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Development of a nomogram
based on radiomics and
semantic features for predicting
chromosome 7 gain/
chromosome 10 loss in
IDH wild-type histologically
low-grade gliomas
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Yuqi Luo1 and Jun Ma1*

1Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,
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Purpose: To predict chromosome 7 gain and chromosome 10 loss (+7/-10) in

IDH wild-type (IDH-wt) histologically low-grade gliomas (LGG) by machine

learning models based on MRI radiomics and semantic features.

Methods: A total of 122 patients diagnosed as IDH-wt histologically LGG were

retrospectively included in this study. The patients were randomly divided into a

training group and a test group in a ratio of 7:3. The radiomics features were

extracted from axial T1WI, T2WI, FLAIR and CET1 sequences, respectively. The

distance correlation (DC) and least absolute shrinkage and selection operator

(LASSO) were used to select the radiomics signatures. Three machine learning

algorithms including neural network (NN), support vector machine (SVM), and

linear discriminant analysis (LDA) were used to construct radiomics models. In

addition, a nomogram was developed by combining the optimal radiomics

signature with clinical risk factors, and the potential clinical utility of the

nomogram was evaluated using decision curve analysis.

Results: The LDA+DCmodel was identified as the optimal classifier among the six

radiomics models. Necrosis was determined as a risk factor for +7/-10 in IDH-wt

histologically LGG. The nomogram achieved the best performance, with an AUC of

0.854 and an accuracy of 0.778 in the independent test group. The decision curve

of the nomogram confirmed its clinical usefulness in a wide range of thresholds.

Conclusion: The nomogram combining radiomics and semantic features can

predict the +7/-10 status effectively, which may contribute to the risk

stratification and individualized treatment planning of patients with IDH-wt

histologically LGG.
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Introduction

Gliomas are the most common primary tumors of the central

nervous system and are classified by the World Health Organization

(WHO) as low-grade gliomas (LGG, grade 2-3) and glioblastomas

(GBM, grade 4) based on the histological findings. The LGG is

characterized by a widespread malignant potential and primarily

affects young people, with a median overall survival of approximately

7 years (1). GBM is extremely malignant and mainly affects the

elderly, with a median survival of only 8 months after diagnosis (2, 3).

Gliomas have a unique genomic profile, and molecular markers have

been identified as an essential basis for glioma classification in the

2021 WHO Classification of Central Nervous System Tumors. IDH

wild type (IDH-wt) histologically LGG with chromosome 7 gain and

chromosome 10 loss (+7/-10) in adults have been reclassified as GBM

due to their clinical outcome and prognosis being similar to that of

GBM (4, 5). In addition, these tumor entities will also be managed in

the same manner as GBM.

Maximal safe resection plays a vital role in the management of

gliomas and is clearly the preferred choice for improving survival.

However, LGG and GBM have different treatment approaches after

surgery. GBM tends to benefit from postoperative radiation therapy

and chemotherapy due to its highly aggressive nature, whereas the

choice of postoperative treatment for LGG primarily depends on

molecular subgroups. High-risk LGG patients harboring IDH

mutations can benefit from adjuvant PCV (procarbazine, lomustine

(CCNU), and vincristine) after radiotherapy, leading to a significant

extension in overall survival (OS) and progression-free survival (PFS).

IDH wild-type LGG patients cannot benefit from adjuvant PCV after

radiotherapy, and may require more aggressive treatment approaches

(6–8). Furthermore, the expression status of molecular characteristics

guides the choice of treatment options. The loss of Chr10 is an

important pathway that increases tumor cell sensitivity to alkylating

agents. Therefore, adjuvant chemotherapy with temozolomide or

nitrosourea is the optimal choice for patients with Chr10 loss (3). In

addition, the gain of Chr7 was associated with a 4.7-fold increased

risk of tumor recurrence, while the loss of Chr10 was linked to a

shorter survival (9). Therefore, identifying this pair of major

oncogenic-driven genes in IDH-wt histologically LGG not only

helps to diagnose the molecular glioblastoma but also facilitates the

regulation of the oncogenic signaling pathway at the molecular level

for individualized treatment and prognosis prediction (10).

Stereotactic biopsy is the standard diagnostic procedure for the

diagnosis of brain tumors. However, it is an invasive examination

and is severely limited by spatial heterogeneity of tumor tissue and

inter-observer variability (3). In addition, genetic testing is costly

and not available in all basic healthcare units. Therefore, it is

imperative to develop a rapid, non-invasive, and reliable method

to predict the status of +7/-10 in IDH-wt histologically LGG.

Radiomics can transform conventional imaging data of lesions

into high-resolution, high-throughput information for

quantitative analysis to characterize tumor heterogeneity (11, 12).

Since the concept of radiomics was put forward, it has been widely

utilized in the differential diagnosis, gene expression status and

prognosis prediction of glioma (13–15). Meanwhile, clinical and

radiological semantic features have also been demonstrated to
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effectively reveal the biological phenotype of glioma (16, 17). The

purpose of this study was to predict the status of +7/-10 in IDH-wt

histologically LGG patients by machine learning models based on

radiomics and semantic features to assist clinicians in accurate

diagnosis, prognosis-based stratification and individualized

treatment for glioma patients.
Materials and methods

Participants

This study was approved by the institutional review board of our

institute with the informed consent waived (IRB: KY2022-214-03).

We retrospectively enrolled glioma patients who underwent surgery

at our institution from January 2020 to June 2022. The inclusion

criteria were (1): patients with first surgery and a histological

diagnosis of LGG (2); expression status of Chr7 and Chr10 was

determined and IDH was a wild type (3); complete axial T1WI,

T2WI, T2-FLAIR and CET1 sequences were available in preoperative

MRI examination (4); images were acquired using a 3.0T scanner.

The exclusion criteria were (1): patients who had received glioma-

related treatment such as radiotherapy and chemotherapy before

MRI examination (2); MRI images that did not meet software

processing requirements (3); juvenile patients. All the patients were

randomly divided into a training group and a test group in a ratio of

7:3. The flow chart of the study was shown in Figure 1.
Image acquisition and pre-processing

All MR images were acquired using 3T magnetic resonance

scanners, including Magnetom Trio Tim (Siemens), Magnetom

Verio (Siemens), Magnetom Prisma (Siemens) and Discovery 750

(GE Medical Systems). The acquisition protocol was shown in

Supplementary S1. In this study, two pre-processing methods in

3Dslicer software (https://www.slicer.org/) were employed to

eliminate potential effects caused by the discrepancies in different

scanners and acquisition parameters. Firstly, bias field correction

was performed on all images using the N4ITK toolkit in 3Dslicer to

eliminate the image noise caused by the inhomogeneity and

fluctuation of the scanning magnetic field in different scanners

and within the same scanner (18, 19). N4ITK is a non-parametric

non-uniform intensity normalization algorithm that uses a b-spline

approximation to achieve the best fit and can also compensate for

the lack of standard units in MR images to some extent.

Subsequently, all images were resampled to 1×1×1mm by tri-

linear interpolation to correct for the impact caused by different

acquisition parameters (20, 21).
Segmentation and feature extraction

The segmentation process was performed by a neuro-

radiologist with more than 5 years of experience using 3Dslicer

software, and the neuro-radiologist was blind to the pathological
frontiersin.org
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results before segmentation. According to the Brain Tumor Image

Segmentation Benchmark (BRATS), the region of interest (ROI)

was delineated as the entire tumor area, including edema,

enhancing core, non-enhancing core, and necrotic/cystic core

(22). First, the three-dimensional ROI was manually delineated by

the neuro-radiologist layer by layer on the FLAIR sequence. Then

the ROI was registered to the T1WI, T2WI and CET1 sequences

and the ROI profile was manually adjusted by the neuro-radiologist.

The Pyradiomics library (http://pyradiomics.readthedocs.io/) was

applied to extract radiomics features from the four sequences. A

total of 6380 features including shape, first-order, texture and

filtering were extracted from the four sequences. A detailed

introduction of the features was provided in Supplementary S2.

In addition, 30 cases were randomly selected and the segmentation

process was repeated by another neuro-radiologist with more than

10 years of experience. The interclass correlation coefficient (ICC)

between the two radiologists was calculated to evaluate the accuracy

of segmentation and the reproducibility of radiomics features.
Radiomics feature selection

The feature selection and modeling were conducted in the

training group. Since many radiomics features have different
Frontiers in Oncology 03
dimensions and cannot be directly compared with each other, all

features were normalized by Z-score before feature selection to

eliminate the different dimensionality. Subsequently, we employed

3 steps for the selection of radiomics features. Firstly, univariate

analysis was conducted based on variable distribution to eliminate

redundant features and reduce the computational burden of the

model. Secondly, we calculated the Spearman correlation

coefficients between each pair of features to avoid severe feature

collinearity. In a pair of features with a correlation coefficient greater

than 0.9, the one with a lower weight was eliminated. Finally, the

optimal feature signatures were selected by 2 common feature

selection algorithms including distance correlation (DC) and least

absolute shrinkage and selection operator (LASSO), respectively.
Development of the radiomics models

Three machine learning algorithms including neural network

(NN), support vector machine (SVM), and linear discriminant

analysis (LDA) were used to develop the radiomics models,

respectively. Each model underwent 10-fold cross-validation in

the training group to tune the parameters and obtain the true

classification accuracy. The independent test group was used to

further evaluate the performance of the models. The AUC value,
FIGURE 1

The flowchart of this study.
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sensitivity, specificity, and accuracy of each model were calculated

in the training and test groups, respectively. The model with the

highest AUC value in the test group was considered the best

radiomics model, and its signature was also defined as the

optimal radiomics signature.
Development of the clinical model
and nomogram

Based on previous studies and the VASARI features of glioma, we

selected 12 semantic features including age, gender, location, side,

margin, contrast enhancement, necrosis, multifocal, restricted diffusion,

deep white matter invasion, hemorrhage, and ependymal involvement as

potential clinical risk characteristics for +7/-10 in IDH-wt histologically

LGG (23, 24). The detailed definitions of semantic features were provided

in Supplementary S3. The conventional radiological features were

evaluated by two neuro-radiologists with more than 5 years of

experience in a blinded manner to clinical and pathological

information. Any disagreements between the two would be reassessed

by a senior neuro-radiologist with more than 10 years of experience.

Univariate analysis was used to identify the risk factors for +7/-10. Then,

a clinical model for predicting +7/-10 was established using logistic

regression in the training group and validated in the test group.

To provide a reliable and convenient tool for clinicians to

predict +7/-10 in IDH-wt histologically LGG, a nomogram

incorporating radiomics signature and clinical risk factors was

developed in the training group and validated in the test group.

The C-index of the nomogram was calculated and the calibration

curve was plotted to evaluate the consistency between the predicted

probability and the true results as well as the stability of the

nomogram. In addition, decision curve analysis was used to

measure the benefits at different prediction thresholds to evaluate

the clinical applicability of the nomogram.
Statistics

All the statistical analysis in our study were performed by Rstudio

(version: 1.2.1335; https://www.rstudio.com/). For univariate

analysis, a t-test or Mann-Whitney U-test was performed according

to the distribution of measurement data. Chi-square test or Fisher’s

exact probability test was applied to count data. The “caret” package

was used for modeling, and the “pROC” package was used to plot

receiver operating characteristic (ROC) curves and calculate the AUC

value, sensitivity, specificity, and accuracy. P <0.05 was considered as

significantly different.
Results

Patient characteristics

A total number of 122 eligible patients were included in this study.

Among them, there were 42 patients with +7/-10 and 80 patients

without +7/-10. The mean age of patients with +7/-10 was 47.90 ±
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12.46, with 18 males and 24 females, while the mean age of patients

without +7/-10 was 44.20 ± 14.56, with 38males and 42 females. All the

patients were randomly divided into a training group (n=86) and a test

group (n=36) in a ratio of 7:3. The proportion of patients and semantic

features did not differ significantly between the training and test groups

(Table 1), suggesting that this grouping was justified.
Feature selection

The average ICC value of the 6,380 pairs of features was 0.821, and

the median ICC value was 0.997, indicating a high consistency. The

boxplot of the ICC between the features extracted by two neuro-

radiologists was shown in Figure 2. Since there are numerous

mathematically transformed filtering features in our study, it may be

too idealistic to require a high degree of consistency for all features.

Therefore, We took 0.75 as the threshold for qualifying reproducibility

and retained 4920 robust features with ICC greater than 0.75.

Subsequently, 35 radiomics features were retained by univariate

factor analysis and Spearman correlation analysis. Finally, LASSO

selected 3 features based on the 1-SE criterion with a l value of

0.1039153, while DC selected the top 10 most important features based

on the distance correlation coefficient. The detailed information of the

selected features was provided in Supplementary S4.
Development and validation of
radiomics models

A total of 6 radiomics models were established combining 2 feature

selectionmethods and 3machine learning algorithms. The performances

of these sixmodels in the training and test groups were shown in Table 2.

The AUC values of these models obtained from 10-fold cross-validation

in the training group was shown in Figure 3. The median AUC values of

themodels based onDC signature were all higher than that of themodels

based on LASSO signature.Moreover, the LDA+DCmodel was defined

as the optimal radiomics model due to its best performance in the

independent test group, with an AUC of 0.736 and an accuracy of 0.750.

Therefore, the feature set selected by the DC algorithmwas defined as the

optimal radiomics signature. Figure 4 illustrated the performance of the

LDA-based models in terms of the canonical function distribution over

the training epoch. The 10 radiomics features selected by the DC

algorithm were shown in Figure 5. One of them was an original

feature (original_glcm_Correlation_T2), and the others were all

filtering features. All radiomics features differed significantly between

the IDH-wt histologically LGG patients with and without +7/-10

(P <0.05).
Development and validation of the clinical
model and nomogram

Among all the included semantic features, there was a

significant difference in necrosis between the IDH-wt

histologically LGG patients with and without +7/-10 (Table 3).

The incidence of necrosis in patients with +7/-10 was significantly
frontiersin.org
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TABLE 1 The baseline data in the training and test groups.

Characteristic Training group
(n=86)

Test group
(n=36)

P-value

Age (year) 45.55 ± 13.53 45.31 ± 15.03 0.934

Gender 0.324

Male 37 19

Female 49 17

Proportion of patients >0.999

With +7/-10 30 12

Without +7/-10 56 24

Location 0.154

Frontal lobe 38 21

Others 48 15

Side 0.998

Right 34 14

Both 7 3

Left 45 19

Margin 0.291

Distinct 46 23

Indistinct 40 13

Contrast enhancement 0.528

Yes 40 19

No 46 17

Necrosis 0.560

Yes 31 11

No 55 25

Multifocal 0.830

Yes 13 6

No 73 30

Restricted diffusion 0.075

Yes 22 4

No 64 32

Deep WM invasion 0.691

Yes 44 17

No 42 19

Hemorrhage >0.999

Yes 9 4

No 77 32

Ependymal involvement 0.964

Yes 41 17

No 45 19
F
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higher than that in patients without +7/-10 in both the training

group (P=0.015) and the test group (P=0.030). A representative case

with +7/-10 was shown in Figure 6. Therefore, a clinical model was

established using necrosis as a predictor. A nomogram was

developed by combining the optimal radiomics signature and

necrosis (Figure 7). The performance of the LDA+DC model,

clinical model, and nomogram were shown in Table 4 and the

ROC curves of them were shown in Figure 8. The Delong test

showed that the nomogram achieved the best predictive

performance and significantly outperformed the clinical model in

both the training (P<0.001) and test (P=0.039) groups.

The C-index of the nomogram was 0.837, which indicates high

performance. Moreover, the calibration curves showed good

consistency between predictability and actual status (Figure 9A).
Frontiers in Oncology 06
Finally, we used decision curve analysis to determine whether the

nomogram would help implement clinical treatment strategies. The

decision curve showed that within the threshold probability range of

0.2 to 0.8, the nomogram had the maximum net benefit compared to

the “all treatment” strategy and the “all no treatment” strategy

(Figure 9B), which indicated high clinical applicability.
Discussion

In this retrospective study, we innovatively developed a

nomogram based on MRI radiomics and semantic features to

predict the +7/-10 status in IDH-wt histologically LGG for the

first time, providing a convenient and quantitative prediction tool
TABLE 2 The performance of the radiomics models.

Models Group AUC Accuracy Sensitivity Specificity

LDA+DC Training group 0.813 0.698 0.333 0.893

Test group 0.736 0.750 0.500 0.875

LDA+LASSO Training group 0.745 0.733 0.367 0.929

Test group 0.597 0.694 0.250 0.917

SVM+DC Training group 0.814 0.686 0.100 1.000

Test group 0.726 0.639 0.083 0.917

SVM+LASSO Training group 0.749 0.663 0.133 0.946

Test group 0.608 0.750 0.250 1.000

NN+DC Training group 0.852 0.861 0.900 0.839

Test group 0.602 0.611 0.667 0.583

NN+LASSO Training group 0.751 0.756 0.533 0.875

Test group 0.608 0.639 0.417 0.750
FIGURE 2

The ICC values of the 4 groups of features. Most of the features showed high reproducibility, and the features with ICC values less than 0.75 would
be eliminated.
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for clinicians. We developed six radiomics models and determined

the optimal based on their performance in the independent test

group. The nomogram demonstrated superior performance in both

the training and test groups compared to the LDA+DC model and
Frontiers in Oncology 07
clinical model. The combination of semantic and radiomics features

was more effective in predicting +7/-10 in IDH-wt histologically

LGG than either radiomics or semantic features alone, indicating

that both macroscopic and microscopic information from medical
A B

C D

FIGURE 4

Example of the performance of the LDA-based models in determining the distribution of functions for patients with and without +7/-10.
(A, B): Function distribution of the LDA+DC model; (C, D): Function distribution of the LDA+LASSO model. The observed minimal overlaps between
the two groups indicated that the models based on LDA algorithm had a high discriminative ability.
FIGURE 3

Boxplot of AUC values obtained by 10-fold cross-validation in the training group. Each model had 10 AUC values, and the median AUC values of
models based on DC signature were superior to that based on LASSO signature.
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TABLE 3 The baseline data in the training and test groups.

Characteristic Training group
(n=86)

P-value Test group
(n=36)

P-value

With +7/-10
(n=30)

Without +7/-10
(n=56)

With +7/-10
(n=12)

Without +7/-10
(n=24)

Age (year) 47.30 ± 11.83 44.61 ± 14.37 0.355 49.42 ± 14.34 43.25 ± 15.24 0.246

Gender 0.679 >0.999

Male 12 25 6 13

Female 18 31 6 11

Side 0.580 0.376

Right 10 24 5 9

Both 2 5 2 1

Left 18 27 5 14

Location 0.567 0.282

Frontal lobe 12 26 5 16

Others 18 30 7 8

Margin 0.180 0.391

Distinct 19 27 6 17

Indistinct 11 29 6 7

Contrast
enhancement

0.983 >0.999

Yes 14 26 6 13

No 16 30 6 11

(Continued)
F
rontiers in Oncology
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FIGURE 5

Radiomics features selected by the DC algorithm. The 10 features were statistically significantly different between the patients with and without +7/-10.
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imaging were indispensable in revealing tumor heterogeneity (25,

26). Moreover, the calibration curve and c-index of the nomogram

confirmed its acceptable predictive performance and stability. The

decision curve analysis further proved the clinical utility of

the nomogram.

It is widely recognized that tumor heterogeneity is closely

related to the biological behavior and prognosis of tumors.

Chromosomal number aberration is the most common genomic

abnormality in human tumors, and the specific aneuploidy often

leads to the activation of oncogenes or loss of suppressor genes (3).

Chr7 gain and Chr10 loss, the two most common genomic

alterations in gliomas, are essential events in molecular

glioblastoma development and are very important prognostic

biomarkers (27). Yadav et al. proposed that the loss of Chr10

leads to the inactivation of tumor suppressor genes annexin A7 and

the phosphatase and tensin homolog (PTEN), promoting the

oncogenic epidermal growth factor signaling pathway and

increasing tumorigenesis (10). Senhaji et al. found that the loss of

Chr10 leads to the methylation of methylguanine methyltransferase

(MGMT) at 10q26, which is an important way to increase the

sensitivity of tumor cells to alkylating agents. Therefore, adjuvant

chemotherapy with temozolomide or nitrosourea is the best
Frontiers in Oncology 09
choice for LGG with Chr10 loss, especially for the elderly who

have difficulty receiving radiotherapy and chemotherapy

simultaneously (3). In addition, the gain of the entire Chr7 and

loss of heterozygosity at Chr10 are associated with shorter survival

time in adult patients with LGG (9). Therefore, accurate

identification of +7/-10 helps determine prognostic stratification

and personalized treatment of IDH-wt histologically LGG.

In clinical practice, stereotactic biopsy is the basic method for

the diagnosis of brain tumors. However, it is an invasive

examination and suffers from unsatisfactory reproducibility and

inter-observer agreement. Conventional MRI examination, as a

widely available imaging method, has become the best tool for the

initial diagnosis of tumors and long-term postoperative

monitoring due to its excellent tissue resolution and non-

radiation. Radiomics extracts microscopic features from image

data using computers and transforms them into quantifiable data,

establishing a connection between medical imaging and genomics

(28). In addition, radiomics allows the analysis of intact tumors

and overcomes the dilemma of insufficient samples for molecular

and histopathological examination. Nowadays, models based on

MRI radiomics features have been proven to accurately predict the

molecular expression status of gliomas. Zheng et al. effectively
TABLE 3 Continued

Characteristic Training group
(n=86)

P-value Test group
(n=36)

P-value

With +7/-10
(n=30)

Without +7/-10
(n=56)

With +7/-10
(n=12)

Without +7/-10
(n=24)

Necrosis 0.015 0.030

Yes 16 15 7 4

No 14 41 5 20

Multifocal 0.769 0.635

Yes 5 8 1 5

No 25 48 11 19

Restricted
diffusion

0.866 0.190

Yes 8 14 3 1

No 22 42 9 23

Deep WM
invasion

0.768 >0.999

Yes 16 28 6 11

No 14 28 6 13

Hemorrhage 0.790 0.349

Yes 4 5 0 4

No 26 51 12 20

Ependymal
involvement

0.891 0.194

Yes 14 27 8 9

No 16 29 4 15
fr
WM, white matter.
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predicted the expression grade of the synaptophysin gene in LGG

using multi-parametric MRI radiomics (29). Casale et al.

developed a machine learning model based on MRI radiomics

features to predict chromosome 1p/19q co-deletion in LGG, and

achieved an accuracy of 0.72 in the independent test cohort (14).

In our study, we used 2 feature selection methods and 3

machine learning algorithms to compare the performance of
Frontiers in Oncology 10
different radiomics models. In the independent test group, the

LDA+DC model achieved the best performance with an AUC of

0.736 and an accuracy of 0.750. LDA aims to separate two classes

by searching for a linear combination of predictive variables that

maximizes the separation between groups. As a robust linear

classification algorithm, LDA has shown excellent performance

in some previous radiomics-related studies. In the study of Sied
FIGURE 6

Magnetic resonance images of a representative case with +7/-10. (A) T1-weighted, (B) T2-weighted, (C) FLAIR, (D) CET1, (E) DWI and (F) ADC images
of a 58-year-old male patient with a histopathological diagnosis of grade 3 astrocytoma. The lesion involves the left parietal lobe and corpus
callosum. Small areas of necrosis and contrast-enhancement are observed in the central part of the lesion, and the lesion exhibits localized
restricted diffusion. The molecular characteristics of this patient are as follows: IDH (–), EGFR (+), TERT promoter mutation, and amplification of
chromosome 7/loss of chromosome 10. According to the 2021 CNS tumor classification guidelines, this case is now reclassified as molecular
glioblastoma, indicating a relatively poor prognosis and clinical outcome.
FIGURE 7

Nomogram based on multivariate logistic regression coefficients. Based on the summation of necrosis and radiomics scores, the probability of +7/-
10 for IDH-wt LGG can be inferred.
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et al., LDA can effectively predict the postoperative pseudo-

progression in patients with glioblastoma, with an AUC value of

0.93 (30). Tian et al. developed an LDA model based on

radiomics features to distinguish glioblastoma from anaplastic

astrocytoma. The accuracy of the model in the validation cohort

was 0.968, demonstrating the promising potential for clinical

applications (31). It should be noted that in our study, the

models based on the NN algorithm performed well in the

training group but did not achieve satisfactory performance in

the test group. We believe that this over-fitting phenomenon

may be mainly attributed to insufficient training samples. NN is

an algorithm that simulates the structure of human neurons and

can perform complex logical operations and reveal the nonlinear

relationship between input variables and output results. NN is

capable of adaptively adjusting the weights of nodes in the model

to optimize the performance and thus has been widely used in

various scenarios (32, 33). However, NN is weak in processing

linear data and prone to over-fitting when the training data

is insufficient (34). Therefore, selecting the appropriate

machine learning algorithm is a crucial factor to ensure the

model performance.
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Additionally, we found that in the training group, the median

AUC values of the models based on DC features were higher than

that based on LASSO in 10-fold cross-validation. In the test group,

except for the NN algorithm, the AUC values of the models based

on DC features were higher than that of the corresponding models

based on LASSO. This indicated that the feature selection method

played a pivotal role in improving the performance of the models.

Among the 10 features selected by DC, there were 9 filtering

features, which may be due to the fact that filtering features could

better display the local information of the images. Filtering can

adjust the frequency and time windows according to the image

grayscale and signal characteristics, which is beneficial for

enhancing image details (35). However, filtering methods smooth

or sharpen the images, which inevitably weakens the interpretability

and biological connotation of the features while improving their

stability. This is an urgent issue that needs to be addressed in

current radiomics-related research.

In the radiomics signature selected by DC, there existed an

original feature termed “Original_GLCM_Correlation_T2”, which

was a texture feature of the gray-level co-occurrence matrix

(GLCM) subgroup in the T2WI sequence. Correlation is a value
TABLE 4 Comparison of the performance of the classifiers.

Models Group AUC Accuracy Sensitivity Specificity
p-value

(vs. Clinical)

Nomogram Training group 0.838 0.767 0.567 0.875 <0.001

Test group 0.854 0.778 0.583 0.875 0.039

Optimal radiomics
(LDA+DC)

Training group 0.813 0.698 0.333 0.893 0.015

Test group 0.736 0.750 0.500 0.875 0.818

Clinical Training group 0.633 0.663 0.533 0.732 –

Test group 0.667 0.722 0.500 0.833 –
A B

FIGURE 8

ROC curves of the optimal radiomics model, clinical model and nomogram. (A) ROC curves of the 3 classifiers in the training group. (B): ROC curves
of the 3 classifiers in the test group. The nomogram achieved the best performance in both the training and test groups.
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between 0 (uncorrelated) and 1 (perfectly correlated) that

characterizes the correlation between the grayscale values and the

respective voxels in the GLCM (36). This feature has previously

been described as a robust and independent feature in other clinical

scenarios (37, 38). A larger correlation value indicates a more

uniform gray level variation within the ROI. In this study, the

IDH-wt histologically LGG with +7/-10 exhibited a lower median

correlation value in the T2WI sequence compared to those without

+7/-10, indicating a more uneven grayscale distribution at the

microscopic level, which may be due to the higher frequency of

necrosis. In our study, the frequency of necrosis in IDH-wt

histologically LGG patients with +7/-10 was significantly higher

in both the training group (P=0.015) and test group (P=0.030) than

in patients without +7/-10. This indicates that conventional

radiological features and microscopic radiomics features are in

harmony with each other. Zhang et al. developed a nomogram

based on MRI semantic features to predict DNA copy number

subtypes in LGG (39). They found a significant association (P <

0.05) between tumor necrosis and the CN2 subtype, which was

indicative of a poorer outcome (the shortest overall survival among

CN1, CN2, and CN3). Tian et al. developed a nomogram to predict

the TERT promoter expression status in high-grade gliomas, and

the study showed that tumor necrosis was closely related to TERT

promoter mutations (40). The value of semantic features in

revealing the heterogeneity and biological phenotype of tumors

cannot be ignored, and further studies are needed to confirm it.
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Our study still has some limitations. Firstly, this single-center

study may be subject to regional and selection biases, which may

result in the included patients not being fully representative of the

epidemiological distribution. Therefore, multi-center studies

involving heterogeneous populations are necessary in the future.

Moreover, further validation in external cohorts also helps to

confirm the generalization ability of the nomogram we developed.

Secondly, there are a large number of proven machine learning

algorithms available, but they may be suitable for different

scenarios. In our research, we also found that appropriate

algorithms are the key to achieving good model performance.

Therefore, more models need to be developed in the future to

improve the classification performance. Finally, the specific

biological significance of the radiomics features still needs further

exploration in the future.
Conclusion

In summary, the nomogram based on radiomics and clinical

semantic features can predict the +7/-10 status of IDH-wt

histologically LGG patients non-invasively, which may help with

risk stratification and individualized treatment planning for glioma

patients, and also aid in the diagnosis of molecular glioblastoma.
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