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The gutmicrobiota helps to reveal the relationship between diseases, but the role

of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have

found that the composition and abundance of specific gut microbiota are

significantly different between PCa and non-PCa, and the gut microbiota may

have common and unique characteristics between different diseases. Intestinal

microorganisms are affected by various factors and interact with the host in a

variety of ways. In the complex interaction model, the regulation of intestinal

microbial metabolites and the host immune system is particularly important, and

they play a key role in maintaining the ecological balance of intestinal

microorganisms and metabolites. However, specific changes in the

composition of intestinal microflora may promote intestinal mucosal immune

imbalance, leading to the formation of tumors. Therefore, this review analyzes

the immune regulation of intestinal flora and the production of metabolites,

as well as their effects and mechanisms on tumors, and briefly summarizes

that specific intestinal flora can play an indirect role in PCa through their

metabolites, genes, immunity, and pharmacology, and directly participate in

the occurrence, development, and treatment of tumors through bacterial and

toxin translocation. We also discussed markers of high risk PCa for intestinal

microbiota screening and the possibility of probiotic ingestion and fecal

microbiota transplantation, in order to provide better treatment options for

clinic patients. Finally, after summarizing a number of studies, we found that

changes in immunity, metabolites.
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1 Introduction

1.1 Current Status of prostate cancer

Prostate cancer (PCa) is the second most common malignant

tumor in men and the fifth largest cause of tumor-related death in

the world (1). There are about 800,000 new cases of PCa and

300,000 deaths worldwide every year (2). The risk factors for PCa

include genetic history, family history, diet, environment, African

population, and elderly population (3–5). The incidence of PCa,

according to global cancer statistics for 2020, varies by region and

ranges from 6.3 to 83.4 per 100,000 people, with the highest rates

found in Northern Europe, Western Europe, the Caribbean,

Australia/New Zealand, North America, and Southern Africa, and

the lowest in Asian nations (6). However, the pathogenesis and

development of PCa are still unclear. One of the accepted

explanations is the effect of androgen stimulation and the defect

of prostate cell apoptosis (7). When PCa progresses to an advanced

stage, it is usually treated with surgery or androgen deprivation

therapy (ADT), but almost all patients develop resistance to ADT,

which inevitably leads to castration-resistant prostate cancer

(CRPC) with a worse prognosis (8). ADT is a significant PCa

treatment, but there is no proof that it takes other PCa risk factors,

like bacterial infection, environmental changes, or inflammatory

effects, into account when planning a treatment plan (9). More and

more evidence shows that microflora is involved in the

microenvironment of tumors and may play a role in

tumorigenesis (10). The gut microbiome can influence the growth

and progression of PCa through its derived metabolites, suggesting

the existence of a gut-prostate axis (11). For example, another

source of androgen may be provided by intestinal microflora, which

promotes the progress of PCa (12).

With the increasing incidence of PCa, in order to understand

the potential contribution of intestinal microbiota and microbial

metabolites to the emergence of PCa, as well as novel approaches for

the prevention and treatment of PCa based on intestinal microbiota,

this review examines studies on PCa and intestinal microbiota.
1.2 The gut microbiome and PCa

The human gut is home to trillions of microorganisms that

form a complex community of bacteria, protozoa, fungi, and

viruses, which together make up the intestinal microbiota (13).

99% of the total microorganisms in the human body are located in

the intestinal tract. Intestinal microbiota not only plays an

irreplaceable role locally, but also people pay more and more

attention to the distal effect (14). According to their level of

pathogenicity, the bacteria in the gastrointestinal tract can be

categorized into three groups: pathogenic bacteria, possibly

harmful bacteria, and helpful bacteria. When helpful bacteria are

present, they can prevent the growth of harmful bacteria, promote

the creation of vitamins, inhibit the breakdown and fermentation of

food components, and stimulate the immune system and food

tolerance. The pathogenic bacteria effects are the body’s food

intolerance, infection, and inflammation. Potential pathogen
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such as Escherichia coli, Enterobacteria, Streptococci, Enterococci,

and Bacteroides. When changes occur in the body’s gut that cause

these microbes to be present in large numbers, they can cause

disease (15). The imbalance of intestinal flora can lead to flora

imbalance, and long-term flora imbalance may lead to obesity, type

2 diabetes, insulin resistance, hyperlipidemia, hypertension,

metabolic dysfunction, inflammation, and cancer (16).

Intestinal microflora is affected by a variety of external factors,

including environmental, dietary, and regional changes, and is

involved in all stages of cancer, including initiation, progression,

treatment outcomes, and adverse reactions (17–20). The presence of

a tumor may lead to an increase in microbial diversity at the tumor

site and a decrease in the diversity of gut microbiota (21), and this

change may be a precursor to the occurrence and development of

cancer, or even directly lead to the occurrence of cancer. Recent

years have seen a rapid development of bacterial 16s ribosomal

RNA genome sequencing and shotgun sequencing as human

microbiome analytical tools. Future options for treating cancer,

particularly PCa, are anticipated to include the microbiome because

it plays a significant role in immune system control (22, 23). The set

of genes of intestinal bacteria is defined as a functional estrogen

genome, and its products can metabolize estrogen. The potential

effect of individual intestinal microflora on estrogen group is also

considered to be a possibility. Since there is an established

correlation between estrogen levels and PCa risk, the metabolic

effects of intestinal microbiota are associated with PCa risk (24).

With the growing understanding of the role of microbes in the

process of cancer development, several studies have been conducted

to investigate the link between specific gut microbes and PCa. There

were significant differences between PCa patients and healthy

patients. Compared with healthy patients, the intestinal

microbiota of PCa patients showed an increase in a-diversity and

structural changes (25–27). Golombos et al. compared rectal swab

samples from PCa patients with healthy patients and found a higher

relative abundance of Bacteriodes massiliensis and a decrease in the

number of bacteria that produce folic acid and biotin (26). Liss et al.

found that Bacteroides and Streptococcal were significantly enriched

in PCa patients compared with non-PCa patients (25). Matsushita

et al. enrolled 152 Japanese men who underwent prostate biopsies

and divided them into two groups: the high-risk group and the low-

risk group. They found that the relative abundance of Rikenellaceae,

Alistipes, and Lachnospira increased significantly in the high-risk

group, and all of these bacteria produced short-chain fatty acids

(28). Smith included the fecal microflora of 22 patients with

overweight breast cancer or PCa (BMI > 25 kg/m2) and 22

controls. It was found that the b-diversity index of PCa was

significantly different from that of the control group, and the

abundance of Tissierellaceae, Lachnospira, and Ruminococcaceae

was higher (29).

The decline in testosterone levels leads to harmful changes in

the intestinal microbiota. This ecological imbalance may lead to

increased weakness and an increased risk of adverse consequences

in patients with PCa. Kure included 24 patients treated with ADT. It

was found that the a-diversity and b-diversity of intestinal

microbiota and the relative abundance of Gammaproteobacteria,
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Proteobacteria, Pseudomonas, and Pseudomonadale decreased

significantly at 24 weeks after ADT (30). Joseph et al. performed

16SrRNA gene analysis on the fecal microflora of 86 PCa patients

(56 ADT, 30 underwent prostatectomy) and found that the diversity

was significantly decreased in the ADT group. There were

significant differences in b diversity among groups. In the ADT

group, the relative abundance of Ruminococcus and Bacteroides was

higher, while Lachnospira and Roseburia decreased. In the ADT

group, the ratio of Firmicutes to Bacteroidetes was also lower (31).

Liu et al. analyzed the fecal microflora of 21 patients with hormone-

sensitive prostate cancer (HSPC) and CRPC who received ADT by

using the sequence of 16S rRNA gene amplifiers. It was found that

with the increase in abundance of several bacteria, including

Bacillus and Ruminococcus, the intestinal microflora in CRPC

changed significantly (32).

Patients with colon cancer, pancreatic cancer, and melanoma

patients can take oral broad-spectrum antibiotics to inhibit the

growth and metastasis of their tumors (33). However, oral antibiotic

therapy has the opposite effect in PCa, One of the external elements

that contribute to ecological issues is antibiotic use, which is

thought to be the primary cause of changes in the species of gut

microbes that may be temporary or permanent. It has been

demonstrated that the risk of numerous malignant tumors,

including PCa, is somewhat increased by the use of antibiotics

(34). Boursi et al. hypothesized that antibiotics can cause changes in

intestinal bacterial diversity and lead to chronic infection. They

found in 27212 PCa patients and 105940 volunteers that the use of

penicillins, quinolones, sulfonamides, and tetracyclines moderately

increased the risk of PCa (35). Tulstrup et al. hypothesized that

alterations in intestinal permeability may be connected to

antibiotic-induced changes in microbiota. For 10–11 days, they

administered amoxicillin, cefotaxime, vancomycin, metronidazole,

or water to 60 Wistar rats. It was discovered that the three

antibiotics significantly altered bacterial a-diversity, composition,

and cecal short-chain fatty acids. The general decrease of intestinal

microbial diversity and the increase of Proteobacteria relative

abundance were observed (36). Matsushita et al. gave PCa mice

on a high-fat diet (HFD) an oral antibiotic mixture and found that

the number of Rikenellaceae and Clostridiales increased and the

composition of intestinal microflora was significantly different from

that of the control group, which inhibited the proliferation of PCa

cells and decreased the expression of Igf1 and the level of circulating

insulin-like growth factor-1 (IGF1) in the prostate (37).

Diet is closely related to the distribution of intestinal microflora

and the construction of intestinal microbial structures. Intestinal

microflora also affect the absorption, digestion, and metabolism of

food (38, 39). Studies have shown that HFD increases Anaerobion

and Bacteroides (40), transforming a low-fat, plant polysaccharide-

rich diet into a high-fat/high-sugar “western” diet, b-diversity
changes s ignificant ly a f ter a week and changes the

representativeness of metabolic pathways in the microbiome (41).

The number of Ochrobactrum overexpressed in prostatic fluid of

PCa patients was also significantly increased in HFD mice (42).In a

study of HFD mice, HFD promoted PCa growth through histamine

signal transduction in mast cells, and changes in microflora in
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growth of inflammatory cancer cells (43).

To sum up, compared with healthy patients, there are

significant differences in intestinal microflora in patients with

PCa, ADT treatment, antibiotic treatment, and HFD. Specific

changes in gut microbes may play a role in different types of PCa,

which can further explore the role of different intestinal

microorganisms in the pathogenesis of PCa, Table 1 summarizes

the studies of specific microbes and PCa risk.
2 Pathways of action of the gut
microbiota on PCa

Manzoor et al. divided the relationship between microbiota and

cancer into three levels: primary (interaction in the tumor proximal

microenvironment), secondary (interaction between tumor and

microbial community with general compartment tissue or organ

system), and tertiary (interaction between tumor and remote

microbial community). The main interaction is defined as the

direct relationship between the tumor and the microflora in the

local tumor microenvironment (44). Intestinal microbiota are not

only directly related to local intestinal diseases such as

inflammatory bowel disease and colorectal cancer (CRC) (45, 46),

but also closely related to the pathogenesis of systemic diseases such

as liver or nervous system diseases, which indicates the existence of

an intestinal-liver axis and an intestinal-brain axis (47, 48).

However, PCa does not have direct contact with the intestinal

tract, and the role of intestinal microflora in it is still being explored.

The possible factors of the intestinal microbiome in promoting the

occurrence and development of PCa are related to the risk factors

(obesity and inflammation) affected by the fecal microbiome and

may directly cause distant effects in organs such as the prostate (25),

Carcinogenesis can also be indirectly induced by metabolites of

intestinal microorganisms (such as fatty acids and polyamines) in

distal organs (49).
2.1 Indirect pathway of action

2.1.1 Metabolites
2.1.1.1 Short chain fatty acids/Growth factor-1

Short chain fatty acids (SCFA) are the main metabolites of the

intestinal microbiota, including propionate, acetate, and butyrate,

which play an important role in physiology (50). Intestinal

microflora produces large amounts of SCFA from indigestible and

fermentable carbohydrates, including dietary fiber (51). The change

in intestinal structure changes the level of SCFA, which affects cell

adhesion, cytokine production, chemotaxis, immune cell

recruitment, and apoptosis (52).Intestinal microorganisms can

regulate PCa through SCFA. It was found that Alistipes and

Lachnospira producing SCFA were significantly increased in the

intestinal microflora of patients with high-grade PCa, suggesting

that SCFAs may be the promoter of PCa (28). Supplementation of

SCFA increases systemic and local insulin-like IGF1 in the host
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prostate. IGF1 promotes tumor growth by activating local prostate

MAPK and PI3K signal transduction, revealing the possible

existence of the intestinal microbiome-IGF1- prostate axis (37).

Antibiotics can reduce the SCFA in the feces of mice, and mice fed

with a HFD can restore the level of serum IGF-1 and cancel the

inhibition on the growth of PCa (53). IGF1 can also directly

promote the proliferation of PCa cell lines DU145 and 22RV1 in

vitro (37),The incidence of PCa and the risk of PCa-related

mortality are also significantly increased in acromegaly patients

with systemic high growth hormone and IGF-1 levels, indicating

that IGF-1 plays a positive role in the development and progression

of PCa (54).

2.1.1.2 Testosterone

Many disorders affecting male patients, including metabolic

syndrome, PCa, and delayed hypogonadism syndrome, are heavily

influenced by testosterone (55, 56). Intestinal microflora also plays a

role in testosterone production. Makoto Matsushita et al. took rectal

swab samples from 54 Japanese men with negative prostate biopsies

and sequenced the 16S rRNA gene to analyze the intestinal

microflora. It was discovered that the quantity of Firmicutes

positively linked with the level of serum testosterone, and that the

quantity of Firmicutes had no bearing on host variables (age, body

mass index, triglycerides, and total cholesterol) (57).Another study

found that there was a significant correlation between the number

of Acinetobacter,Ruminococcus,Dorea, and Megamonas and serum

testosterone levels in men, with high levels of estradiol having more

Bacteroides and fewer Firmicutes than women with low levels of

estradiol (58). Compared with HSPC patients, the number of

Ruminococcus in the intestinal microflora of CRPC patients

increased. In patients with CRPC, Ruminococcus is associated

with a poor prognosis. Ruminococcus can convert pregnenolone
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pathway, including dehydroepiandrosterone and testosterone

(59). Ruminococcus can also promote the progression of PCa by

up-regulating the expression of LPCAT1 and DNA repair proteins

(60). Clostridium scindens ATCC 35704, Clonorchis sinensis, and

Propionibacterium lymphoid are located in the intestinal

microbiota. Their DesAB genes encode steroid 17,20-lyase, which

can convert cortisol into C19 androgen by splitting side chains,

which can be further metabolized by host tissue and the

microbiome to form effective 11-oxygen-androgen, while DesAB-

expressing microorganisms may be neglected sources of androgen

in vivo and may lead to various disease states, such as PCa (12).

2.1.1.3 Estrogen

Estrogen may be involved in the occurrence and development of

PCa (61), so intestinal microbes that cause high levels of estrogen in

the body may make men vulnerable to PCa. Normal prostate stem

cells express estrogen receptor-a (ER- a), estrogen receptor-b (ER-

b) and G protein-coupled receptors. The activation of ER- a is

considered to be the cause of PCa. ER- a participates in the

transformation of epithelial cells into mesenchymal cells and is

closely related to the occurrence and development of tumors. In the

mouse model, the bone shape of osteoblasts is inhibited by the ER-

a gene knockout model and the ER- a antagonist (62). Plottel and

Blaser assume that the collection of genes from intestinal bacteria is

a functional estrogenic genome whose products can metabolize

estrogens. In particular, the intestinal microbiota contains b-
glucuronidase and b-glucuronide. When the intestinal microbiota

is maladjusted, it can promote the uncoupling and recycling of

estrogen by secreting these two enzymes and bind to the estrogen

receptor for the development of PCa. The activity of these two

enzymes can help reduce the risk of PCa (24). By activating
TABLE 1 Specific gut microbes and prostate cancer.

Study Samples Findings

David M.
Golombos
(26)

Fecal samples from 20 patients with benign prostatic
hyperplasia and prostate cancer

Bacteroides massiliensis was more abundant in prostate cancer cases

Michael A.Liss
(25)

Rectal swab samples from 105 patients undergoing prostate
biopsy

Bacteroides and Streptococcus species were significantly enriched in prostate
patients

KS Smith
(29)

Fecal samples from 22 overweight breast or prostate cancer
patients compared with 22 controls

Tissierellaceae, Lachnospiraceae and Ruminococcaceae were significantly increased

Akimasa Kure
(30)

Fecal samples from 24 prostate cancer patients treated with
ADT

The relative abundance of Pseudomonadales, Pseudomonas, Proteobacteria, and
Gammaproteobacteria has decreased in the aftermath of the ADT.

Joseph K. M. Li
(31)

Fecal samples from 86 PCa patients (56 receiving ADT and 30
undergoing prostatectomy

The relative abundance of Ruminococcus and Bacteroides was higher in the ADT
group, while Lachnospira and Roseburia were reduced

Yufei Liu
(32)

Fecal microbiota in 21 HSPC and CRPC patients receiving
ADT

The abundance of Bacillus and Ruminococcus increased

Monica Vera-Lise
Tulstrup (36)

Fecal samples were obtained from 60 Wistar rats The relative abundance of Proteobacteria increased after antibiotic exposure

Makoto
Matsushita (37)

Fecal samples from Prostate-specific Pten knockout mice
subjected to HFD and orally fed an antibiotic mixture

Increased numbers of Rikenellaceae and Clostridiales were observed

Weibo Zhong
(168)

Fecal samples from C57BL/6J male mice The number of Proteobacteria increased significantly after antibiotic exposure
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polycyclic aromatic hydrocarbons (PAHs), estrogen produces

carcinogenic metabolites such as diol epoxides and free radical

cations, which react with DNA to promote carcinogenesis. The

functional estrogen genome of Plottel promotes this estrogenic

mechanism to increase the rate of carcinogenesis (63). Therefore,

we should pay attention to the increase of serum estrogen in

patients with intestinal microbiota disorders and formulate a new

treatment strategy.

2.1.1.4 Folic acid

The intestinal microflora is considered one of the sources of

folic acid. They cannot be synthesized by the human body and must

be absorbed through the intestines from diet or intestinal flora.

Bifidobacterium and Lactobacillus, which produce folic acid, may

be the supplementary endogenous sources of folic acid and increase

the level of folic acid in the human body (64). Folic acid is closely

related to PCa, and the expression of the folate receptor is increased

in PCa (65). Folic acid plays a key role in the synthesis of

nucleotides needed for tumor cell proliferation and DNA

methylation. The change in prostate methylation pattern is an

important event in PCa (66). Folic acid is a transmembrane

carboxypeptidase with hydrolase activity that can decompose

prostate specific membrane antigen, which is overexpressed in

almost all PCa, and the tissue level of this protein is positively

correlated with a higher grade, a higher Gleason score, and disease

recurrence (67, 68). Unmetabolized folic acid is associated with

reduced cytotoxicity of natural killer cells, which may protect the

clearance of malignant cells (65). When Liss et al. compared PCa

patients with healthy people, they found that the number of bacteria

related to carbohydrate production increased in prostate patients,

while the number of bacteria related to folate, biotin, and riboflavin

decreased (25). In a controlled randomized trial of 643 men,

Figueiredo et al. found that the estimated probability of being

diagnosed with PCa within 10 years was 9.7% in those with high

folic acid levels and 3.3% in the placebo group. Men who randomly

took folic acid supplements were 2.6 times more likely to be

diagnosed with PCa than those in the placebo group (69).

2.1.1.5 Phenylacetylglutamine

Phenylacetylglutamine (PAGln) is a phenylalanine metabolite

produced by the metabolism of intestinal microflora, which

activates a-adrenergic and b-adrenergic receptors through

adrenergic receptors (70). Reichard included baseline serum

samples from 173 patients with lethal PCa and 519 patients with

non-fatal PCa into a case-control design and found that adrenergic

compounds produced by metabolism mediated by intestinal

microflora were associated with an increased risk of fatal PCa,

while b-adrenergic blockade may be another target for reduced risk

of PCa (71).

These studies have shown that specific intestinal flora plays a

crucial role in the progression of PCa indirectly through its

metabolites (short-chain fatty acids, testosterone, estrogen, folic

acid, and PAGln), and the metabolites of intestinal flora indirectly

affect the occurrence and development of PCa. As for how to play a

role in the prevention and treatment of PCa by influencing the
Frontiers in Oncology 05
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pathway are worthy of further exploration.

2.1.2 Immunization
The host’s immune system can affect the microbial ecosystem

and have an impact on the fecal metabolic content, even if the

external environment has a significant role in developing the gut

microbiome (72). The following are the effects of intestinal

microbiota on tumor immune response: activation of regulatory T

cell proliferation and differentiation; induction of IgA expression;

and the influence of antimicrobial peptide expression, microbial

metabolism, systemic inflammation regulation, and bacterial

translocation (73). The intestinal mucosal immune system is

made up of gut epithelial lymphocytes, lamina propria

lymphocytes, collecting lymph nodes, and other components. The

bulk of intestinal epithelial lymphocytes are CD3+ T cells, while B

cells and NK cells are in the minority. T and B cells make up the vast

majority of lymphocytes in the lamina propria. and regulatory T

cells are characterized by the expression of CD4, CD25, and Foxp3.

Additionally, the generation of the anti-inflammatory cytokines

transforming growth factor-b (TGF-b) and IL-10, which reduce

intestinal inflammation (74). There are four components to the

defensive mechanism between the intestinal immune system and

the mucosa: 1) The microbial barrier is the first element; the

microbiome is found in the mucous layer’s upper layer. These

symbiotic bacteria have the ability to inhibit the colonization of

pathogens, create metabolites or immune signaling-regulating

components, and support immunological homeostasis (75–77); 2)

The mucus-based chemical firewall that covers the gut epithelium is

the second firewall. Through the production of mucus by goblet

cells in the epithelium, the release of antimicrobial peptides by the

epithelium, and the production of mucosal IgA by dendritic cells

(DCs) in the gut, mucus regulates contact between symbiotic

bacteria and epithelial cells and protects the epithelium from

symbiosis (76); 3) The single-celled epithelial cell layer, which

serves as a physical barrier, makes up the third element. In

addition to helping with food absorption, the intestinal

epithelium serves as a physical barrier against disease invasion

and the movement of symbiotic microbes outside the gut (78); 4)

The final component is the immune barrier, which contains

specialized immune cells (macrophages, DCs, and lymphocytes).

Macrophages and DCs are DCs distributed in the lamina propria

and mesenteric lymph nodes. Using the intestinal lumen as a

source, DCs are efficient antigen-presenting cells that deliver

microbial antigens to T lymphocytes in mucosal tissue. Leads to

T cell subset development and activation (Th1, Th2, Th17, or Treg),

which, along with macrophages, serves as a “bridge” between innate

and acquired immune responses (79, 80).The intestinal mucosal

immune system not only produces immune tolerance to symbiotic

bacteria and food antigens but also produces a strong immune

response to pathogenic bacteria and maintains a balanced response

to infection (36). By controlling innate and adaptive immune

responses, intestinal flora can keep the gut environment balanced.

However, specific alterations in the intestinal microflora’s makeup

may stimulate the mucosal immune system, cause chronic
frontiersin.org

https://doi.org/10.3389/fonc.2023.1196217
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zha et al. 10.3389/fonc.2023.1196217
inflammation and mucosal damage, and encourage an intestinal

mucosal immunological imbalance, which in turn promotes the

growth of tumors.

2.1.2.1 Innate immunity

The cells of the intestinal flora that regulate innate immunity

include monocyte/macrophage, DC, granulocytes, NK cells, and

NKT cells. Pathogen-associated molecular patterns(PAMPs) is a

conservative structure of pathogens, such as fat polysaccharide,

peptidoglycan, lipoprotein, nucleic acid, and so on, with

corresponding PAMPs pattern recognition receptors (PRRs), such

as toll-like receptors (TLRs) and NoD-like receptors (NLRs),

identify conserved structures of microorganisms to obtain innate

immune cells and epithelial cells (81), and turn on particular

signalling pathways that encourage inflammation, tumour growth,

or combat cell death. The stimulation of NF-B signalling and the

development of bacterial communities are both crucially dependent

on NOD2. Mutations that cause NOD2 malfunction may result in

an alteration of intestinal flora and a higher risk of CRC. And

NoD1-mediated recognition of the MesoDAP peptidoglycan

component in Gram-negative bacteria in the gut microflora has

been shown to initiate neutrophils to kill bacterial pathogens (82).

The control of intestinal homeostasis is greatly influenced by

intestinal TLRs. Pro-inflammatory cytokines, including

interleukin and tumour necrosis factor a, are produced when

TLRs are activated. Through several growth factor receptor

ligands (amphiregulin and hepatocyte growth factor), TLRs may

potentially encourage the proliferation of cancer cells to have both

local and distant impacts (83). In addition, the intestinal

microbiome appears to act on intestinal DC directly or indirectly

through epithelial cells, affecting the phenotype and activity of DC

(34,102). This stable DC phenotype promotes non-inflammatory

responses such as FoxP3+Treg induction and IgA secretion,

allowing the host and intestinal mucosal microorganisms to

maintain homeostasis (84, 85). IL-10 produced by enteric

macrophages inhibits intestinal inflammation by maintaining

FOXP3 expression in Treg cells and inhibits IL-12 and tumor

necrosis factor-production in enteric myeloid cells by activating

the transcription factor STAT3. Thus, mice with IL-10 deficiency

and specific STAT3 mutations in myeloid cells (LysM-cre;Stat3flox/

flox mice) spontaneously produce intestinal inflammation (86). In

prostatitis, it is characterized by the infiltration of macrophages,

neutrophils, and lymphocytes, which release reactive oxygen

species, reactive nitrogen, and proinflammatory cytokines, leading

to DNA damage, cell damage, and cell death. Persistent chronic

inflammation leads to proliferative inflammatory atrophy. Prostatic

intraepithelial neoplasia and PCa are the ultimate results of chronic

inflammation (87).

2.1.2.2 Adaptive immunity

Both innate and adaptive immune responses are influenced by

the symbiotic flora of the immune system. For example, mice

without bacteria have an undeveloped adaptive immune system

(88). Differentiation of Peyer’s patches(PPS), CD4+ T cells in the

lamina propria, IgA-producing B cells, and intestinal epithelial
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lymphocytes have been associated with intestinal adaptive

immunity induced by the intestinal microbiome. It is necessary to

maintain the stability of the intestinal environment, the integrity of

the intestinal barrier, and immune tolerance to symbiotic bacteria

(89). Certain metabolites are essential for controlling the activity of

adaptive immune cells, particularly CD4+ T and B lymphocytes.

Additionally, in the gut and other distant organs, microbial

imbalance makes the host more vulnerable to a variety of

immunological, inflammatory, and allergy illnesses (90, 91). For

instance, the microbiota promotes the development of cancer,

which is directly influenced by gut Th1 and Th17 cells. Th1/Th17

balance has been shown to be associated with prognosis in patients

with CRC, and one study found that Th17 cells produced a higher

proportion of Th1 and Th17 cells as well as the cytokines IL-17A,

IL-22, and IL-23A when fed stool from patients with CRC in regular

mice (92, 93). In PCa tissues, the abundance of microbiome is

highly correlated with the expression of Treg. These cells inhibit the

activation and proliferation of effector T cells and ultimately inhibit

the host immune response (94). Inflammation and carcinogenesis

may trigger barrier failure, but barrier failure also promotes

inflammation and cancer, creating a feedback loop (83), in which

the intestinal barrier’s breakdown results in bacterial translocation

and the emergence of a systemic inflammatory response (95).

Several bacteria induce immunity during tumor development.

Cytotoxic immune cells (cytotoxic T lymphocytes) are required

for Bifidobacterium, Bacteroides thetaiotaomicron, and Bacteroides

fragilis to enhance antitumor cytotoxic T cell immunity.

Fusobacterium nucleatum promotes tumor growth by inhibiting T

cell activity, which is associated with survival and antitumor

therapeutic efficacy (96). Terrisse recently conducted a

prospective study that included a mouse model of PCa and fecal

and blood samples from 65 patients with HSPC and CRPC. It was

found that ADT increased thymocyte count and output in normal

mouse models. The response of PCa and ADT implantation in mice

with T lymphocyte loss or thymus loss was lower than that in

normal mice. Oral antibiotics destroyed the diversity of intestinal

flora and decreased the efficacy of ADT. PCa also reduced the

relative abundance of Akkermansia muciniphila (A.muciniphipla)

in the intestine, which could be reversed by ADT. In addition,

compared with the HSPC control group, the intestinal microflora of

CRPC patients had a significant correlation with the abundance of

thymic transitional cells, indicating a functional relationship

between the intestinal ecosystem and the thymus (97).

2.1.2.3 Regulation of the immune response

In specific cases, cytokines regulate cell growth differentiation

and effects by binding to corresponding receptors, regulate immune

responses, and play a role in the development of many diseases,

including inflammation. For example, TGF can be used by

Staphylococcus aureus and Streptococcus Group A to promote the

growth and spread of tumour cells (98–100). Intestinal microflora

can establish a pro-inflammatory or anti-tumor environment by

regulating the function of host physiological and immune cells

(101), and its changes can affect the inflammation of distal organs

(102, 103). Interleukin B, TGF-b, vascular endothelial growth
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factor, tumor necrosis factor, etc. are released in response to

intestinal dysregulation. Both growth factors and cytokines cause

inflammation, which impairs differentiation by preserving the

presence and expansion of undesirable cells (104). If

inflammation continues, cancer will develop as a result of the

ongoing spread of inflammatory signals, inhibited apoptosis, and

elevated amounts of growth factors (105). Verrucommicrobi, to

which A.muciniphipla belongs, promoted the inflammation of

intestinal microflora in mice, and its abundance increased with

the increase of chemokines and cytokines in mucositis induced by

5-fluorouracil. Extracellular vesicles from A.muciniphipla can

increase the number of M1-like macrophages and secrete more

inflammatory cytokines (10). Poutahidis et al. found that

Helicobacter hepaticus was found in the intestinal flora of ApcMin/

+ mice, which significantly increased the incidence of prostatic

intraepithelial neoplasia and PCa (106). Helicobacter hepaticus

infection can cause systemic elevation of pro-inflammatory

cytokines (eosinophil chemokine, IL-3, tumor necrosis factor-a
and IL-1a) and enhance prostatic intraepithelial neoplasia and

microinvasive carcinoma (10).

Gut bacteria have a direct influence on immune response, and

changes in the composition and number of microbiota may

influence local immune response. We now know that changes in

the types of bacteria in the gut can also lead to immune changes in

distant organs that can cause cancer.

2.1.3 Genetic phenotype
In the past, the interaction between intestinal flora and host

function was not recognized. The number of microbial cells carried

by the human body is 10 times that of the total number of cells in

the human body, and the genetic information is 150 times that of

the human genome. Therefore, there are many complex

interactions between microbes and their hosts (107). The

metabolic activity of intestinal microbiota is very important to

maintain the homogeneity and health of the host. Although the

existence of microbiota is very important, changes in its

composition lead to metabolic changes, which may lead to

changes in the host phenotype. Lynch et al. proposed the

“common ground” hypothesis: genetically susceptible hosts

disrupt intestinal microbiota due to environmental factors such as

diet or chronic infection, resulting in polygenetic changes that result

in host diseases such as cancer (108). It has been found that the gene

toxin Colibactin can be secreted by Escherichia coli, which induces

the appearance of senescent cells and promotes tumor growth by

secreting growth factors (109). In addition, when FMT containing

CRPC feces was injected into mice, it was found that the expression

of DNA-PKcs, RAD51, and LPCAT1 in the prostate tissue of mice

was positively correlated with the malignant degree of PCa (60).

Sphingosine 1-phosphate receptor 2 (S1PR2) is a gene mainly

regulated by a HFD, which is associated with abundantbody mass

index, Lactobacillus, a low BMI and aggressive characteristics in

patients with PCa (110). Additionally, S1PR2 expression is seen in

host endothelial cells and tumor-infiltrating bone marrow cells,

where it suppresses the expression of vascular endothelial growth

factor and matrix metalloproteinase-9 activity to prevent tumor

angiogenesis and tumor growth (111). HDF can promote the
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growth of Lactobacillus, reduce the number of Bacteroides, and

change the composition of intestinal microorganisms, which is

closely related to the progression of obesity (112). Obesity caused

by HFD can lead to chronic systemic inflammation, activate signal

pathways, and promote the progression of PCa through immune

system-related mechanisms, including activating a series of

chemical signaling pathways such as IL6/pSTAT3 or MCP-1/

CCR2, inhibiting the tumor suppressor gene PTEN to induce the

growth of PCa (113), and inducing local IL-6 upregulation in

immune cells and MDSC, enhanced MYC transcriptional

programming through metabolic changes increases histone

hypomethylation in the promoter region of the MYC regulatory

gene (114). HFD can also increase the number of Lgr5+ intestinal

stem cells and promote tumor formation by activating and

enhancing the peroxisome proliferator (PPAR-d) signal, making

intestinal stem cells lose the tumor suppressor APC (115).

Inflammation is a risk factor for tumorigenesis and progression.

Inflammation may trigger cell repair, angiogenesis, and tissue repair

cascades to a greater extent by affecting cell and genome damage,

thus promoting tumor occurrence and progression (116). In

addition, inflammation may promote immune cells to release

reactive oxygen species and reactive nitrogen, which directly

damage cells and DNA, resulting in proliferative inflammatory

atrophy, which is considered to be the pathogenic factor of PCa

and other cancers (63). Inflammation and HDF are closely related

to the change of gene phenotype. The interaction between them and

intestinal flora changes the composition of intestinal flora and thus

changes the metabolic pathway and absorption, which may result in

different responses to PCa.
2.2 Direct pathway of action

2.2.1 Bacterial translocation
The process of intestinal microorganisms and their metabolites

transferring to mesenteric lymph nodes or portal veins through the

intestinal mucosal barrier and entering other organs is called

“bacterial translocation” (117). The risk factors include the

disorder of intestinal flora (118), the increase in intestinal

permeability (119, 120), and the deficiency of immune function

(121, 122). Intestinal microbial translocation has been proven to

play an important role in the pathogenesis of many diseases, such as

pancreatitis (123), and liver cirrhosis (124).

The decrease in the diversity of intestinal microflora, the

disorder of flora structure, and the quantitative changes in

intestinal metabolites during PCa will eventually lead to intestinal

microbial imbalance. Intestinal microbial disorders caused by

various factors will damage the integrity of the intestinal wall, and

increasing intestinal permeability will lead to intestinal metabolites

or bacterial components that can cause disease in the systemic

circulation (125, 126). We call this process “bacterial passive

translocation.” A frequent indicator of intestinal health is

intestinal permeability, bacteria may breach the epithelial barrier

as a result of increased intestinal permeability, causing

inflammation. Studies have shown that biological involvement in

prostate cancer is complex, but it has been determined that
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epithelial barrier breakage is related to inflammatory changes in the

prostate microenvironment and prostate infection, which promotes

the development of prostate cancer (127). There is growing

evidence that intestinal microflora may play a role in the

progression of PCa by affecting intestinal permeability (128, 129).

Existing studies have found that when intestinal permeability

increases, the passive translocation of bacteria may occur in two

main pathways: the paracellular pathway controlled by tight

junctions or the specific intestinal epithelial cell pathway and the

transcellular pathway controlled by the membrane pump (130).

There are a variety of microorganisms that can produce cytotoxins

that change the structure of intestinal epithelial cells and lead to

passive translocation. Enterohemorrhagic E. coli, Salmonella

typhimurium, Clostridium perfringens, Bacteroides fragilis, Vibrio

cholerae, and rotaviruses can release virulence to attack intestinal

epithelial cells, causing tight junction proteins to destroy and cross

the membrane (131, 132). Enteropathogenic E. coli, Helicobacter

pylori, Clostridium difficile, and Pseudomonas aeruginosa release

toxins to increase the permeability of intestinal epithelial cells

without changing the structure of tight junctions (133–136).

Shigella flexneri, Listeria monocytogenes, and Clostridium

botulinum can break the epithelial cell barrier by modifying the

actin cytoskeleton (137, 138).

Studies have found that HFD leads to an increase in intestinal

permeability, but subsequent antibiotic treatment will further

reduce intestinal permeability (139). The destruction of intestinal

microflora by metronidazole and other antibiotics led to an increase

in intestinal inflammatory tension, an increase in bacterial

stimulation of epithelial cells, a change in goblet cell function,

and the thinning of the internal mucus layer, indicating the

weakening of mucosal barrier function and the increase in

intestinal permeability (140). In one mouse model, treatment with

penicillin or metronidazole increased the number of Enterobacter in

the cecum by an average of 1000 times, while treatment with

clindamycin increased the number of Enterobacter by 100000

times. The average incidence of translocation to mesenteric

lymph nodes was 100% after penicillin treatment, 97% after

clindamycin treatment, and 62% after nail-file treatment (118).

Steffen et al. found that the level of a specific cecal population may

be the main factor promoting the translocation of bacteria from the

intestine. In the mouse model, the number of E. coli, P. mirabilis,

and Klebsiella pneumoniae in the cecum was significantly correlated

with the number of these bacteria transferred to the mesenteric

lymph node complex (141). In diseases such as trauma, shock, and

heat injury, anoxic injury and ischemia or reperfusion of intestinal

epithelial cells greatly disrupt the cytoskeleton, resulting in

increased permeability of intestinal epithelial cells and bacterial

translocation (142, 143). Immune deficiency is an important factor

leading to intestinal microbial translocation. The incidence of

intestinal bacterial translocation is 50% in non-thymic mice and

only 7.8% in transplanted thymic mice (121). In a normal intestinal

environment, intestinal mucus secretes immunoglobulin A (sIgA)

to prevent bacteria from adhering to the surface of intestinal

epithelial cells, cooperate with complement and lysozyme, and

encapsulate invasive viruses, which is an important line of defense

to maintain the intestinal immune barrier (144). When immune
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function deficiency occurs, it leads to a decrease in intestinal mucus

sIgA, which greatly promotes the passive translocation of

bacteria (145).

When bacteria invade extra-intestinal organs through the

intestinal barrier without evidence of a pathological environment

or trauma, “active bacterial translocation” occurs. The three basic

steps of bacterial active translocation are adhesion, invasion, and

actual movement through the intestinal barrier (146). When

intestinal epithelial cells are intact, Cossart et al.’s mechanisms for

internalizing bacteria into non-phagocytic cells such as intestinal

epithelial cells are divided into three categories: 1) Some microbial

pathogens usually express a surface protein that binds to eukaryotic

receptors and participates in cell matrix or cell adhesion and

expression, leading to vacuole formation, actin cytoskeleton

rearrangement, and membrane extension receptor binding.

Trigger the “zipper mechanism” to phagocytize the pathogen. 2)

Other microbial pathogens can express a binding protein that acts

as a bridge between bacteria and receptors, and thus

transmembrane receptors mediate entry into the cell; 3) Other

microbial pathogens do not play a role through the process of

adhesion; their secretory systems inject special effectors into cells,

directly regulate actin cytoskeleton rearrangement, and eventually

form a large phagocytic bag inside the cell (147). In cells, microbial

pathogens polymerize actin to provide energy, which makes

bacteria move to the plasma membrane and form protuberances

and finally form vacuoles through phagocytosis of adjacent

cells (147).

After passing through the intestinal barrier, microbial

pathogens may enter the systemic circulation mainly through two

pathways: through the intestinal venous system into the portal vein

or through intestinal lymphoid drainage (130). In pancreatitis, the

pathway of bacterial translocation may be hematogenous spread,

directly transferred to the peritoneal cavity or retroperitoneal and

then to the pancreas, or secondary to the lymph near the pancreas

(148, 149). A retrospective study found that bacterial translocation

was involved in the biochemical recurrence of PCa. They found that

plasma bacterial 16S rDNA levels increased in patients with PCa

biochemical recurrence, and the grade of PCA patients was

positively correlated with plasma 16S rDNA levels (150). Whether

there is a bacterial translocation similar to the pancreatitis pathway

in the prostate may be a focus of microbial research in the future.

2.2.2 Toxin translocation
Bacteria themselves do not need to cross the intestinal epithelial

barrier to cause disease, but the infiltration and translocation of

inflammatory or toxic substances produced by intestinal

microorganisms may also lead to body damage, called “toxin

translocation” (151). Outer membrane vesicles are regarded as

“remote weapons” of bacteria, which can promote the interaction

between bacteria and bacteria, bacteria and hosts, and transport

bacterial toxins or other virulence factors to host cells to cause

disease, making a great contribution to toxin translocation (152).

Some studies have proposed the intestinal lymphoid hypothesis,

which states that toxic mediators are released from the intestines

after intestinal injury and are transported through mesenteric

lymph nodes to cause disease, while another study supports this
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speculation. After blocking mesenteric lymph nodes, the distal

organs of mice can be prevented from being damaged by toxin

translocation (153, 154).

Toxin translocation most often leads to sepsis and multiple

organ dysfunction syndrome (155, 156), but its role in tumors is still

being explored. The intestinal tract is the largest pool of endotoxin

in the human body. The level of endotoxin in the blood can reflect

the damage to the intestinal mucosal barrier and the level of

bacterial translocation. The intestine usually absorbs a small

amount of endotoxin, but when endotoxin enters the liver

through the hepatic portal vein, the liver produces Kupffer cells to

clear the endotoxin. When the intestinal microflora is in disorder, it

may induce the immune and inflammatory reactions of the

intestinal mucosa and eventually lead to an increase in intestinal

mucosal permeability and endotoxin translocation. With the

progress of the disease, when the level of portal vein endotoxin is

too high, it can stimulate liver Kupffer cells to release a series of

cytokines, such as tumor necrosis factor, interleukin-1, interleukin-

6, free radicals, and so on (157). Dietary factors such as fat, fructose,

and alcohol can change intestinal flora and intestinal permeability

and make enterogenic toxins pass through the intestinal barrier to

activate hepatocytes and overproduce inflammatory cytokines. The

pathogenesis is that NF-kB activates B cells, which leads to systemic

inflammation and body injury (158, 159). When the intestinal

microflora is destroyed or out of balance, the intestinal barrier

function may be impaired, thus increasing permeability and thus

increasing the chances of leakage of intestinal fluid,

macromolecules, white blood cells, toxins, and compounds into

the circulation, which may also lead to inflammation (160). The

decrease in the diversity of intestinal microorganisms leads to the

overgrowth of bacteria and leads to mild systemic inflammation,

called endotoxemia, which leads to an overall inflammatory state in

many organs and promotes tumor formation (25).
2.3 Pharmacological effects

2.3.1 Chemotherapy and immunotherapy
Through a number of processes, such as immunological

interaction, diverse metabolism, and altered community structure,

intestinal microflora can control the host ’s reaction to

chemotherapy. The pharmacological e ffect s of some

chemotherapeutic drugs and immunotherapy are closely related

to intestinal bacteria, such as 5-fluorouracil, cyclophosphamide,

irinotecan, oxaliplatin, gemcitabine, methotrexate, anti-PD-L1

therapy, and anti-CLTA-4 therapy (161). James Alexander et al.

proposed a framework for how intestinal microflora affect the

pharmacological effects of these drugs through important

mechanisms: “TIMER,” which represents translocation,

immunomodulation, metabolism, enzyme degradation, reduction

of diversity, and ecological variation (162).

Immunotherapy is an essential part of the treatment of PCa.

Emerging evidence suggests that the gut microbiome influences the

response to anticancer treatments by modulating the host immune

system. Martina Di Modica et al. studied the role of intestinal flora
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in the anti-tumor efficacy of immune-mediated trastuzumab and

found that intestinal microflora was directly involved in the efficacy

of trastuzumab. They concluded that controlling intestinal

microflora was the best strategy to improve the efficacy of tumors

in the future (163). Ayelet Sivan et al. believed that manipulating the

microbiome might regulate cancer immunotherapy. They found

that oral bifidobacterium controlled tumors better, and the PD-L1

blocking effect played a better role in mice with a higher abundance

of bifidobacterium (164). Other studies have shown that

Mycoplasma hyorhinis can metabolize gemcitabine into inactive

metabolites, reducing its anti- PCa efficacy (165). Drug resistance is

closely related to abnormal intestinal microflora and antibiotic

therapy in patients with advanced PCa during immunotherapy

(166). Liu et al. found that Docetaxel (DTX) reduced the diversity of

the intestinal microbiota. In addition, intestinal diversity decreased

and tumor growth accelerated in mice pretreated with the antibiotic

mixture (167). Zhong et al. established a mouse model of intestinal

flora imbalance and collected fecal samples frommice for 16S rRNA

sequencing. It was found that intestinal microflora disorder after

antibiotic exposure led to a significant increase in the number of

Proteobacteria, intestinal permeability, and lipopolysaccharide in

tumors, which promoted the progression of PCa and docetaxel

resistance through NF- k B-IL6-STAT3 axis (168). Marie Vétizou

et al. revealed that intestinal flora played a key role in CTLA-4-

blocked immunostimulation. They built aseptic mice and mice

pretreated with antibiotics and found that they were less effective

in anti-CTLA-4 therapy, after the fecal microorganism

transplantation of patients containing Bacillus fragilis, the effect of

anti-CTLA-4 treatment in mice was significantly improved (169).

The diversity and structure of the intestinal microbiota are

affected by chemotherapeutic drugs, which in turn affect the efficacy

and gastrointestinal toxicity of chemotherapy. Cyclophosphamide

is an important anti- PCa drug, and recent studies have shown that

its therapeutic efficacy also depends on intestinal microflora. Xu

et al. found that cyclophosphamide decreased the proportion of

Bacteroidetes and increased the proportion of Firmictutes in mice

(170). Viaud et al. hypothesized that intestinal microflora played a

part in shaping the anti-cancer immune response and found that

part of the efficacy of cyclophosphamide was due to their ability to

change the composition of intestinal microflora and then induce

bacterial translocation to stimulate the anti-tumor immune

response caused by lymphatic organ infiltration (171). By

sequencing the 16S rRNA gene of 28 male stool samples,

Montassier et al. found that, compared with the samples collected

before chemotherapy, the abundance of fecal samples collected after

chemotherapy decreased significantly, containing a small amount of

Firmicutes and Actinobacteria, while the number of Proteobacteria

increased significantly (172). By establishing a mouse model, Lida

et al. found that intestinal microflora regulates the function of

myelogenous cells and immune cell response to promote the

efficacy of chemotherapeutic drugs, while the disorder of

intestinal microflora caused by the introduction of antibiotics

reduces the effect of chemotherapeutic drugs, indicating that

complete intestinal microflora is needed to regulate immune cell

response in the tumor microenvironment (161). Romain et al.
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established an aseptic cancer mouse model that showed reduced

Th17 response and resistance to cyclophosphamide, while the

anticancer effect of cyclophosphamide could be restored by oral

administration of Gram-positive Enterobacter (173).

2.3.2 Anti androgenic therapy
Androgen deprivation therapy (ADT) is the basis for the

treatment of advanced PCa. Intestinal microbes also affect the

efficacy of ADT. A recent study found that symbiotic intestinal

microflora play a role in endocrine resistance to CRPC by providing

another source of androgen, Pernigoni et al. found that Rumencocci

played a key role in promoting the progression of CRPC. They

constructed a PCa model mouse that received castration treatment,

and the abundance of Rumencocci was significantly increased. After

the intestinal flora of mice was removed with antibiotics, the efficacy

of ADT was increased, and the progress of CRPC in ovariectomized

mice was inhibited. On the other hand, they transplanted intestinal

microbes from CRPC patients into PCa mice, which also promoted

their PCa progress (59). Liu et al. confirmed that, compared with

the intestinal microflora of HSPC patients, the number of rumen

cocci in CRPC patients increased significantly (32). Sfanos et al.

hypothesized that oral androgen receptor axis-targeted therapy

(ATT) may be related to differences in the composition of

gastrointestinal microflora. They conducted a cross-sectional

study of 30 healthy patients and PCa patients. It was found that

the a-diversity of gastrointestinal microbiota was greater in healthy

men, and there was a measurable difference in the bacterial

composition of the gastrointestinal microbiota in men treated

with ATT. The results showed that the abundance of

A.muciniphipla and Ruminococcaceae spp. was higher, which may

mean that the changes in gastrointestinal microbiota caused by

ATT represent the mechanism of a potential alternative pathway of

steroid metabolite production, which in turn affects the treatment

and prognosis of tumors (27). Cimadamore et al. showed that both

ruminococcus and A.muciniphipla are involved in steroid

biosynthesis, and the relative abundance of A.muciniphipla and

ruminococcus is higher in PCa patients taking ATT, which they

believe is more beneficial to the efficacy of anti-programmed death-

1 (PD-1) immunotherapy, while the use of antibiotics in patients

with ruminococcus will increase the risk of progressive PCa (174).

Androgen inhibitors are generally used in the treatment of

advanced PCa; androgen inhibitors such as abirone acetate(AA),

which is poorly absorbed and will stay in the intestine for a long

time, and other drugs may produce heterometabolism and change

the microflora, thus affecting the efficacy and activity of the drug

(27). Daisley et al. found that the biotransformation of AA is

affected by A.muciniphipla. Oral AA can repeatedly regulate the

gastrointestinal microflora associated with patients by promoting

the growth of A.muciniphipla, while the efficacy of AA is achieved

by interacting with A.muciniphipla to increase the ability of

intestinal microorganisms to synthesize vitamin K2 in PCa

patients (175).

Therefore, the further research and development of intestinal

microflora may become an important part of personalized and

targeted anti-PCa therapy. (Figure 1) summarizes the pathway of

the gut microbiome in prostate cancer development.
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3.1 Gut microbiota can be used as a
diagnostic tool for PCa

There are more than 1000 species of bacteria in the human

intestinal tract, but only 150 to 170 species of bacteria are common

to individuals (176). Intestinal microbiota helps to reveal the

relationship between complex human diseases, and different

diseases may have common and unique characteristics of

intestinal microflora (177). Intestinal microflora has been proven

to be a tool for non-invasive diagnosis and screening of a variety of

diseases, such as liver cancer (178), CRC (179), and gastric cancer

(180). In the intestinal microbiota, Firmicutes and Bacteroidetes

accounted for the vast majority, while Proteobacteria ,

Actinobacteria, Verrucomicrobia, and the candidate TM7 phylum

were few (181). However, the increase of Proteobacteria in the

intestinal tract may be a sign of ecological imbalance, and the long-

term accumulation of Proteobacteria in the intestinal tract is

another manifestation of the imbalance of microbial community

homeostasis or that the host is in a state of disease (182). A recent

study found that Proteobacteria may be used as a marker of

intestinal microbes in metastatic PCa. The fecal samples of 35

patients with PCa were sequenced by 16S rRNA, and it was found

that the abundance of Proteobacteria was significantly increased,

which was positively correlated with many parameters such as

distant metastasis. The relative abundance of Proteobacteria was

better than the level of prostate-specific antigen in the evaluation of

distant metastasis probability of PCa in ROC curve analysis (168).

Fruge et al.’s study included 40 overweight men who underwent a

radical prostatectomy. Through the microbiological analysis of the

16S rRNA gene in their fecal samples, it was found that the total

score of Gleason was positively correlated with Deferribacteres,

Proteobacteria, and Clostridium, and negatively correlated with

Blautia (183). Matsushita et al. compared the intestinal

microbiota of 152 patients with high-grade PCa with that of

healthy Japanese men. It was found that 18 kinds of intestinal

microorganisms can accurately detect men with high-risk PCa, and

their accuracy is higher than the level of prostate-specific antigen,

including Rikenellaceae, Alistipes, Lachnospira, Subdoligranulum,

Lachnobacterium, and Christensenellaceae, which are significantly

increased in high-risk PCa (28).Intestinal microflora, especially

Proteobacteria, may be a new means of detecting and preventing

high-level and metastatic PCa, which is essential for PCa, and more

research is needed to explore this aspect.
3.2 Metabolites of gut microbiota
contribute to the treatment of PCa

3.2.1 Polyphenols
The effects of dietary and nutritional factors on the occurrence

and development of PCa have received more and more attention,

such as fat and polyphenols (184). The most abundant ingredient in

green tea is polyphenols. Intestinal microflora can biotransform

dietary polyphenols and improve their bioavailability. Dietary
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polyphenols can regulate the composition and function of intestinal

microorganisms by inhibiting the proliferation of pathogenic

bacteria and stimulating beneficial bacteria (16). The proliferation

and survival of PCa cells are coordinated by multiple signal

pathways (185).Disruption of androgen receptor and PI3K/Akt

signal pathways plays an important role in the development of

PCa (186, 187), while intestinal microflora can metabolize the main

polyphenol epigallocatechin-3-gallate in green tea, reducing the risk

of PCa by reducing the influence of androgen receptor (188, 189)

and PI3K/Akt signal pathways (190, 191). The relationship between

PCa risk and green tea drinking was studied involving 49,920

Japanese men. People who consumed five or more cups of green

tea each day had a decreased probability of developing advanced

PCa compared to those who drank less than one cup each day (192).

In a meta-analysis of nine case-control studies, the risk of PCa was

significantly reduced by 57 percent compared with those with the

highest green tea intake. Similar results were observed in a recent

meta-analysis of 3 case-control and 4 cohort studies, in which the

probability of the highest and lowest PCa intake of green tea was

significantly reduced by 55% (193). The Ellagitannins (ETs)

extracted from pomegranate juice are also a kind of bioactive

polyphenol with a chemoprevention effect on PCa. ETs is not

completely absorbed in the gastrointestinal tract but is hydrolyzed

into different metabolites in the intestine, including ellagic acid,

which can be converted into urea A by intestinal microorganisms
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(194, 195). Several studies have shown that ellagic acid and its

microbial metabolite, urea A, can inhibit the growth of PCa cells

(196, 197). Cytochrome P1B1 (CYP1B1) is an established target for

the chemoprevention of PCa. Too many genotoxic compounds

produced by CYP1B1 overexpression might damage normal cells’

DNA and hasten the onset of cancer. Although increased CYP1B1

expression does not result in tumor invasion or metastasis, it can

cause anti-PCa medications like flutamide to lose their effectiveness

(198). ETs and their microbial metabolites can inhibit CYP1B1

enzyme activity and expression inhibitors, reducing the occurrence

and maintenance of PCa (199), causing cell cycle arrest in the G1

phase, and inhibiting whole cell growth (200). All in all, polyphenol-

rich diets or compound polyphenol supplements can increase colon

metabolites, which in turn contribute to the chemoprevention of

PCa (7).

3.2.2 Intestinal lignans
Intestinal flora in the upper large intestine can convert most plant

lignans in human food into enterolactone and intestinal diol, called

intestinal lignans (EL). Increasing EL intake and enterolactone

exposure can reduce the risk of PCa (201). In animal experiments,

EL can activate estrogen signal transduction in mice. The ventral

prostate is rich in estrogen receptor b. The activation of the estrogen

receptor b reduces the epithelial dysplasia of the prostate in mice,

which is negatively related to the risk of PCa (202).
FIGURE 1

The Intestinal bacterial translocation and toxin translocation. The imbalance of intestinal flora leads to the destruction of the defense mechanism
between the intestinal mucosa and the intestinal immune system, and the release of various inflammatory and cytokines destroys the epithelial cell
barrier, leading to the active and passive translocation of bacteria, the translocation of toxins, the translocation of bacterial metabolites, and
interactions with drugs that eventually enter the circulation, thus promoting the formation of tumors.
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3.2.3 Isoflavones
Soybean products usually contain isoflavones, including daidzein

and genistein. A number of studies have proven that intestinal flora

are involved in the metabolism and biological activity of isoflavones,

including a Clostri-diumsp, Eubacterium ramulus, Escherichia coli,

Bacteroides ovatus, Ruminococcus productus, and Streptococcus

intermedius (203). Daidzein can induce PCa cell cycle arrest in the

G0/G1 phase by affecting the gene expression of cyclin and cyclin-

dependent protein kinase (204). Hisae Nakamura provides some

experimental data to support the inhibitory effect of isoflavones on

the metastasis of prostate tumor cells and suggests that these

inhibitory effects may be mediated by ER-b signal transduction

(205). A large-scale epidemiological survey of 82483 Hawaiian and

Los Angeles men showed that men with the highest legume intake

had an 11.1% lower risk of PCa and a 26% lower risk of non-localized

or high PCa than those with the lowest legume intake (206). S-equol

is a secondary metabolite of daidzein produced by intestinal

microorganisms and has stronger anticancer activity than daidzein.

Soybean isoflavones are similar to 17b-estradiol in structure. Thus, S-

equol can bind to ER and act as a phytoestrogen. ER-b is expressed at

a higher level in prostate tissue,the binding affinity of S-equol to ER-b
is similar to that of 17b-estradiol, but stronger than that of ER-a, and
soy isoflavones are more likely to induce ER-b transcriptional activity
(207). Hirokazu Tsuji et al. recently discovered a new intestinal

bacteria, Slackia sp. Strain NATTS, which belongs to the Slackia

genus and can quickly degrade daidzein into S-equol (208).

According to a study of 14203 Japanese men conducted by

Kurahashi et al., the highest tertile of plasma S-equol was

significantly associated with a reduction in total PCa risk, especially

in local cancers (209). S-equol inhibits the growth of LNCaP, DU145,

and PC3 cells of human PCa by up-regulating the expression of

Forkhead box O3, a tumor-suppressing transcription factor in PCa

(113). Among 28 healthy volunteers in Japan, 18 S-equol producers

and 10 S-equol non-producers took soybean isoflavones for three

months. Three months later, it was found that there was no

significant change in serum estradiol and total testosterone levels,

while serum sex hormone binding globulin levels significantly

increased and serum free testosterone and dihydrotestosterone

levels decreased significantly. Long-term soy isoflavone

supplementation can stimulate the production of serum estradiol

and reduce serum dihydrotestosterone levels in men, thereby

reducing the risk of PCa (210). In a large population study, people

who ate soy milk more than once a day were associated with a 70%

lower risk of PCa, and serum phytoestrogens (genistein, daidzein, and

S-equol) had dose-dependent protective effects on the development

of PCa (211). Therefore, H. Akaza proposed that S-equol is a key

factor in the difference in incidence between Asia and the West. PCA

may be susceptible due to a lack of S-equol-transforming bacteria in

the intestinal environment and an inability to convert daidzein into S-

equol. S-equol-containing supplements can be used to improve the

intestinal environment and prevent the occurrence of PCa (212).

3.2.4 Indole-3-methanol
Cauliflower, cabbage, and cauliflower all belong to the same

family of cruciferous vegetables, which are significantly associated

with the occurrence of PCa. Eating three or more servings of
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cruciferous vegetables per week can reduce the risk of PCa by

40% (213). Indole-3-methanol (I3C), a derivative of cruciferous

vegetables, can derive a series of metabolites in an acidic

gastrointestinal environment and prevent PCa. The addition of

I3C significantly inhibited tumor growth (p < 0.0001) and changed

the structure of the intestinal microbiome, in which the specific

bacterial group (M.schaedleri) of Deferribacteres increased

significantly. I3C also destroys the interaction between

microorganisms, and its chemoprevention may be related to the

changes in the composition of microflora and microbial interaction

in the intestinal microbial community (214).

In conclusion, the supplementation of beneficial bacteria which

produce polyphenols, EL, isoxanthol and indole-3-carbinol

significantly reduced the risk of cancer. At present, dietary

supplements are the simplest means to regulate the microbiota,

and dietary pattern intervention may help to prevent PCa by

changing the microbiota. Exploration of more beneficial

microbiota is the key to understanding the influence of diet and

nutrition on PCa.
3.3 Probiotics intake

Probiotics are crucial for maintaining the composition of

intestinal microbiota and enhancing the equilibrium of intestinal

microflora. By boosting mucosal barrier function and antibody

production, boosting epithelial integrity, and preventing the entry

of harmful microbes, they can enhance the host immune response

(215, 216). The only probiotic strain that can compete with

Escherichia coli, which causes chronic inflammation, is EcN

(Escherichia coli Nissle 1917-EcN). Oral probiotics can alter the

intestinal microbiota and have an impact on the prostatic

inflammatory milieu, according to a new study by Manfredi et al.

Two groups of patients with persistent bacterial prostatitis were

randomly assigned. Levofloxacin was initially administered to all

subjects, and on the basis of this, oral EcN was administered to the

experimental group. The biological recurrence rates after 3 months

and 6 months considerably lowered in the experimental group, and

patient adverse responses were infrequent throughout the

experiment. the combination of EcN with levofloxacin can better

control the symptoms and biological recurrence in individuals with

chronic bacterial prostatitis without reducing the safety of

treatment (217).

In another study, mice fed foods rich in the probiotic strain L.

reuteri could reduce systemic inflammation by reducing IL-17A and

increasing serum testosterone levels and supplement L. reuteri or

other probiotic supplements to prevent male hypogonadism, which

may give individuals healthier reproductive hormones and gonadal

characteristics (218). Anti-cancer immunotherapy will be more

effective if specific intestinal resident flora are used. Lactobacillus

rhamnosus GG (LGG), the most studied probiotic model of cancer,

can be observed in animal models to have anti-inflammatory effects

and promote tumor regression (219). In addition, cancer patients

lack natural B vitamins, and folic acid and arginine have the greatest

metabolic changes (25), Through the use of probiotics and the

elimination of external supplements, natural folic acid production
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may increase in high-risk men, and external sources may increase

cancer risk (25). Bifidobacterium can improve self-anti-tumor

immunity by promoting the efficacy of antibodies on the axis

between programmed cell death protein 1 and its ligand (164).

Butyrate is an anti-inflammatory micronutrient produced by

Faecalibacterium prausnitzii and Eubacterium rectalie in the

intestinal tract and may be related to one of the ways to prevent

PCa (7). Tumor necrosis factor-related TRAIL is an endogenous

cytokine that can induce apoptosis in malignant tumor cells.

Treatment with Lactobacillus can also antagonize PCa by

producing TRAIL in peripheral blood mononuclear cells to

promote NK activity (220). A recent study has found that

intravenous injection of extracellular vesicles derived from

A.muciniphipla in mice can establish a CD8+ cytotoxic T cell

response to mouse PCa in immunoactive C57BL/6 mice and slow

tumor progression in the absence of ADT (221). Probiotics do play

a role in tumor prevention and treatment, and treatment with

probiotics may be an economical and convenient anti-cancer

strategy in the future.
3.4 Fecal microbiota Transplantation (FMT)

FMT can regulate intestinal microbiota to improve the response

rate of immunotherapy-resistant patients (222). FMT is an effective

method to transplant the intestinal microbiota of healthy donors

into patients to restore intestinal microbiota diversity, which is

generally treated through the upper or lower digestive tract (223). In

the management of Clostridium difficile infection, FMT has

demonstrated notable efficacy. FMT was approved as a clinical

approach for the treatment of recurrent Clostridium difficile

infection in the 2013 guidelines (223). Sivan et al. first revealed

that intestinal microbiota may play a role in regulating anti-tumor

immunity. They carried out FMT on melanoma mice with different

intestinal microbiota contents and found that the tumor growth rate

was surprisingly similar, and the tumor growth rate of the side with

rapid tumor progress was significantly reduced after FMT (164).

Baruch et al. designed a phase I clinical trial to perform FMT on 10

patients with malignant melanoma resistant to anti-PD-1 therapy,

including 1 patient with complete remission and 2 patients with

partial remission. Furthermore, both their intestinal lamina propria

and tumor microenvironment show improved signals for gene

spectrum and immune cell infiltration (224). Riquelme et al. used

16S rRNA gene sequencing to analyze the composition of tumor

microbiota in pancreatic cancer patients. Long-term survivors of

Pseudoxanthomonas, Saccharopolyspora, Streptomyces, and a-
diversity outnumber short-term producers. They transplanted the

fecal flora of patients with advanced pancreatic cancer with a

survival period of > 5 years into mice, and the number of CD8+

T cells in the mice increased significantly, and their tumors shrank

significantly. They speculated that FMT changed the diversity and

structure of the tumor microenvironment flora to promote the

immune response in the mouse model (225). Liu et al. found that

the intestinal flora transplantation using CRPC feces accelerated the

progress of PCa in mice and increased the abundance of

ruminococcus related to poor prognosis, which proved that FMT
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did have an effect on PCa (60). Androgen deprivation is very

important in the treatment of PCa, but almost all patients will be

resistant. The FMT treatment is not complicated. FMT updates

intestinal microbiota to reduce drug resistance in patients and

carries out personalized bacterial transplantation, which may be a

favorable weapon for PCa treatment in the future.

4 Conclusions

We summarized the different gut microbiota compositions of a

large number of prostate cancer patients compared with non-

prostate cancer patients and found that certain gut microbes were

associated with an increased risk of prostate cancer, including

(Bacteroides massiliensis, Bacteroides, Streptococcus Tissierellaceae,

Lachnosp i ra c eae , Pseudomonada l e s , Pro t eobac t e r i a ,

Gammaproteobacteria, Ruminococcus, Bacillus, Rikenellaceae, and

Clostridiales), and other organisms. Gut metabolites such as

estrogen, androgen, folate, and short-chain fatty acids are

involved in the pathogenesis of prostate cancer, while their other

metabolites such as polyphenols, ETs, and isoflavones are helpful

for the treatment of prostate cancer. It seems that intestinal

microorganisms can directly affect PCa through bacterial

translocation or toxins and may also be indirectly affected by

intestinal microbiota, including metabolites, immunity, genes, and

the effects of anti-tumor drugs. If PCa is confirmed to be affected by

intestinal microbiota, changing intestinal microbiota through diet

or FMT treatment will provide an effective treatment strategy for

PCa prevention and treatment. Certain microorganisms may also

be used as diagnostic markers of PCa. In a word, the intestinal

microbiome may play an important role in the development,

diagnosis, and treatment of PCa. More research is needed to

explore the complex interrelationships and ways of action of the

intestinal microbiome. More research is needed to understand the

role of the intestinal microbiome in PCa patients, and personalized

treatment is used to target the intestinal microbiome of

different patients.
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