investigating correlations between BETi, venetoclax, and

palbociclib with monocytes, whose responses have been described

by us and others as tethered to monocytic differentiation (16, 19, 20).

In addition, we identified unpredicted responses of IGF1R/insulin
FIGURE 3

Cell type proportions correlate with small-molecule inhibitor responses in AML patient samples. (A) Scatter plot showing all inhibitor correlations
versus all cell types. Inhibitor correlations were calculated using ex vivo area under the curve values derived from 2 and restricted to inhibitors with
at least 20 unique patient samples. Red triangles denote BETi OTX-015 responses and highlight monocyte and cDC correlations. Black triangles
denote BCL2i venetoclax and highlights monocytes and HSCs. Blue triangles denote palbociclib correlations and highlights monocytes. Green
triangles denote Treg correlations and highlight IGF-1Ri NVP-AEW541, BMS-754807, and metformin. (B) Plot of all inhibitor AUC correlations versus.
Tregs only as calculated in a. (C) Plot of all cell types versus HMA azacytidine, highlighting strongly positive correlations in red and negative
correlations in blue, as calculated in a. (D-E) Spearman correlations were calculated between overall survival for corresponding patient (D) bone
marrow and (E) peripheral blood samples versus. xCell cell types. Red dashed line marks significance threshold for each plot. Points of interest are
highlighted in red.
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inhibitors that are potentially tethered to Tregs, suggesting insulin

growth factor receptor signaling as a potentially rational therapeutic

strategy in patients with high Tregs. Studies have demonstrated that
Frontiers in Oncology 06
activation of IGF-1R induces Tregs (31) and that insulin resistance

correlates with decreased Tregs (32). Our in silico data suggests that

this is a targetable axis in AML patients and that its enhanced efficacy
FIGURE 4

Monocytic signatures correlated with ex vivo resistance to immune checkpoint blockade and have increased signatures of T cell exhaustion. (A)
Heatmap which displays the aggregate cell proportion estimate versus anti-PD1 ex vivo response for samples described by Lamble and Kosaka et al.
2019. Significance was calculated for all cell types via 2-way anova (n = 9 PD-1 Responder, n = 6 PD-1 refractory), ***p<.001, ****p<0.0001. (B)
Distribution of Tex scores from peripheral blood samples within the Beat AML database. The Tex score was generated by creating a signature based
on top enriched genes from previous sequencing data on exhausted T cells from (23) and (24). Higher scores correlate with increased estimated
proportions of exhausted T cells. (C) Volcano plot showing the spearman correlations between the Tex score and all other cell types from xCell. An
assortment of example cell types with either significant positive or negative enrichments are highlighted in red. (D) For each recurring AML mutation,
we computed the difference in Tex score between mutated and wild type (shown as points). This difference is reported in terms of a standardized
effect size (Glass’s delta relative to wild type; x-axis). The vertical axis indicates mutational association with increased Tex score on the right, and with
decreased Tex score on the left. FDR-corrected significance of these differences is given on the y-axis with a dashed line indicating the 0.05 level.
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may be driven by targeting Tregs. Finally, we described the potential

connection between monocytes/monocytic differentiated AMLs in

predicting ex vivo ICB response. We show that monocyte signatures

are significantly increased in AML samples with dysfunctional T cells

that are refractory to ICB therapy. We further test this connection by

generating a signature of exhausted T cells, which are known to drive

ICB therapy resistance, and find that they indeed correlate

significantly with monocyte signatures. Future studies will focus on

biological validation of novel inhibitor cell type correlations, as well as

further validation of associations using functional ex vivo immune

testing data.
Methods

xCell enrichment scoring of RNA-seq data

Previously deposited data (2, 12) was re-processed using

Kallisto v0.46.2 (33) relative to Ensembl GRCh37 v75 transcripts.

Gene-level expression values were derived from summed transcript

abundance. Inhibitor responses, variant calls, processed expression

data, and clinical annotations are publicly available in our Vizome

data visualization platform (http://vizome.org/aml2; see https://

biodev.github.io/BeatAML2/ for frequently asked questions).

Clinical flow calls used to compare xCell (v1.1.0) proportions

were also derived from the Beat AML dataset.
Heatmaps

Heatmaps were generated by log2 transforming cell proportion

estimations for all unique AML patient sample peripheral blood

aspirates (n=252). Cell types are clustered by Euclidean distance

and patient samples by Pearson’s correlation. The R package

“Pheatmap” was used to generate all heatmaps. Clustering of cell

types versus specimen was performed using ConsensusClusterPlus

(v1.54.0) using partitioning around medoids (PAM) (34) based on

Euclidean distance for the inner clustering and average linkage

hierarchical clustering for the outer clustering.
Clinical flow data

Flow cytometry data was mined from electronic medical records

derived from clinical hematology/pathology testing as previously

described (2, 12).
Inhibitor correlations with cell types

Inhibitor-cell type correlations were generated for all inhibitors

in the Beat AML database with at least 20 unique patient samples.

Details on the drug viability assay and data processing can be found

in Tyner et al. 2018 (2) and Bottomly et al. 2022 (12). This resulted

in 152 unique inhibitor monotherapies or combination therapies.

Spearman correlations were then generated for all samples
Frontiers in Oncology 07
comparing inhibitor area’s under the curve (AUCs) versus xCell

cell type proportions.
Anti-PD1 therapy versus cell
type proportions

Ex vivo aPD1 responses were determined based on Lamble and

Kosaka et al. (8), which identified 6 anti-PD1 resistant and 9 anti-

PD1 responding samples. Significance for all cell types between

anti-PD1 refractory and responder was calculated using 2-way

ANOVA and denoted on the heatmap.
Terminally exhausted T cell score

The terminally exhausted T cell score was calculated using xCell

(`rawEnrichmentAnalysis` function) with gene-sets derived from

Jadhav et al. (23) and Man et al. (24) and calculated for all AML

peripheral blood samples.
Statistical testing

Unless otherwise stated, * represents P values less than.05, **

less than.01, *** less than.001, and **** less than.0001.
Data availability statement

Publicly available datasets were analyzed in this study. These

data can be found here: All raw and processed sequencing data,

along with relevant clinical annotations have been submitted to

dbGaP and Genomic Data Commons and are publicly available.

The dbGaP study ID is 30641 and accession ID is phs001657.v2.p1

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001657.v2.p1). In addition, all data can be accessed

and queried through our online, interactive user interface, Vizome,

at vizome.org/aml2.
Ethics statement

The studies involving human participants were reviewed and

approved by Oregon Health & Science University Institutional

Review Board. Written informed consent to participate in this

study was provided by the participants’ legal guardian/next of kin.
Author contributions

KR: formal analysis, investigation, visualization, methodology,

writing–original draft, writing–review and editing. DB: formal

analysis, investigation, visualization, methodology, writing-review

and editing, resources, data curation. WY: methodology, writing–

review and editing. NL: resources. MV: data curation. SM: formal
frontiersin.org

http://vizome.org/aml2
https://biodev.github.io/BeatAML2/
https://biodev.github.io/BeatAML2/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001657.v2.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001657.v2.p1
https://vizome.org/aml2
https://doi.org/10.3389/fonc.2023.1192829
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Romine et al. 10.3389/fonc.2023.1192829
analysis, investigation, visualization, methodology, writing-review

and editing, resources, data curation. JT: Conceptualization,

resources, formal analysis, supervision, funding acquisition,

investigation, visualization, methodology, writing–original draft,

project administration, writing–review and editing. All authors

contributed to the article and approved the submitted version.
Funding

Funding for this project was provided in part by grants from the

National Cancer Institute (U01CA217862, U54CA224019,

U01CA214116) and NIH/NCATS CTSA UL1TR002369 (SM). JT

received grants from the V Foundation for Cancer Research, the

Gabrielle’s Angel Foundation for Cancer Research, the Mark

Foundation for Cancer Research, the Silver Family Foundation,

and the National Cancer Institute (R01CA245002, R01CA262758).
Conflict of interest

Author JT has received research support from Acerta, Agios,

Aptose, Array, AstraZeneca, Constellation, Genentech, Gilead,

Incyte, Janssen, Kronos, Meryx, Petra, Schrodinger, Seattle
Frontiers in Oncology 08
Genetics, Syros, Takeda, and Tolero and serves on the advisory

board for Recludix Pharma. The authors certify that all compounds

tested in this study were chosen without input from any of our

industry partners.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1192829/

full#supplementary-material
References
1. Thein MS, Ershler WB, Jemal A, Yates JW, Baer MR. Outcome of older patients
with acute myeloid leukemia: an analysis of SEER data over 3 decades. Cancer (2013)
119:2720–7. doi: 10.1002/cncr.28129

2. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al.
Functional genomic landscape of acute myeloid leukaemia. Nature (2018) 562:526–31.
doi: 10.1038/s41586-018-0623-z

3. Van Etten RA. Aberrant cytokine signaling in leukemia. Oncogene (2007)
26:6738–49. doi: 10.1038/sj.onc.1210758

4. Sanchez-Correa B, Bergua JM, Campos C, Gayoso I, Arcos MJ, Banas H, et al.
Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely
correlated with IL-6 and directly correlated with IL-10 levels. Cytokine (2013) 61:885–
91. doi: 10.1016/j.cyto.2012.12.023

5. Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid
leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth
Factor Rev (2018) 43:8–15. doi: 10.1016/j.cytogfr.2018.08.004

6. Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, et al. Elevated
frequencies of CD4(+) CD25(+) CD127lo regulatory T cells is associated to poor
prognosis in patients with acute myeloid leukemia. Int J Cancer (2011) 129:1373–81.
doi: 10.1002/ijc.25791

7. Jia B, Zhao C, Rakszawski KL, Claxton DF, EhmannWC, Rybka WB, et al. Eomes
(+)T-bet(low) CD8(+) T cells are functionally impaired and are associated with poor
clinical outcome in patients with acute myeloid leukemia. Cancer Res (2019) 79:1635–
45. doi: 10.1158/0008-5472.CAN-18-3107

8. Lamble AJ, Kosaka Y, Laderas T, Maffit A, Kaempf A, Brady LK, et al. Reversible
suppression of T cell function in the bone marrow microenvironment of acute myeloid
leukemia. Proc Natl Acad Sci U.S.A. (2020) 117:14331–41. doi: 10.1073/pnas.1916206117

9. Sallman DA, Mclemore AF, Aldrich AL, Komrokji RS, Mcgraw KL, Dhawan A, et al.
TP53 mutations in myelodysplastic syndromes and secondary AML confer an
immunosuppressive phenotype. Blood (2020) 136:2812–23. doi: 10.1182/blood.2020006158

10. Que Y, Li H, Lin L, Zhu X, Xiao M, Wang Y, et al. Study on the immune escape
mechanism of acute myeloid leukemia with DNMT3A mutation. Front Immunol
(2021) 12:653030. doi: 10.3389/fimmu.2021.653030

11. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol (2017) 18:220. doi: 10.1186/s13059-017-1349-1

12. Bottomly D, Long N, Schultz AR, Kurtz SE, Tognon CE, Johnson K, et al.
Integrative analysis of drug response and clinical outcome in acute myeloid leukemia.
Cancer Cell (2022) 40:850–864.e859. doi: 10.1016/j.ccell.2022.07.002
13. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics (2010) 26:1572–3. doi:
10.1093/bioinformatics/btq170

14. Vadakekolathu J, Lai C, Reeder S, Church SE, Hood T, Lourdusamy A, et al.
TP53 abnormalities correlate with immune infiltration and associate with response to
flotetuzumab immunotherapy in AML. Blood Adv (2020) 4:5011–24. doi: 10.1182/
bloodadvances.2020002512

15. Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE, et al.
The distribution of T-cell subsets and the expression of immune checkpoint receptors
and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia.
Cancer (2018) 125: 1470–1481. doi: 10.1002/cncr.31896

16. Romine KA, Nechiporuk T, Bottomly D, Jeng S, Mcweeney SK, Kaempf A, et al.
Monocytic differentiation and AHR signaling as primary nodes of BET inhibitor
response in acute myeloid leukemia. Blood Cancer Discovery (2021) 2:518–31. doi:
10.1158/2643-3230.BCD-21-0012

17. Kuusanmaki H, Leppa AM, Polonen P, Kontro M, Dufva O, Deb D, et al.
Phenotype-based drug screening reveals association between venetoclax response and
differentiation stage in acute myeloid leukemia. Haematologica (2020) 105:708–20. doi:
10.3324/haematol.2018.214882

18. Majumder MM, Leppa AM, Hellesoy M, Dowling P, Malyutina A, Kopperud R,
et al. Multi-parametric single cell evaluation defines distinct drug responses in healthy
hematological cells that are retained in corresponding malignant cell types.
Haematologica (2020) 105:1527–38. doi: 10.3324/haematol.2019.217414

19. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic
subclones confer resistance to venetoclax-based therapy in patients with acute myeloid
leukemia. Cancer Discovery (2020) 10:536–51. doi: 10.1158/2159-8290.CD-19-0710

20. Zhang H, Nakauchi Y, Köhnke T, Stafford M, Bottomly D, Thomas R, et al.
Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and
combination strategies in acute myeloid leukemia. Nat Cancer (2020) 1:826–39. doi:
10.1038/s43018-020-0103-x

21. White BS, Khan SA, Mason MJ, Ammad-Ud-Din M, Potdar S, Malani D, et al.
Bayesian Multi-source regression and monocyte-associated gene expression predict
BCL-2 inhibitor resistance in acute myeloid leukemia. NPJ Precis Oncol (2021) 5:71.
doi: 10.1038/s41698-021-00209-9

22. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A,
et al. Increased frequency and suppression by regulatory T cells in patients with acute
myelogenous leukemia. Clin Cancer Res (2009) 15:3325–32. doi: 10.1158/1078-
0432.CCR-08-3010
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.1192829/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1192829/full#supplementary-material
https://doi.org/10.1002/cncr.28129
https://doi.org/10.1038/s41586-018-0623-z
https://doi.org/10.1038/sj.onc.1210758
https://doi.org/10.1016/j.cyto.2012.12.023
https://doi.org/10.1016/j.cytogfr.2018.08.004
https://doi.org/10.1002/ijc.25791
https://doi.org/10.1158/0008-5472.CAN-18-3107
https://doi.org/10.1073/pnas.1916206117
https://doi.org/10.1182/blood.2020006158
https://doi.org/10.3389/fimmu.2021.653030
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1016/j.ccell.2022.07.002
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1182/bloodadvances.2020002512
https://doi.org/10.1182/bloodadvances.2020002512
https://doi.org/10.1002/cncr.31896
https://doi.org/10.1158/2643-3230.BCD-21-0012
https://doi.org/10.3324/haematol.2018.214882
https://doi.org/10.3324/haematol.2019.217414
https://doi.org/10.1158/2159-8290.CD-19-0710
https://doi.org/10.1038/s43018-020-0103-x
https://doi.org/10.1038/s41698-021-00209-9
https://doi.org/10.1158/1078-0432.CCR-08-3010
https://doi.org/10.1158/1078-0432.CCR-08-3010
https://doi.org/10.3389/fonc.2023.1192829
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Romine et al. 10.3389/fonc.2023.1192829
23. Jadhav RR, Im SJ, Hu B, HashimotoM, Li P, Lin JX, et al. Epigenetic signature of PD-
1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to
PD-1 blockade. Proc Natl Acad Sci U S A (2019) 116:14113–8. doi: 10.1073/pnas.1903520116

24. Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, et al.
Transcription factor IRF4 promotes CD8(+) T cell exhaustion and limits the
development of memory-like T cells during chronic infection. Immunity (2017)
47:1129–1141.e1125. doi: 10.1016/j.immuni.2017.11.021

25. Van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia
S, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression
and immunity. Cell (2019) 176:1265–1281.e1224. doi: 10.1016/j.cell.2019.01.031

26. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, et al. Defining
CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature (2016)
537:417–21. doi: 10.1038/nature19330

27. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-
L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations,
and clinical outcome. Front Pharmacol (2017) 8:561. doi: 10.3389/fphar.2017.00561

28. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune
checkpoint inhibitors. Br J Cancer (2018) 118:9–16. doi: 10.1038/bjc.2017.434
Frontiers in Oncology 09
29. Scott AC, Dundar F, Zumbo P, Chandran SS, Klebanoff CA, Shakiba M, et al.
TOX is a critical regulator of tumour-specific T cell differentiation. Nature (2019)
571:270–4. doi: 10.1038/s41586-019-1324-y

30. Utzschneider DT, Gabriel SS, Chisanga D, Gloury R, Gubser PM,
Vasanthakumar A, et al. Early precursor T cells establish and propagate T cell
exhaustion in chronic infection. Nat Immunol (2020) 21:1256–66. doi: 10.1038/
s41590-020-0760-z

31. Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like
growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease.
EMBO Mol Med (2014) 6:1423–35. doi: 10.15252/emmm.201303376

32. Yuan N, Zhang HF, Wei Q, Wang P, Guo WY. Expression of CD4+CD25
+Foxp3+ regulatory T cells, interleukin 10 and transforming growth factor beta in
newly diagnosed type 2 diabetic patients. Exp Clin Endocrinol Diabetes (2018) 126:96–
101. doi: 10.1055/s-0043-113454

33. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq
quantification. Nat Biotechnol (2016) 34:525–7. doi: 10.1038/nbt.3519

34. Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster
analysis. New York: John Wiley & Sons (2009).
frontiersin.org

https://doi.org/10.1073/pnas.1903520116
https://doi.org/10.1016/j.immuni.2017.11.021
https://doi.org/10.1016/j.cell.2019.01.031
https://doi.org/10.1038/nature19330
https://doi.org/10.3389/fphar.2017.00561
https://doi.org/10.1038/bjc.2017.434
https://doi.org/10.1038/s41586-019-1324-y
https://doi.org/10.1038/s41590-020-0760-z
https://doi.org/10.1038/s41590-020-0760-z
https://doi.org/10.15252/emmm.201303376
https://doi.org/10.1055/s-0043-113454
https://doi.org/10.1038/nbt.3519
https://doi.org/10.3389/fonc.2023.1192829
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Immune cell proportions correlate with clinicogenomic features and ex vivo drug responses in acute myeloid leukemia
	Introduction
	Results
	Immune landscape of AML
	Immune cell signatures predictive of small-molecule responses and outcome
	Monocyte high patient samples have decreased ex vivo responses to ICB therapy and higher Tex signatures

	Discussion
	Methods
	xCell enrichment scoring of RNA-seq data
	Heatmaps
	Clinical flow data
	Inhibitor correlations with cell types
	Anti-PD1 therapy versus cell type proportions
	Terminally exhausted T cell score
	Statistical testing

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


