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Human antibody VH domains
targeting uPAR as candidate
therapeutics for cancers
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The high expression of uPAR has been linked to tumor progression, invasion, and

metastasis in several types of cancer. Such overexpression of uPAR makes it a

potential target for immunotherapies across common cancers such as breast,

colorectal, lung, ovarian cancer, and melanoma. In our study, two high-affinity

and specific human VH domain antibody candidates, designed as clones 3 and

115, were isolated from a phage-displayed human VH antibody library. Domain-

based bispecific T- cell engagers (DbTE) based on these two antibodies exhibited

potent killing of uPAR-positive cancer cells. Thus, these two anti-uPAR domain

antibodies are promising candidates for treating uPAR positive cancers.

KEYWORDS
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1 Introduction

Urokinase-type plasminogen activator receptor (uPAR), also named CD87, is a single-

chain membrane glycoprotein receptor containing three homologous domains (D1, D2,

and D3) anchored to the cell membrane by a GPI linkage (1). In normal physiological

conditions, uPAR expression is fairly low. This expression, however, can be highly elevated

in many types of cancer including breast cancer (2), colorectal cancer (3), melanoma (4, 5),

brain cancer (6), lung cancer (7), ovarian cancer (8), prostate cancer (9), liver cancer (10),

gastric cancer (11), and pancreatic cancer (12). uPAR also plays an important role in tumor

proliferation, metastasis, angiogenesis, and prognosis (13). Many studies have revealed that

high expression of uPAR is related to poor prognosis and that expression level can serve as

a marker of tumor malignancy (14, 15). Even though several systems are involved, the uPA-

uPAR signaling pathway plays a key role from tumor proliferation to metastasis (16).

The uPA-uPAR-a5b1 integrin complex can bind to G-protein-coupled receptors

(GPCRs) or interact with EGFR or PGGFRb to activate focal adhesion kinase (FAK)-

MAPK-ERK pathway and PI3K/AKT pathway, which promotes tumor cell proliferation

and survival (17–20). uPAR’s expression on the non-malignant cells that infiltrate cancers

and on malignant tumor cells adds to its importance in tumor progression and poor
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prognosis. When uPA is activated after binding to uPAR,

plasminogen is cleaved into active plasmin, which further

activates MMPs to degrade ECM and regulate cell migration (21,

22). Moreover, uPAR interacts with VEGFR2 and promotes

VEGFR2 internalization, thus enhancing the VEGF-induced

angiogenesis (23, 24). Taken together, uPAR’s expression in

cancer and importance in tumor make the receptor an attractive

therapeutic target for cancer treatment, in addition to prognosis

and diagnosis.

The deve lopment of monoc lona l ant ibody-based

immunotherapy has opened new avenues to specifically target

cancer cells expressing certain receptors. Such therapies have

become an increasingly attractive option for cancer treatment due

to its high efficacy and lower side effects compared to other options

such as surgery, radiation, and chemotherapy. In addition to the

binding to targeted antigens, antibodies can also mobilize anti-tumor

immunity through effector functions. Different antibody structures

have been developed in recent decades, including fragment antigen-

binding region (Fab), single-chain Fv (scFv) fragments, and domain

antibodies (VH and VL), for tailored applications. Among these

formats, antibody heavy chain variable (VH) domains have shown

increasing promise in antibody-based cancer immunotherapy due to

their small size (ranging from 11kDa to 15 kDa), high affinity, high

yields, and low immunogenicity. Studies have shown that these lower

molecular weight proteins can deeply penetrate tissues, and enabling

immunotherapies to target new epitopes that are not accessible to

large antibody constructs (25). Thus, the use of variable domain

antibodies may be a powerful prove useful in the development of

cancer immunotherapies, especially for solid tumors.

In our current study, we identified two potent human VH

domain antibodies that target human uPAR. These binders were

characterized for their affinity and specificity. The domain-based

bispecific T cell engager (DbTE) based on these two binders showed

potent killing effects of uPAR-expressing cancer cells. To our

knowledge, this is the first report of uPAR-specific human VH

domain antibodies as candidates for cancer immunotherapy.
2 Materials and methods

2.1 Panning of high- affinity VH domains
against uPAR from large VH phage library

Human uPAR-Fc (Catalog # 10378-UK-100) and uPAR-His

(Catalog # 807UK100CF) recombinant proteins were purchased

from R&D system. To pan antibody candidates against uPAR, a

1012 large phage-displayed human immunoglobulin heavy chain

variable domain (VH) library (26, 27) was used against human IgG1

Fc fused recombinant uPAR. The panning was performed as

previously described (28–30). Briefly, the library were first

blocked with 5% milk then incubated with uPAR-Fc following

with Protein G magnetic beads (Thermo Fisher). The separated

antigen-bound phages were then infected with TG1 for phages

expression and amplification. After the first round panning against

5 mg uPAR-Fc, two additional rounds of panning were performed

by using consecutively one-fold reduced antigen in each round to
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increase selective rigidity. 192 individual clones obtained from the

final round of panning were screened for binding to uPAR-His

protein by ELISA.
2.2 Expression and purification of VH,
VH-Fc, and DbTE

To convert VH antibody candidates to VH-Fc format, the VH

domain was amplified and cloned into the pcDNA-IgG1 Fc vector.

For the construction of DbTE, humanized OKT3 scFv (VH-(G4S)6-

VL) was inserted at the C terminal of VH followed by the IgG1 Fc

with LALAPG mutation. The expression and purification were

performed as previously described (28). Both the VH-Fc and

DbTE were transiently transfected and expressed by the Expi293

expression system, then purified by protein A resin (Thermo

Fisher). The VH binder was expressed in E.coli TopF expression

system and purified on Ni-NTA columns (GE Healthcare).
2.3 ELISA

The binding and specificity of VH, VH-Fc, and DbTE to uPAR

or CD3 were analyzed by ELISA. uPAR-His protein or CD3 protein

was coated at 50 ng/well at 4°C overnight, then blocked with 5%

milk for 1 hours at 37°C. After washing 3 times by 0.05% PBST, 3-

fold serially diluted VH and VH-Fc binders were incubated on the

plate for 1 hour at 37°C. The binding of VH candidates was detected

by anti-FLAG M2-peroxidase (HRP) antibody (Sigma-Aldrich)

while VH-Fc or DbTE binding was detected by HRP conjugated

goat anti-human IgG1 Fc (Sigma-Aldrich) at 1:1000 dilution. The

plates were washed 3 times by 0.05% PBST between each reagents

incubation. Binding activity was detected using 3,3′,5,5′-
tetramethylbenzidine (Sigma-Aldrich) and was stopped by TMB

stop buffer (ScyTek Laboratories). Absorbance was read at 450 nm.
2.4 BLItz

DPBS was used to establish a baseline for 30s. Streptavidin

biosensors (ForteBio) were coated with 16.7 mg/mL recombinant

uPAR-Biotin for 2 min. For competition assay, 500nM of VH 3 were

used for association and monitored for 2 min, then 500nM of VH

115 were used for continuing association and monitored for 2 min.

For affinity assay, 400nM, 200nM and 100nM of VH, VH-Fc, and

DbTE were used separately for association and monitored for 2min.

Dissociation was monitored in DPBS for 4 min.
2.5 Size exclusion chromatography

The aggregation of the antibodies were analyzed by Superdex

200 Increase 10/300 GL chromatography (GE Healthcare, Chicago,

IL, USA) as previously described (28). 200 mg of filtered antibodies

were analyzed and eluted by DPBS buffer at a flow rate of 0.5

mL/min.
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2.6 Cells

Expi293 cells (Thermo Fisher) were maintained in an Expi293

expression medium supplemented with 0.4% penicillin-

streptomycin (P/S). 293T cells and A375 human melanoma cells

were purchased from ATCC and were maintained in DMEM

medium supplemented with 10% FBS and 1% P/S separately. T

cells were isolated from healthy donor’s PBMCs (Zen-Bio) by using

the human Pan T cell isolation kit (Miltenyi Biotec) and activated

by CD3/CD28 T cell activator Dyna beads (Gibco) at 1:1 cell-bead

ratio for 48 h. The activated T cells were used for the cytotoxicity

assay of the DbTE antibody.
2.7 Flow cytometry

The cell surface expression level of uPAR protein was detected

by a commercial antibody. 2 ×105 cells/test were stained with mouse

anti-human uPAR antibody (R&D systems, Catalog# MAB807) or

an isotype antibody for 30 min at 4 °C followed by PE-conjugated

anti-mouse IgG secondary antibody. To verify the cell surface

binding of the isolated antibody, cells were incubated with VH-Fc

3 or VH-Fc 115 at a concentration of 50 nM, or VH 3 or VH 115 at a

concentration of 1 µM for 30 min at 4 °C. Cells were then stained

with a secondary antibody, goat anti-human IgG (g-chain specific)-

PE (Sigma-Aldrich, 1:250, Catalog# P9170) for VH-Fc or anti-Flag-

APC (Miltenyi Biotec, Catalog#130-119-584) for VH. An irrelevant

VH-Fc and VH were used as isotype controls.
2.8 Cytotoxicity assays

The cell cytotoxicity of anti-uPAR DbTE was measured by

LDH-Glo cytotoxicity assay kit (Promega) following the

manufacturer’s instructions. Target cells (1 ×104 cells/well) and

activated T cells were seeded in a 96-well plate at an E: T ratio 10:1,

mixed with serially diluted DbTE antibodies in a growth medium,

and incubated for 24h at 37°C in 5% CO2 humidified atmosphere.

The final volume was 100 ml/well. The cell supernatant was diluted
20-fold and incubated for 50 min for LDH assay setup. The

calculation of relative % cytotoxicity is as follows: relative %

cytotoxicity = 100 × (Experimental LDH release – Target and

effector cell only)/(maximum LDH release control – Background).
2.9 Statistical analysis

Statistical analyses were performed by GraphPad Prism.

Differences were considered statistically significant when p< 0.05.

Significance was tested using two-way ANOVA, followed by

Tukey’s multiple comparisons tests. ****, p<0.0001.
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3 Results

3.1 Selection and characterization of high-
affinity VH antibodies against human uPAR

A large phage-displayed human VH library was used to pan

against recombinant human uPAR protein for antibody selection.

Several VH binders were identified after three rounds of panning.

Two antibodies, designated as VH 3 and VH 115, were selected

based on their high affinity, specificity, and other desirable

properties. The amino acid sequence of these two binders are

shown in Table 1. The EC50 values of VH 3 and VH 115 as

determined by ELISA were 12.1 ± 0.8nM and 34.2 ± 3.5 nM,

respectively (Figure 1A). The equilibrium dissociation constant

(KD) values were 17.1 nM and 1.7 nM respectively as determined

by BLItz (Table 2). Additionally, these two binders did not bind to

BSA at high concentrations of 66.7 mM, and their binding affinity

are not affected in the presence of serum, indicating their specificity

for uPAR (data not shown). The competition BLItz experiment

showed that VH 3 and VH 115 target different binding epitopes on

human uPAR (Figure 1A). To increase the binders’ half-life and

avidity, the two VH binders were converted to VH-Fc format by

fusing IgG1 Fc into the C-terminal of VH. The EC50 values of VH-Fc

3 and VH-Fc 115 as detected by ELISA were 64.3 ± 2.3 nM and 6.6 ±

0.2 nM, respectively (Figure 1A). The KD values were 9.6 nM and

71.1 nM, respectively as determined by BLItz (Table 2). To verify

the specificity of these binders to uPAR expressed on the cell

surface, the surface expression of uPAR on parental 293T cells,

293T cells isogenically expressing uPAR (293T-uPAR), or A375

cells (human melanoma cell line intrinsically express uPAR) were

verified by a commercial anti-human uPAR antibody. Among these

cells, 293T cells (MFI of isotype vs positive uPAR Ab is 62 vs 126)

showed a low expression of uPAR while 293T-uPAR cells (MFI of

isotype vs positive uPAR Ab is 46.4 vs 176) and A375 cells (MFI of

isotype vs positive uPAR Ab is 71.3 vs 4775) showed a high

expression level of uPAR (Figure 1B). Next, the binding

specificity of our newly identified binders was tested on the above

cell lines. The two VH and VH-Fc binders showed a high binding to

both 293T-uPAR and A375 cells, while a low level of binding to

293T cells (Figure 1B). These results were consistent with the

expression level of uPAR on these cell lines. Moreover, both VH-

Fc binders bound to the 293T-uPAR cells in a concentration-

dependent manner and the estimated on-cell binding avidity of

VH-Fc 3 and VH-Fc 115 were 43.1nM and 10.3nM, respectively

(Figure 1C). Protein folding was assessed by the size-exclusion

chromatography (SEC). Based on the molecular weight calibration

curves, while VH 3 and VH-Fc 3 exhibit monomeric folding, VH 115

and VH-Fc 115 both showed a dimeric folding (Figure 1D). The

late-elution peaks may be due to VH interaction with the column

agarose matrix. The stability of these VH domains are further

enhanced after converting to the VH-Fc format. We found that

the VH-Fc proteins exhibit homogenous folding peaks. The Fc

fragments may help to stabilize the VH domain.
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3.2 VH domains-based T cell engagers
(DbTEs) show potent cytotoxicity against
uPAR expressing cells

As a proof of concept, we generated and assessed the cell

cytotoxicity of anti-uPAR domain antibody-based bispecific T cell

engagers (DbTEs) against uPAR expressing cancer cells. To construct

DbTE, we fused VH domains to the humanized anti-CD3 antibody

OKT3 scFv, which is in frame to the human IgG1 Fc with FcgR
binding silencingmutations (LALAPG). The EC50 of DbTE 3 and 115

for binding to the recombinant human uPAR protein as tested by

ELISA were 7.7 ± 0.4 nM and 28 ± 2.1 nM, respectively (Figure 2A).

The EC50 of DbTE 3 and 115 for binding to the human CD3 protein

as tested by ELISA were 28.8 ± 1.8 nM and 8.7 ± 0.6 nM, respectively
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(Figure 2B). The KD values of DbTE 3 and 115 were 6.6 nM and 1.2

nM, respectively (Table 2). DbTE binding to A375 tumor cells and T

cells was verified by flow cytometry (Figure 2C). Next, T- cell-

mediated cytotoxicity against uPAR positive cancer cells induced

by each DbTE was assessed using an LDH assay. Dose-dependent

lysis was observed at the E: T ratio of 10:1 on 293T (Figure 2D), 293T-

uPAR cells (Figure 2E), and A375 cells (Figure 2F) mediated by DbTE

3 or DbTE 115. A lower level of lysis was observed with 293T cells,

consistent its lower level of uPAR on the cell surface. Moreover,

DbTE 3 appear to be more effective than DbTE 115 at low

concentrations. The estimated cell killing IC50 of DbTE 3 and 115

on 293T cells were 0.3 ± 0.3 nM and 1.1nM ± 0.3 nM respectively, on

293T-uPAR cells were 0.07 ± 0.6 nM and 0.4 ± 0.2 nM respectively,

and on A375 cells were 0.06 ± 0.5 nM and 0.5 ± 0.2 nM respectively.
B

C

D

A

FIGURE 1

Specificity of VH/VH-Fc with human uPAR on cell surface (A) Anti-uPAR VH and VH-Fc binding to recombinant human uPAR measured by ELISA (left),
and competition BLItz of VH 3 with VH 115 at 500nM for binding to uPAR (right); (B) Cell surface detection of uPAR by commercial mouse anti-uPAR
antibody, VH 3 and 115 (1mM), and VH-Fc 3 and 115 (50nM) on 293T, 293T-uPAR, and A375 cells measured by Flow cytometry; (C) Dose-dependent
cell surface binding of VH-Fc 3 and 115 on 293T-uPAR cells. (D) Aggregation evaluation of VH 3 and VH-Fc 3 (left), VH 115 and VH-Fc 115 (right)
measured by SEC.
TABLE 1 Amino acid sequence of human uPAR antibodies.

Antibody Amino Acid Sequence

VH 3
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRYWMSWVRQAPGKALEWIGEINHSGSTNYNPSLKSLVTISRDNSKNTLYLQMNSLRAEDTATYYCARSLV
PALSYYYYYGMDVWGQGTTVTVSS

VH 115
EVQLVESGGGLVQPGGSLRLSCKGSGFTFGDYAIGWVRQAPGQRLEWIGWINTNSGSPKYAQGFTGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATD
VVVPWGQGSQVTVSS
frontiersin.org

https://doi.org/10.3389/fonc.2023.1194972
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chu et al. 10.3389/fonc.2023.1194972
4 Discussion

uPAR is a glycoprotein receptor that is highly expressed in

many solid cancers including breast, lung, prostate, ovarian, and

liver cancer. Moreover, uPAR is also highly expressed on stromal

cells in the tumor microenvironment, such as vascular endothelial

cells, tumor-related fibroblasts, and macrophages. The

multifunctionality of uPAR ranging from tumor progression,

invasion, and angiogenesis to metastasis makes it an ideal target

for cancer therapy. Currently, several antibody-based therapies

targeting uPAR performed in preclinical showed promising effects

in breast cancer (31, 32) but there have no antibody-based therapies

targeting uPAR in clinical trials yet. However, several diagnostic

clinical trials detecting uPAR for cancer and metastasis have

demonstrate safe and clinical potential (33–35). Hence,

characterization of novel antibodies with diverse affinity,

specificity, and size may be useful in the treatment of cancers

with high uPAR expression.
Frontiers in Oncology 05
In our study, we selected and characterized two fully human VH

domain antibodies that target uPAR. Both antibodies showed high

affinity for uPAR. By analyzing the sequence using IMGT/

DomainGapAlign, the VH 3 and 115 showed 81.6% and 78.4%

identity with IGHV 3-23*04 germline, separately. The CDR-IMGT

lengths of VH 3 and VH 115 are [8.7.18] and [8.8.7]. Converting the

antibodies to VH-Fc fusion protein enhanced the avidity of VH 3 by

2-fold, but decreased avidity 40-fold in VH 115 (Figure 1A). This

decrease may be due to the aggregation. Further antibody

maturation of VH 115 to decrease the aggregation is needed. The

killing effects of DbTEs based on these two antibodies showed

specific cell killing on cells with observable expression levels of

uPAR, demonstrating their potential for cancer immunotherapies.

Lower killing effects were observed when targeting 293T cells with

lower uPAR expression levels compared with the 293T-uPAR

overexpressing cell line (Figures 2D, E). These findings warrant

further characterization of these antibodies’ specificity, efficacy, and

toxicity as well as comparison with other uPAR IgG antibodies for
B C

D E F

A

FIGURE 2

In vitro cytotoxicity of T cells to uPAR-expressing cells by anti-uPAR DbTE. (A, B) DbTE 3 and 115 binding to uPAR (A) and CD3 (B) measured by
ELISA. (C) Cell binding of 100nM DbTE 3 and 115 on A375 cells and T cells tested by flow cytometry. (D-F) Percent relative lysis of 293T cells (D),
293T-uPAR cells (E), and A375 cells (F) by T cells mediated by DbTE 3 and 115, respectively. T cells and target cells were added at E: T ratio of 10:1
and simultaneously treated with serially diluted DbTE antibodies for 24h. Experiment was repeated two times. Values were reported as the mean of
percent relative lysis ± SD. Significance was tested by using two-way ANOVA, followed by Tukey’s multiple comparisons test. ****p<0.0001.
TABLE 2 BLItz results of human uPAR antibodies.

Antibody kon (M
−1s−1)1 koff (s

−1)1 KD (nM)1

VH 3 7.9 × 104 ± 5.7 × 102 1.4 × 10-3 ± 1.9 × 10-5 17.1

VH-Fc 3 1.2 × 105 ± 2.3 × 103 1.2 × 10-3 ± 4.8 × 10-5 9.6

DbTE 3 1.1 × 105 ± 1.5 × 103 7.2 × 10-4 ± 2.7 × 10-5 6.6

VH 115 2.1 × 104 ± 2.9 × 102 3.6 × 10-5 ± 1.3 × 10-5 1.7

VH-Fc 115 3.3 × 104 ± 1.5 × 103 2.4 × 10-3 ± 5.6 × 10-5 71.1

DbTE 115 3.6 × 104 ± 4.1 × 102 4.2 × 10-5 ± 1.6 × 10-5 1.2
fr
1Mean kinetic rate constants (kon, koff) and equilibrium dissociation constants (KD = koff/kon) were determined from curve fitting analyses of BLItz results.
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cancer inhibition in vivo and the application potential of domain

antibodies. Moreover, further investigation is needed to observe

the ability of these antibodies to block the uPAR-uPA

signaling pathway.

Recent studies have also shown that uPAR is associated with

senescence-associated pathologies (36, 37). Further development of

these antibodies as senolytic reagents may increase their potential

for treating senescence-related diseases, such as fibrin-associated

inflammation and liver fibrosis (38). In summary, the anti-uPAR

antibodies described above showed significant potential in heavy

chain variable domain antibody-based immunotherapies and may

be useful in targeting diseases related to the elevated expression level

of uPAR.
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