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Ultrasound elastography (USE) provides complementary information of tissue

stiffness and elasticity to conventional ultrasound imaging. It is noninvasive and

free of radiation, and has become a valuable tool to improve diagnostic

performance with conventional ultrasound imaging. However, the diagnostic

accuracy will be reduced due to high operator-dependence and intra- and inter-

observer variability in visual observations of radiologists. Artificial intelligence (AI)

has great potential to perform automatic medical image analysis tasks to provide

a more objective, accurate and intelligent diagnosis. More recently, the

enhanced diagnostic performance of AI applied to USE have been

demonstrated for various disease evaluations. This review provides an overview

of the basic concepts of USE and AI techniques for clinical radiologists and then

introduces the applications of AI in USE imaging that focus on the following

anatomical sites: liver, breast, thyroid and other organs for lesion detection and

segmentation, machine learning (ML) - assisted classification and prognosis

prediction. In addition, the existing challenges and future trends of AI in USE

are also discussed.
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Introduction

Hardness or stiffness is an important biomarker of abnormal tissue. Changes in tissue

hardness are often accompanied by common disease progression (1). It is also well known

that cancerous tissue tends to be stiffer than benign and normal tissues (2). Ultrasound

elastography (USE) is an emerging imaging technology sensitive to tissue stiffness. By
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adding the tissue stiffness as another measurement characteristic to

the conventional ultrasound imaging system, USE can provide

added power for improving the diagnostic performance in various

diseases. USE has been gradually applied to the evaluation of

diseases in some superficial organs, where tissue stiffness is closely

related to the specific pathological process, such as characterizing

breast masses (3) and thyroid nodules (4), assessing liver fibrosis (5)

and detecting prostate lesions (6).

However, due to the great intra- and inter-observer variabilities

and the instable diagnostic performance or even low accuracy with

the manual interpretation of inexperienced radiologists, the analysis

of medical images is challenging, especially for USE images in which

the boundary of a lesion is usually implicit (7). The limitations

mainly lie in the difficulty of identifying optimal stiffness cutoff

values, the variability of the region of interest (ROI) selection and

the lack of an image quality check (8). Besides, a wide disparity in

diagnostic performance has been reported (9).

Artificial intelligence (AI) has been recognized as the Fourth

Industrial Revolution because it is reshaping multiple fields

worldwide, ranging from facial recognition to self-driving vehicles

or natural language processing (10). Interpretating medical images is

inherently a data processing step in which AI can be applied in the

medical domain (11). Moreover, the availability of novel AI

techniques, emerging imaging techniques and massive imaging

datasets have made medical imaging a research field of AI (12). As

a subset of AI, the rapid development of machine learning (ML)

approaches, especially the advanced deep learning (DL) architectures,

offer great potential to perform automatic medical image analysis

tasks, such as segmentation, detection and classification (13).

Researches have already shown the significant value of ML- or

DL-based analysis using conventional gray scale ultrasound images

for diseases evaluation (14–17). As USE has gradually been used as a

complement to conventional ultrasound by providing information

on tissue elasticity, there is a growing trend in applications of AI-

based USE images. By removing variability between examiners,

these developed models have extensively enabled the accuracies of

image interpretation and allowed the disease diagnosis go

much further.
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Although reference (18) was the first review on DL methods in

the USE imaging, this article mainly reviews novel DL architectures

applied to USE from an engineering perspective. Reference (19)

covers a limited number of articles about the ML models applied to

USE for breast tumor classification. Therefore, to our knowledge,

there is no literature that provides radiologists with a

comprehensive and clinically-oriented review of AI applied to

USE imaging in a more easily-readable manner. In this review, a

brief overview of USE and AI techniques (including ML, DL and

radiomics) is provided. Then, the applications of AI-based USE for

disease evaluation in several anatomical organs in the order of

automatic analysis tasks are introduced. Finally, the existing

challenges and future trends with the application of AI based on

USE are discussed.
Overview of ultrasound elastography

In general, the USE technique can be classified into strain

elastography (SE) applying constant stress and shear wave

elastography (SWE) applying time-varying force. Figure 1 shows

the category of the USE technique according to excitation methods.

All of the approaches are based on the three-phase methodology: (a)

tissue is compressed by static stress or shear wave propagation; (b)

the displacements in tissues are tracked by ultrasound; and (c) tissue

elasticity is estimated quantitatively or qualitatively from the

measured displacements. Moreover, a physical property named as

Young’s modulus (E) is calculated to estimate the tissue stiffness.

Harder lesions have smaller deformations, lower strains and higher

E values (1).
Strain elastography

SE was the first elastography imaging system introduced in the

1990s and can be divided into two methods (20): (a) static or quasi-

static strain imaging: the operator manually compresses the tissue

with an ultrasound transducer; and (b) acoustic radiation force
FIGURE 1

The category of ultrasound elastography (USE) technique according to the excitation methods, including external compression or internal
physiologic motion (green), acoustic radiation force impulse (blue), and mechanical vibrating (yellow).
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impulse (ARFI) strain imaging: a short-duration high-intensity

acoustic “pushing” pulse called ARFI can be used to displace the

tissue (21).

According to Hooke’s law, E in strain imaging can be calculated

by the equation E=s/ϵ, where s is the externally applied stress and ϵ

is the strain, which equals the displacement (21). Due to the

unknown applied stress to the tissue, the strain imaging system

cannot provide the qualitative value of E. Therefore, in clinical

practice, strain ratio (SR) is an often-used semiquantitative

measurement. SR can be calculated as the ratio between the strain

in the normal reference region and the strain in the region of

interest. SR>1 indicates that the deformation of the target lesion is

less than that of the normal reference tissue, indicating lower strain

and greater hardness (1). There are some other common

parameters: elasticity scores (ES) or grading systems, fat-to-lesion

SR and elastography-to-B-mode size ratio (1).
Shear wave elastography

SWE, which is more quantitative and reproducible than SE, can

be classified into two methods: (a) transient elastography: The first

commercial SWE system Fibroscan™ is based on transient

elastography, which is widely used to estimate liver fibrosis (5);

(b) point shear wave elastography and 2D-SWE: ARFI is used as the

external excitation.

Moreover, in contrast to nonimaging USE methods (transient

elastography and point shear wave elastography), 2D-SWE is an

emerging technology that can measure shear wave velocity (SWV)

or E in real time and generate quantitative elastograms (21). The

semitransparent color elastogram is usually overlayed on the

corresponding B-mode sonogram, with red usually representing

hard tissue and blue representing soft tissue. The SWV and E are
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related to the colors in the color bar along the image (22). The

system will report E by using the equation E=3rcs2, in which r
represents the tissue density and cs represents the SWV (1). SWV is

higher in hard tissue and lower in soft tissue.
Overview of artificial intelligence

Machine learning

As a branch of AI, ML enables the creation of algorithms that

are able to learn from data and make predictions, thus enabling

computers to learn like humans (23). It is an interdisciplinary field

involving computer science, statistics and a variety of other

disciplines concerning automatic improvement (24).

According to the types of labels utilized in the training dataset,

ML techniques can be broadly classified by supervised,

unsupervised and reinforcement learning (25) (Figure 2). Most

ML algorithms related to radiology are supervised (11), which

requires instances labeled with the desired classification outputs,

named the “ground truth”. Examples of such algorithms include

artificial neural networks (ANNs), support vector machine (SVM),

random forest (RF), logistic regression, Naïve Bayes classifier,

decision tree and K-nearest neighbor. In contrast, unsupervised

learning is an algorithm in which instances are unlabeled and

clusters of data need to be identified (26). Examples of such

algorithms are K-means, fuzzy C-means clustering and Markov

random fields. Since acquiring well-labeled databases is time-

consuming, reinforcement learning, as a hybrid of supervised and

unsupervised learning, uses less detailed information to train a

model (27). It acquires data by learning from dynamic environment

interaction (the computer will receive positive or negative

reinforcement feedback) without being explicitly taught. The
FIGURE 2

The relationship between artificial intelligence (AI), machine learning (ML), deep learning (DL) and convolutional neural networks (CNNs).
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overview of ML strategies and their related algorithms and

applications used in USE imaging has been presented in Table 1.

In the field of radiology, ML algorithms often start with a set

of available inputs (the image data, for example) and desired

outputs (the classification of malignant and benign tumors, for

example) (11). The input datasets are usually split into two sets:
Frontiers in Oncology 04
training and validation datasets. The training dataset serves to

find the optimal weights and fit the model, while the validation

dataset is used to optimize the parameters. After a model is

developed, there is often an urgent need for an independent

external test dataset to evaluate the performance and

generalizability of the developed model (23).
TABLE 1 Overview of machine learning strategies and their related algorithms and popular deep learning architectures.

Types of learning Types of
algorithms

Characteristic

Supervised learning Support vector machine The algorithm consists of a multidimensional hyperplane to obtain the optimal solution for classification using
statistical methods. It is useful for taking a large number of features and discriminating inputs into one of two
classes, which can be then applied to classification and regression tasks.

Logistic regression The algorithm is a regression method which takes the feature as the argument and takes the category as the
dependent variable. If the data is nonlinearly separable, the performance of linear classifier will be
unsatisfactory.

Naïve Bayes classifier The algorithm is a simple probabilistic classification method based on Bayes theorem and assumes that all
features are independent of each other. It estimates parameters using the method of maximum likelihood and
often leads to more robust results when there are relatively small datasets.

Random forest The algorithm is a classifier with multiple decision trees, and its output is determined by the common value of
the categories output from the individual trees. It shows relatively good performance for ensemble-based
classifications while overfitting has been observed for noisy data.

Decision tree The algorithm uses a flowchart-like tree model with multiple branch nodes to determine a target value from the
input. It is useful to perform classification (classification trees) but is inadequate for regression and continuous
value prediction tasks.

K-nearest neighbor classifier The algorithm is an instance-based classifier where the classification of an unknown sample is performed by
relating the unknown to a known sample according to some distance or similarity criteria. It is used both for
classification and regression tasks but it’s time-consuming and computationally expensive.

Artificial neural network The algorithm consists of three components, including the input layer, hidden layer, and output layer which
simulates neurons and classifies new individuals through learning and training processes. It can map complex
nonlinear relationships between dependent and independent variables but requires a large well-annotated
dataset to achieve good performance.

Unsupervised learning K-means The algorithm measures the distance between each pair of data points and the specified clustering centroid to
classify the data, and optimizes the allocation by comparing intra- and inter-family data point distances. It can
process large datasets while umber of clusters must be defined.

Clustering methods The algorithm aims to achieve the goal of reducing the need of large amount of data and performing
classification by optimally finding similarities or clusters from data.

Reinforcement learning Not applicable Data labels are acquired by learning from dynamic environment interaction (the computer will receive positive
or negative reinforcement feedback) without being explicitly taught.

Popular DL architetcures

AlexNet one of the first high performance classification architecture which is characterized by using ReLUs activation
function, dropouts and data augmentation

GoogleNet includes inception structures in which input data are processed with different functions and the results are
concatenated; good at image classification

VGGNet uses only several deeper layers and smaller filter kernels

ResNet uses skip structures with which input data are added to processed data, helping the network learn residuals and
fine details

R-CNN a tryout of DL methods on detection tasks which is a two-stage network by fine-tuning on the model trained in
the classification task

YOLO a one-stage network which is fast and simplified and can help perform real-time object detection and
classification

U-Net consists of a contracting path on the left side (encoder) and an expansive path on the right side (decoder) for
fast and precise biomedical image segmentations

GANs consists of one generator and one classifier which can help generate synthetic medical images to train deeper
architectures
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Deep learning

The availability of large-scale labeled datasets, faster algorithms

and more powerful parallel computing hardware, such as Graphics

Processing Unit, have enabled the fast application of DL (28). DL

methods enable to solve problems that have resisted the best

attempts of the AI community for many years, since the use of

large numbers of layers allow the improved universal

approximation properties and the more features to be learned

from the data with multiple levels of hierarchy and abstraction (29).

Convolutional Neural Networks (CNNs) have been considered

as the state-of-art algorithms of DLmethods in the field of radiology

for computer vision tasks such as segmentation (30), detection (31,

32) and classification (33). There are four key ideas behind CNNs:

local connections, shared weights, pooling and the use of many

layers, resulting in the improved accuracy and efficiency of the

whole system (29). The relationship between AI, ML, DL and CNNs

is shown in Figure 3. CNNs are formed by a stack of one input layer,

one output layer and multiple hidden layers, which consist of

convolutional layers, pooling layers and fully-connected layers

(34) (Figure 4). With convolution and pooling applied repeatedly,

fully-connected layers are used to make classification or predictions

(35). The combinations of layers are various and some deep neural

network architectures have been successfully utilized in image

analysis, such as GoogleNet (36), AlexNet (37), VGGNet (38) and

ResNet (39).
Transfer learning

Transfer learning (TL) strategies have recently been utilized in

the medical world to avoid the overfitting problems caused by the

lack of data. Within the TL method, knowledge can be shared and

transferred between different tasks (40). The workflow involves two

steps: pretrained on a large dataset (the ImageNet, for example) and

fine-tuning on the target dataset (the limited ultrasound images, for

example). In other words, by fine-tuning the DL architecture, the

knowledge learned from one dataset can be transferred to another

dataset obtained from another center.
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Radiomics

Radiomics is defined as quantitative mapping, namely, to

extract and analyze vast arrays of high-dimensional medical

image features that are related to the prediction targets (41).

Radiomics features, such as intensity, shape, texture or wavelet,

reflect the underlying pathophysiology and provide the information

on tumor phenotype and microenvironment (42). These features

can be used solely or in combination with other relevant data

sources (such as clinical reports, laboratory tests or genomic data)

for robust evidence-based decision support to facilitate prediction,

diagnosis, prognosis, or monitoring (41).

Radiomics features can be scored semantically by experienced

radiologists, or can be mathematically computer-calculated to

describe the size, shape and textures of the ROI, or can be created

by DL algorithms (43). The calculated features are subsequently

analyzed usually using traditional ML methods to build predictive

models (44). Researches have already shown the capacity of

radiomics analyses to increase diagnostic, prognostic, and

predictive power (42).
Applications of AI in USE imaging

The primary automatic analysis tasks of AI-based USE models

involve (13) (a) classification: to predict the target class labels of an

image (to classify breast tumors as benign or malignant, for

example); (b) detection: to predict the location of focal lesions,

which is a prerequisite step for radiologists to characterize lesions;

(c) segmentation: to distinguish the suspicious lesions from the

surrounding normal tissues, that is, to acquire the ROI; and (d):

prediction: to predict the status of disease or events that

may happen.

The early developed AI-based models follow the traditional

method: computing the handcrafted features, applying the feature

selection algorithm to reduce the features in dimension, and

training a classifier to acquire the best results (28). Overall,

feature extraction and selection are the most important steps,

helping to achieve the best diagnostic results (45).
FIGURE 3

The classification and computer vision task of machine learning (ML). ANNs, artificial neural networks; DT, deciosin tree; FCM clustering, fuzzy
C-means clustering; KNN, K-nearest neighbor; LR, logiastic regression; MRF, Markov random fields; NBC, Naïve Bayes classifier; RF, random forest;
SVM, support vector machine.
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Compared to conventional ML methods, the key aspect of DL

algorithms is that these layers of features are not handcrafted with

human expertise: they are automatically learned from data using a

general-purpose learning procedure (29). It allows learning an end-

to-end mapping from the input to the output, that is, the image-to-

classification methods (13). In traditional ML methods, the accurate

segmentation and choice of expert-designed features are keys to

success. These limitations can be overcome by DL approaches,

because these algorithms can identify the regions of the image that

are most associated with the outcome by training themselves and

can identify the features of the region that informed decision by

multiple layers (43). The comparison of the traditional ML-based

models and DL-based models is shown in Figure 5.

The more influential literature on the applications of AI in USE

images are subsequently summarized in terms of anatomical sites.

USE is prone to be performed in most of the organs, including

breast, thyroid, liver and so on.
Liver disease evaluation

Many etiologies of chronic liver diseases (CLDs) follow a

common pathway to liver fibrosis, cirrhosis and hepatocellular

carcinoma (HCC). HCC is the third highest cause of cancer

mortality worldwide (46). Liver biopsy has traditionally served as

the gold standard for staging liver fibrosis in CLD and diagnosing

HCC. However, it is invasive and has some limitations, such as

sampling error and postoperative complications (47). Compared to

standard ultrasound, USE has become a popular non-invasive

technique by providing additional information regarding liver

tissue stiffness. AI-based SE models can help improve the

diagnostic accuracy while reducing the unnecessary biopsies for
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either staging liver fibrosis in CLD patients or differentiating focal

liver lesions (FLLs) from benign to malignant.
Staging liver fibrosis

Liver fibrosis is a principal factor in the development of CLD.

Precise assessment of the amount and progression of liver fibrosis is

of great value for the management and prognosis of CLD patients.

Liver stiffness measured from USE has been regarded as the first-

line noninvasive method; thus, AI-based USE models is proposed to

reduce variability in stiffness measurements and to improve the

diagnostic accuracy of liver fibrosis evaluation.

Earlier studies have extracted a series of hand-engineered

features and then fed into various ML classifiers for predicting

the different liver fibrosis levels. Textural features, liver stiffness and

SWV have been proven to be the discriminant features, with ANN,

SVM and RF being the most used classifiers (48–54).

More currently, AI with DL methods is expected to directly

operate on the input images and reveal information that human

experts cannot recognize. The better diagnostic performance of

CNN than conventional ML classifiers for staging liver fibrosis has

been demonstrated in the study of Brattain and coworkers (55). To

obtain more standard SWE measurements and to detect significant

fibrosis in patients with nonalcoholic fatty liver disease, they

developed an automated framework called “SWE-Assist”. The

model could automatically check the quality of SWE images,

select a ROI, and classify the ROI with RF, SVM classifiers and

CNNs. The CNN architecture yielded the largest classification

improvement with an AUC of 0.89 in a large dataset of 3392

SWE images. A new method called DL radiomics of elastography

(DLRE) has been proposed by Wang et al., which was expected to
FIGURE 4

The architecture of convolutional neural network (CNN), which is formed of one input layer, multiple hidden layers and one output layer.
Convolutional and max pooling layers can be stacked alternately until the network is deep enough to acquire optimal features of the images that are
salient for classification task.
FIGURE 5

Conventional machine learning (ML)-based ultrasound elastography (USE) models vs deep learning (DL)-based USE models. Conventional ML-based
USE models depend on carefully handcrafted features, while DL allows learning an end-to-end mapping from the input to the output.
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extract more radiomics features (56). In 398 patients with 1990

images from 12 hospitals, DLRE reached AUCs of 0.97 for F4, 0.98

for ≥ F3 and 0.85 for ≥ F2, which were significantly better than LSM

and biomarkers. They also found that the model generated better

performance as more images were acquired. As the DLRE model in

Wang et al. showed limited accuracy in assessing ≥ F2, Lu et al.

developed a new model named DLRE 2.0 based on the previous

model by using the TL strategy for a more accurate evaluation of ≥

F2 liver fibrosis (57). They also developed three other DLRE-based

models by gradually adding the tissue texture of the liver capsule

and the liver parenchyma and serological results to DLRE 2.0. For

evaluating ≥ F2, the performance of DLRE2.0 was significantly

better than the previous DLREmodel (AUCs: 0.84 vs 0.92, p < 0.05).

However, no significant improvement was shown when adding

more information. By using the TL strategy for classifying liver

fibrosis, Xue et al. pretrained the InceptionV3 network on ImageNet

to analyze multimodal BMUS and SWE images, generating higher

diagnostic accuracy than non-TL with significantly higher AUCs

(0.950, 0.932, and 0.930 for classifying F4, ≥ F3, and ≥ F2,

respectively) (58). Furthermore, the model based on the multi-

modal images yielded the highest diagnosis accuracy, outperformed

the single-modality, LSM, and biomarkers.

How to define a reliable SWE image, especially a temporally

stable SWE color box, is one of the limitations of USE. Gatos et al.

tried to identify the temporally stable regions across SWE frames

and to evaluate the impact of temporal stability for classifying

various CLD combinations by means of a pretrained CNN scheme

(59). The stability masked SWE images showed improved

diagnostic performance compared to the unmasked ones.

Therefore, in their study in 2020 (60), full and temporally stable

masked SWE images were separately fed into GoogleNet, AlexNet,

VGG16, ResNet50 and DenseNet201 with or without

augmentation. All networks achieved maximum mean accuracies

ranging from 87.2%–97.4% and AUCs ranging from 0.979–0.990.
Classification and evaluation of
focal liver lesions

Early detection and precise diagnosis of HCC are crucial for

treatment selection and patient prognosis, making the

differentiation of FLLs an important task. Since structural

alterations can be reflected by changes in tissue stiffness, USE,

especially SWE, has been widely used for differentiating benign

from malignant FLLs (61, 62).

For different diagnostic purposes (all including FLL

classification), radiomics approaches have been proposed with an

emphasis on the extraction of high-dimensional features from

different modality ultrasound images and the integration of the

high-dimensional features with the low-dimensional data, such as

expert-designed SWE parameters or serological clinical data (63, 64).

Specifically, to classify FLLs, Wang et al. established two radiomics

models: the ultrasomics score (based on radiomics features only) and

the combined score (based on radiomics features and quantitvative

SWE measurements) (63). With 1044 features extracted by

ultrasomics, they found that the combined score had the best
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performance, yielding an AUC of 0.92. Chronic hepatitis B

infection is the main risk factor for HCC in China. Early and

accurate prediction of HCC occurrence in chronic hepatitis B

patients is of great benefit for individual treatment and prognosis.

Jin et al. established different HCC prediction models by combining

high-throughput radiomics features using DL radiomics with

serological and clinical information (64). Finally, the model

including SWE, BMUS radiomics features, sex and age showed the

best prediction performance (AUCs: 0.981, 0.942 and 0.900 in

training, validation and testing cohorts for predicting 5-year

prognosis of HCC).

The prediction of malignant subtype and clinical prognosis are

also important for the decision-making and treatment of HCC

patients. Yao et al. have demonstrated the value of the radiomics

analysis system based on multi-modal ultrasound images (BMUS,

SWE and SWV imaging) for benign and malignant classification,

malignant subtyping, programmed cell death protein 1 prediction,

Ki-67 prediction, and microvascular invasion prediction, with the

AUCs ranging from 0.94-0.98 (65). The more detailed performance

of AI based on USE for the evaluation of liver diseases is

summarized in Table 2.
Breast mass evaluation

Breast cancer is the most common cancer diagnosed in women

(66). Accurate breast mass evaluations, including segmentation and

detection, differentiation of benign from malignant breast masses,

and prediction of axillary lymph node (ALN) status and treatment

response, can lead to individualized treatment and favorable

prognosis. AI methods applied to USE are expected to provide a

more objective and reproducible evaluation for breast masses.
Segmentation and delineation of
breast masses

Accurate delineation of breast masses on ultrasound images is

an indispensable first step for image interpretation. Manual

segmentation of breast masses is labor intensive and time-

consuming (67). The various artifacts, uneven intensities and

blurred boundaries in USE images have made automated

segmentation of breast mass still a tough task (68). Sergiu and

coworkers developed a probabilistic model for every pixel derived

by a video sequence, followed by a Deterministic Annealing

Expectation Maximization method used for automatic image

segmentation of breast elastographic images (69). Only an error

of 5% on the phantom test images was provided.
Classification and diagnosis of
breast masses

Early detection and treatment of breast cancer can significantly

decrease mortality. Therefore, the differential diagnosis of benign

and malignant breast masses is of great value in breast mass
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TABLE 2 The performance summary of artificial intelligence applied to ultrasound elastography in the evaluation of liver diseases.

Year Authors No. of
patients

Device Modality Training targets Method Features Performance

2011 Stoean
et al. (49)

722 Fibroscan SWE Stage fibrosis in CHC ESVM, GA LSM,
hematological,
biochemical
indicators

Mean accuracy:
77.31%

2013 Fujimoto
et al. (48)

310 Hitachi SE Stage fibrosis in CHC LR Texture features Correlation
coefficient
r=0.68

2015 Procopet
et al. (50)

202 Fibroscan SWE Diagnosis cirrhosis, CSPH ANN LSM, serum tests Accuracy: 86.3%
for cirrhosis;

84% for CSPH;
81.8% for
esophageal
varices

2016 Gatos
et al. (51)

85 SuperSonic SWE Classify healthy from CLD
patients

inverse mapping
technique, SRA, SVM

Texture features AUC: 0.85
Accuracy: 87.0%

Sensitivity:
83.3%

Specificity:
89.1%

2017 Gatos
et al. (52)

126 SuperSonic SWE Classify healthy from CLD
patients

inverse mapping
technique, stiffness value-
clustering, SRA, SVM

Quantitative
features

AUC: 0.87
Accuracy: 87.3%

Sensitivity:
93.5%

Specificity:
81.2%

2017 Chen
et al. (54)

513 Hitachi SE Stage fibrosis in CHB SVM, NBC, RF, KNN Quantitative
features, texture

features

Accuracies:
82.87% for ≥ F1;
81.18% for ≥ F2;
88.09% for ≥ F3;
91.25% for F4
(RF classifier)

2018 Brattain
et al. (55)

328 SuperSonic SWE Detect ≥F2 fibrosis in
NAFLD

RF, SVM, CNN AUC of CNN:
0.89

2018 Yao et al.
(65)

177 Canon BMUS,
SWE, SWV
imaging

Classify FLLs; pathologic
diagnosis and prognostic

prediction of HCC

SRT, SVM AUCs: 0.94
for FLLs

classification;
0.97 for
malignant
subtyping;

0.97 for PD-1
prediction;
0.94 for Ki-
67prediction;
0.98 for MVI
prediction

2019 Wang
et al. (56)

398 SuperSonic SWE Stage fibrosis in CHB DLRE AUCs of DLRE:
0.97 for F4;
0.98 for ≥F3;
0.85 for ≥F2

2019 Gatos
et al. (59)

200 SuperSonic SWE Diagnosis CLD Inverse mapping technique, DWT, FCM
clustering, CNN

AUCs: 0.93-0.99
Accuracy:

82.5%-95.5%
(Masked
images)

2020 Xue et al.
(58)

466 SuperSonic BMUS,
SWE

Stage fibrosis in CLD CNN, TL AUCs: 0.950 for
F4;

0.932 for ≥F3;
0.930 for ≥F2

(Continued)
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evaluation. Although the American College of Radiology Breast

Imaging Reporting and Data System (ACR BI-RADS) can provide a

standardized and systemic interpretation of breast ultrasound, the

problems of inter- and intra-observer variability can be enormously

addressed by AI solutions (70).

Early AI-based USE models for breast mass classification

focused on the extraction of discriminant features and the

utilization of various classifiers. The elasticity indices, such as SR

and quantitative tissue elasticity, as well as texture features have

served as the most commonly used handcrafted features (71–77).

ANN and SVM classifiers are the most commonly used ML

algorithms, all yielding satisfying performance. The fused

ultrasound B-mode and elastographic features, have all been

proven to generate better results than single-modal imaging (71,

72, 75, 77–83). It is also proved that the elasticity features along the

rim surrounding the lesion is valuable for the classification of breast

masses (84).

However, it is difficult to extract human-crafted features from

USE images since they often contain irrelevant patterns (28), and
Frontiers in Oncology 09
the classification performance is greatly influenced by the selection

of particular features. Recently, DL algorithms, especially CNNs,

have made great strides in establishing AI-based USE models for

breast mass classification (85–88). Zhang et al. developed a two-

layer DL architecture based on SWE, comprising a pointwise gated

Boltzmann machine and a restricted Boltzmann machine (85). The

pointwise gated Boltzmann machine, restricted Boltzmann machine

and SVM classifiers were used for automated feature learning,

distinct representation learning and classification of breast

tumors, respectively. Compared with the handcrafted statistical

features, an accuracy of 93.4%, a sensitivity of 88.6%, a specificity

of 97.1%, and an AUC of 0.947 were achieved. Fujioka et al.

developed a DL model based on SWE images using six CNN

architectures with different epochs for breast mass classification

(86). The developed DL model reached a mean AUC of 0.870,

showing equal or better diagnostic performance compared with the

radiologists who analyzed the images using the 5-point visual color

assessment and the mean elasticity value. Li et al. found that the

CNN-based model using dual modal ultrasound images could
TABLE 2 Continued

Year Authors No. of
patients

Device Modality Training targets Method Features Performance

(Multimodal
images)

2020 Kagadis
et al. (60)

200 SuperSonic SWE Diagnosis CLD CNNs AUCs: 0.979-
0.990

Accuracy:
87.2%-97.4%
(All five
networks)

2021 Durot
et al. (53)

204 Siemens,
Philips

SWE, MRE Classify non-significant from
significant fibrosis

LR, NBC, QDA, SVM SWV AUC: 0.962
Accuracy: 90.2%

Sensitivity:
81.3%

Specificity:
94.7%

(pSWE-based
SVM)

AUC: 0.987
Accuracy: 96.7%
Sensitivity: 89.5

Specificity:
100.0%

(2D SWE-based
SVM)

2021 Lu et al.
(57)

807 SuperSonic SWE Detect ≥F2 fibrosis in CLD DLRE, TL AUCs: 0.91 for
≥F2;

0.97 for cirrhosis

2021 Wang
et al. (63)

169 SuperSonic SWE Classify FLLs Ultrasomics-Platform, SVM AUC: 0.94
Sensitivity:
92.59%

Specificity:
87.50%

2021 Jin et al.
(64)

434 SuperSonic BMUS,
SWE

Predict HCC in CHB DLRE AUCs: 0.981in
training cohort
CHB, chronic hepatic B; CHC, chronic hepatic C; CLD, chronic liver diseases; CSPH, clinically significant portal hypertension; DLRE, deep learning radiomics of elastography; DWT, dyadic
wavelet transformation; ESVM, the evolutionary-driven support vector machines; FLL, focal live lesion; HCC, hepatocellular carcinoma; LSM, liver stiffness measurement; MRE, MR
elastography; NAFLD, non-alcoholic fatty liver disease; QDA, quadratic discriminant analysis; SRA, stepwise regression analysis; SRT, sparse representation theory; SWE, shear wave
elastography; SWV, shear wave velocity.
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provide a more pronounced improvement in diagnostic

performance for inexperienced radiologists, with the AUC

increasing from 0.794 to 0.830 (87).

Radiomics can provide automated quantification of high-

throughput image features. It is expected to reveal disease

characteristics that are invisible to the naked eye (42). Generally,

the proposed ML-based radiomics models focused on the extraction

of low- and high-order features and the utilization of various feature

selection algorithms (89–91). The radiomics features involve shape,

intensity, texture or wavelet features from different modality

ultrasound images, such as SE (89), SWE (90), contrast-enhanced

ultrasound (CEUS) (91) and B-mode ultrasound (BMUS) (90, 91).

The frequently used feature selection algorithms include

hierarchical clustering (89), the least absolute shrinkage and

selection operator regression algorithm (90) and the genetic

algorithm (91). The selected discriminant features are used alone

or in combination with clinical data to train the ML classifiers for

breast mass classification. More recently, the potential of using DL

radiomics to facilitate the classification of breast masses has also

been confirmed, which was expected to identify vast arrays of

quantitative features (92, 93). Zhang et al. used a CNN to extract

768 radiomic features from segmented BMUS and SWE images to

further build radiomics scores, which was then confirmed to have a

better performance than the radiologist assessment using BI-RADS

and quantitative SWE features for discriminating benign from

malignant breast masses (92). However, this study has the

limitation of complicated segmentation tasks. Zhou et al. utilized

a CNN for both radiomics feature extraction and breast masses

classification, and 4224 low-level and high-abstract features were

extracted directly from 540 SWE images that does not need object

segmentation (93). The model reached a classification accuracy of

95.8%, a sensitivity of 96.2% and a specificity of 95.7%.

Since TL is an effective strategy to augment accuracy and to

reduce training time by transferring the knowledge learned from a

source domain to a target domain, Fei et al. proposed a projective

model-based multilayer kernel extreme learning machine to

transfer parameters (94). The SE-based diagnosis with BMUS

imaging used as the source domain generated the best

performance, with an accuracy, sensitivity, and specificity of

87.12, 86.06, and 88.15, respectively. Liao et al. applied the VGG-

19 network pretrained on the ImageNet dataset based on either

single-modal or multi-modal images for breast tumor classification

(95). The combination feature model based on BMUS and SE

images yielded a correct recognition rate of 92.95% and an AUC

of 0.98.
Prediction of ALN status and
treatment response

Accurate preoperative evaluation of ALN status in patients with

breast tumors is important for surgical decisions and prognosis

(96). To analyze ALN status, several AI models have been proposed

based on the ultrasound images of ALNs (97) or of primary breast
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tumors (98, 99). For the differentiation of disease-free axilla and any

axillary metastasis in early-stage breast cancer, Our team (98) and

Zheng et al. (99) proposed to combine the radiomics features from

BMUS and SWE with independent clinical risk factors, all

generating satisfactory results. In addition, the DL radiomics

model of Zheng et al. could also discriminate between a low and

heavy metastatic axillary nodal burden, with an AUC of 0.905 (99).

Knowing how the tumor responds to treatment can be helpful

for subsequent treatment selections. Furthermore, it is important to

evaluate the pathological complete response (pCR) in breast cancer,

since it is related to the rates of long-term survival. Fernandes et al.

found that the SR could be predictive of the neoadjuvant

chemotherapy response in locally advanced breast cancer (100). A

significant difference in tumor stiffness was observed as early as 2

weeks into treatment. By using the preoperative data, the Naïve

Bayes classifier achieved a classification of pCR and npCR with a

sensitivity of 84%, a specificity of 85%, and AUC of 81%. The

detailed results are summarized in Table 3.
Thyroid nodule evaluation

Thyroid nodular diseases are very common, and the incidence

of thyroid cancer has increased worldwide year by year (101).

However, only 5%-15% of thyroid nodules are malignant and the

majority of thyroid nodules selected for fine-needle aspiration

biopsy are benign (102, 103). The current clinical challenge is to

discriminate the few clinically significant malignant nodules from

the many benign nodules and thus identify patients who warrant

surgical excision, hence to decrease medical costs and patient

suffering. Moreover, lymph node (LN) metastasis is highly

associated with local recurrence, distant metastasis and thyroid

cancer staging, which will further guide the surgical plan. Therefore,

a credible and noninvasive method is highly desirable for evaluation

of thyroid nodules, including classification of thyroid nodules or

prediction of the lymph node metastasis.
Segmentation and delineation of
thyroid nodules

Segmentation plays an essential role in AI-based USE models,

for that malignant thyroid nodules can be accurately diagnosed by

using features of well-segmented nodules. However, USE images

often have low image quality due to the existing high noise, making

automated segmentation a tough task. To segment the thyroid

nodules in a noisy environment, Huang et al. proposed a new

segmentation method based on the adaptive fast generalized fuzzy

clustering algorithm by utilizing the gray level and spatial position

information of the original image (104). The proposed method

obtained segmentation accuracies of 0.9981 in Gauss noise (0.03)

and 0.9986 in Gauss noise (0.05), indicating that it had a strong

ability to suppress noise and obtained more accurate results when

clustering images with high noise.
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TABLE 3 The performance summary of artificial intelligence applied to ultrasound elastography in the evaluation of breast masses.

Year Authors No. of
patients

Device Modality Training
targets

Method Features Performance

2008 Nedevschi
et al. (69)

30 NA SE Segmentation DAEM
algorithm

Quantitative
features

Error of 5%

2009 Moon et al.
(78)

181 Hitachi BMUS, SE Classification ANN Quantitative
features

AUC: 0.92
Accuracy: 90.6%
Sensitivity: 95.6%
Specificity: 87.6%

2012 Selvan et al.
(79)

40 Siemens BMUS, SE Segmentation,
Classification

LSM, SRAD,
FLS

Texture
features,

quantitative
features

Accuracy: 83%
Sensitivity: 100%
Specificity: 74%

2014 Lo et al. (71) 112 Siemens BMUS, SWE Segmentation,
Classification

LSM, LR Quantitative
features

AUC: 0.90
Accuracy: 84%
Sensitivity: 80%
Specificity: 87%

(The combined features)

2014 Xiao et al.
(74)

125 SuperSonic SWE Segmentation,
Classification

M-S model,
LSM, SVM

Quantitative
features

AUC: 0.97
Accuracy: 95.2%
Sensitivity: 90.9%
Specificity: 97.5%

2015 Lo et al. (72) 90 Siemens BMUS, SE Segmentation,
Classification

LSM, FCM
clustering

Quantitative
features

AUC: 0.93
Accuracy: 86%
Sensitivity: 87%
Specificity: 84%

(The combined features)

2015 Zhang et al.
(76)

125 SuperSonic SWE Segmentation,
Classification

Fisher classifier Texture
features

AUC: 0.968
Accuracy: 92.5%
Sensitivity: 89.1%
Specificity: 94.3%
(The feature Tmean)

2015 Selvan et al.
(80)

62 NA BMUS, SE Segmentation,
Classification

LSM, SRAD,
BPN

Texture
features,

quantitative
features,

Accuracy: 82.3%
Sensitivity: 92.9%
Specificity: 73.5%

(The combined features)

2015 Ara et al. (81) 170 Ultrasonix BMUS, SE Classification GA, Linear
classifier

Quantitative
features

Accuracy: 96.5%-99.4%
Sensitivity: 94.6%-98.2%
Specificity: 97.2%-100.0%
(The bimodal index)

2016 Zhang et al.
(85)

121 SuperSonic SWE Classification PGBM, RBM, SVM AUC: 0.947
Accuracy: 93.4%
Sensitivity: 88.6%
Specificity: 97.1%

2017 Moon et al.
(75)

109 SuperSonic BMUS, SWE Segmentation,
Classification

LSM, SVM Quantitative
features

AUC: 0.96
Accuracy: 92.3%
Sensitivity: 90.4%
Specificity: 94.7%

(The combined features)

2017 Zhang et al.
(89)

117 Hitachi SE Classification Chan-Vese level
sets,

morphologic
closing

operation,
contourlet

transformation,
hierarchical

clustering, SVM

Radiomic
features

AUC: 0.917
Accuracy: 88.0%
Sensitivity: 85.7%
Specificity: 89.3%

2017 Zhang et al.
(97)

158 Esaote BMUS, SE Predict ALN
status

SVM Quantitative
features

AUC: 0.895
Accuracy: 85.7%

(Continued)
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TABLE 3 Continued

Year Authors No. of
patients

Device Modality Training
targets

Method Features Performance

Sensitivity: 84.8%
Specificity: 87.0%

(The combined features)

2018 Marcomini
et al. (73)

83 Canon SE Classification NA Quantitative
features

AUC: 0.853
Sensitivity: 71.0%
Specificity: 88.5%

2018 Fleury et al.
(82)

83 Canon BMUS, SE Classification NA Quantitative
features

AUC: 0.868-0.926
Accuracy: 71.1%-77.1%
Sensitivity: 96.8%-100%
Specificity: 55.8%-63.5%
(USdx combined with
CADxSE software)

2018 Yu et al. (84) 187 SuperSonic SWE Segmentation,
Classification

Wavelet
transformation,
LSM, SVM

Texture
features,

quantitative
features

Accuracy: 94.8%
Sensitivity: 95.1%
Specificity: 94.6%

2018 Zhou et al.
(93)

205 SuperSonic SWE Classification CNNs Radiomic
features

Accuracy: 95.8%
Sensitivity: 96.2%
Specificity:95.7%

2019 Sasikala et al.
(77)

113 Epiq BMUS, SE Segmentation,
Classification

SRAD, PSO,
FLS, SVM

Texture
features

Accuracy: 96.2%
Sensitivity: 94.4%
Specificity: 97.4%
(Feature LBP)

2019 Zhang et al.
(88)

121 SuperSonic BMUS, SWE Classification RD-GAD, DPN AUC: 0.961
Accuracy: 95.6%
Sensitivity: 97.8%
Specificity: 94.1%

Youden’s index: 91.9%

2019 Fei et al. (94) 264 Mindray BMUS, SE Classification ML-KELM-PM Accuracy: 87.12%
Sensitivity: 86.06%
Specificity: 88.15%

2019 Fernandes
et al. (100)

92 Ultrasonix SE Predict pCR NBC Quantitative
features

AUC: 0.81
Sensitivity: 84%
Specificity: 85%

2020 Destrempes
et al. (83)

103 GE, Canon,
SuperSonic

BMUS, SWE Classification RF Quantitative
features

AUC: 0.97
Sensitivity: 98%
Specificity: 75.9%

2020 Youk et al.
(90)

328 SuperSonic BMUS, SWE Classification Wavelet
transformations,

LASSO

Radiomic
features

AUC: 0.992

2020 Li et al. (91) 178 Mindray BMUS, SWE,
CEUS

Classification Attribute
bagging, GA,

SVM

Radiomic
features

AUC: 0.919
Accuracy: 84.12%
Sensitivity: 92.86%
Specificity: 78.80%

2020 Zhang et al.
(92)

291 SuperSonic BMUS, SWE Classification LASSO, CNNs Radiomic
features

AUCs: 0.99 in training
cohort;

1.00 in validation cohort

2020 Fujioka1 et al.
(86)

363 Canon SWE Classification CNNs the mean AUC: 0.870

2020 Liao et al. (95) 141 Hitachi BMUS, SE Segmentation,
Classification

CNNs AUC: 0.98
Accuracy: 92.95%
Sensitivity: 91.39%
Specificity: 94.71%

2020 Zheng et al.
(99)

584 Siemens BMUS, SWE Predict ALN
status

DLR, SVM Radiomics
features

ALN status between
N0 and N+(≥1): AUC:

(Continued)
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Classification and diagnosis of
thyroid nodules

Although the indices such as ES and SE have been introduced,

SE is still a quantitative and subjective imaging method. Ding et al.

computed a quantitative metric “hard area ratio” by transferring the

original color thyroid elastograms from the red–green-blue color

space to the hue-saturation-value color space (105). The SVM

classifier obtained an accuracy of 93.6% when the hard area ratio

and textural feature were used. Two studies used logistic regression

analysis to investigate which sonographic features were associated

with the malignancy of thyroid nodules and established formulas

for predicting whether thyroid nodules were malignant or benign

(106, 107).

Whether the ML-based diagnostic pattern can provide a more

effective and accurate diagnosis than human experts for thyroid nodule

classification still remains unknown. In a large study including 2064

thyroid nodules, Zhang et al. compared the diagnostic performance of

nine ML classifiers trained on 11 BMUS features and 1 SE feature with

experienced radiologists for thyroid nodule discrimination (108). The

RF classifier generated the highest AUC of 0.938, performing better

than radiologist diagnosis based on BMUS only (AUC= 0.924 vs.

0.834) and based on both BMUS and SE (AUC= 0.938 vs. 0.843).

Recently, both ML-based visual and radiomics are popular methods

used to diagnose thyroid nodules, Zhao et al. found that the ML-

assisted US visual approach had the best diagnostic capability

compared with radiomics approach and American College of

Radiology Thyroid Imaging Reporting and Data System (ACR TI-

RADS) (AUCs: 0.900 vs. 0.789 vs. 0.689 for the validation dataset,

0.917 vs. 0.770 vs. 0.681 for the test dataset) (109). When employing

the ML-assisted US+SWE visual approach, the unnecessary fine-

needle aspiration biopsy rate decreased from 30.0% to 4.5% for the

validation dataset and from 37.7% to 4.7% for the test dataset.

Since DL is data-hungry, and the lack of standardized image

data may lead to the overfitting problem, the TL strategy has also
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been applied to a few studies for thyroid nodule classification (110,

111). Qin et al. proposed to transferring feature parameters learned

from VGG16, which was pretrained on ImageNet, to ultrasound

images and used the hybrid features of BMUS and SE images to

build an end-to-end CNN model (110). The proposed AI-based

method yielded an accuracy of 0.9470, which was better than other

single data-source methods. Pereira et al. compared the

performance of conventional feature extraction-based ML

approaches, fully trained CNNs, and TL-based pretrained CNNs

for the detection of malignant thyroid nodules (111). The results

showed that the pretrained network yielded the best classification

performance with an accuracy of 0.83, which was better than that of

fully trained CNNs. This may be caused by the relatively limited

sample size used to train the fully trained network.
Prediction of CLN status

Although papillary thyroid cancer (PTC) is an indolent type of

cancer, 20-90% of PTC patients are diagnosed with cervical lymph

node metastasis (CLNM) (112), which is highly related to

recurrence and a poor survival rate. Accurate CLNM estimations

of PTC patients are clinically important. Liu et al. built a radiomics-

based model, which extracted 684 radiomic features from both

BMUS and SE images to estimate LN metastasis for PTC patients,

yielding an AUC of 0.90, which was better than using features

extracted from BMUS or SE separately (113). However, it only

utilized the radiomics features, with no consideration on other

clinical information. Our team developed a radiomics nomogram

by incorporating SWE radiomics features as wel l as

clinicopathological risk factors for predicting CLNM in PTC

patients, which showed good diagnostic performance in the

training set (AUC of 0.851) and the validation set (AUC of 0.832)

(114). The detailed performance of AI based on USE for the

evaluation of thyroid nodules is summarized in Table 4.
TABLE 3 Continued

Year Authors No. of
patients

Device Modality Training
targets

Method Features Performance

0.902
ALN status between
N+ (1, 2) and N+(≥3):

AUC: 0.905

2021 Li et al. (87) 91 SuperSonic BMUS, SWE Classification CNNs AUC: 0.892
Accuracy: 92.4%
Sensitivity: 81.5%
Specificity: 96.9%

2022 Jiang et al.
(98)

433 SuperSonic BMUS, SWE Predict ALN
status

MRMR, LASSO,
LR

Radiomic
features

Overall C-index:
0.842 in the training set
ALN, axillary lymph node; ANN, artificial neural network; BMUS, B-mode ultrasound; CADxSE, a CAD system for analyzing SE; CEUS, contrast-enhanced ultrasound; CNN, convolutional
neural network; DAEM, Deterministic Annealing Expectation Maximization; DLR, deep learning radiomics; DPN, deep polynomial network; FCM clustering, fuzzy c-means clustering; FLS,
fuzzy logic system; GA, genetic algorithm; LASSO, least absolute shrinkage and selection operator; LSM, level set method; LR, logistic regression; ML-KELM-PM, a projective model based
multilayer kernel extreme learning machine algorithm; MRMR, minimum redundancy maximum relevance; M-S model, Mumford-Shah function; NA, not available; NBC, Naïve Bayes classifier;
pCR, pathological complete response; PGBM, point-wise gated Boltzmann machine; PSO, Particle Swarm Optimization; RBM, restricted Boltzmann machine; RD-GAD, the reaction diffusion
level set model combined with the Gabor-based anisotropic diffusion algorithm; RF, random forest; SE, strain elastography; SRAD, Speckle Reducing Anisotropic Diffusion; SVM, support vector
machine; SWE, shear wave elastography; USdx, BI-RADS ultrasound lexicon.
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Others

In addition to the applications mentioned above, there are some

applications of AI in USE to other organs, such as the diagnosis of

prostate cancer (115, 116), the prediction of LN metastasis (117,

118) and tumor deposits (119) in rectal cancer, the prediction of

lung mass density lung (120–122), the evaluation of plantar fasciitis
Frontiers in Oncology 14
(123), as well as the differential diagnosis of brain tumors (124, 125)

or the prediction of the overall survival in glioblastomas (126).

Discussion and conclusion

In conclusion, the diagnostic abilities will be extensively

enhanced with the AI methods applied to USE images, especially
TABLE 4 The performance summary of artificial intelligence applied to ultrasound elastography in the evaluation of thyroid nodules.

Year Authors No. of
patients

Device Modality Training
targets

Method Features Performance

2011 Ding et al.
(105)

125 Hitachi SE Classification SVM Quantitative
features, texture
features

Accuracy: 93.6%
AUC: 0.97

2016 Bhatia
et al.
(106)

105 SuperSonic SWE Classification LR Quantitative
features, texture
features

AUC: 0.973
Sensitivity: 97.5%
Specificity: 90.0%

2017 Pang
et al.
(107)

525 Siemens BMUS, SE,
CEUS

Classification LR Quantitative
features

AUC: 0.930
Accuracy: 87.05%
Sensitivity: 83.77%
Specificity: 89.56%

2018 Pereira
et al.
(111)

165 NA BMUS,
SWE

Classification NBC, LR, SVM, DT, CNN, TL Accuracies: 0.80
for conventional
feature extraction,
0.75 for fully
trained CNN,
0.83 for pre-
trained CNN

2018 Liu et al.
(113)

75 Samsung BMUS, SE Predict
CLNM

SRC, SVM Radiomic features AUC: 0.90
Accuracy: 0.85
Sensitivity: 0.77
Specificity: 0.88
(SVM based on
US and SE
features)

2019 Zhang
et al.
(108)

2032 Hitachi BMUS, SE Classification LR, LDA, RF, SVM, AdaBoost, KNN,
Nnet, NBC, CNN

Quantitative
features

AUC: 0.938
Accuracy: 85.7%
Sensitivity: 89.1%
Specificity: 85.3%
(RF based on US
and SE features)

2020 Huang
et al.
(104)

543 SuperSonic SE Segmentation AFGC NA SA and CS: all
above 99%

2020 Qin et al.
(110)

233 Philips,
Siemens,
Myry

BMUS, SE Classification CNN, TL AUC: 0.9877
Accuracy: 94.70%
Sensitivity: 92.77%
Specificity: 97.96%

2020 Jiang
et al.
(114)

237 SuperSonic BMUS,
SWE

Predict
CLNM

MRMR, LASSO, LR Radiomic features AUCs: 0.851 in
the training set;
0.832 in the
validation set

2021 Zhao
et al.
(109)

822 SuperSonic BMUS,
SWE

Classification DT, NBC, KNN, LR, SVM, RF, KNN-
based bagging, XGboost, MLP, GBT

Quantitative
features,
radiomics features

AUC: 0.951
Accuracy: 88.8%
Sensitivity: 81.7%
Specificity: 92.9%
(KNN-based
bagging model
in validation data)
AFGC, adaptive fast generalized fuzzy clustering algorithm; AdaBoost, adaptive boosting; CLNM, cervical lymph node metastasis; CS, comparison scores; DT, decision tree; GBT, gradient
boosting tree; MLP, multilayer perception; NA, not available; Nnet, neural network; SA, segmentation accuracy; XGboost, extremely randomized trees.
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to the multi-modal images, including ultrasound imaging methods

(BMUS, USE and CEUS) and other medical imaging techniques

(MRI and CT). Although the available studies have all revealed that

the models based on multimodal images had superior performance

to those based on single modality, the actual selection in the model

development depends on the availability of datasets. One the one

hand, an additional imaging modality can help provide more

effective and comprehensive information. If the multi-modal

imaging data is available and acquired standardized, USE data in

combination with BMUS or other modalities is expected to improve

the diagnostic accuracy. On the other hand, the model based on

unimodal images yielded acceptable performance and the

standardized and curated unimodal images are usually more

easily-obtained. AI models based on them are also easier to use

and generalize in the clinic, especially in primary hospital. Thus,

higher accuracy should not be the only factor taken into account

when selecting a unimodal or multimodal prediction model; the

model’s applicability at various institutions should also

be considered.

Overall, according to the available studies, AI technology is a

powerful tool to assist different clinical tasks of different diseases

with a comparable consistency. Although the diagnostic

performance varies in different diseases, AI methods applied to

USE imaging demonstrated remarkable capability for the

differentiation of malignant or benign breast masses, focal liver

lesions and thyroid nodules, the staging of liver fibrosis and the

prediction of lymph node metastasis and so on. The performance of

many applications has been shown to be comparable or even better

than that of experienced radiologists. This might be facilitated by

the increasing availability of curated datasets and the optimized AI

architectures. However, further validations with extensive datasets

are still needed to affirm the performance. In addition, the

nonuniform acquisition methods and variability of ultrasound

data are major challenges that restrict the comparison and

generalization of different methods in different tasks. The

construction of standard databases for different ultrasound

applications is a future direction in further studies.

In general, early ML-based USE models have an emphasis on

the extraction of discriminant features from the USE images alone

or the combined BMUS and USE images, with texture features and

elasticity indices mostly utilized. Then, these features will be input

into classical ML classifiers, such as SVM, RF or ANN etc., for a

more accurate and effective diagnosis. Since feature calculations and

image segmentation are not required and hierarchical features can

be automatically learned, some DL architectures, including CNNs

and other popular DL architectures based on different training

strategy such as GoogleNet, AlexNet, VGG, ResNet and DenseNet,

are also increasingly being applied to mitigate the limitations of

traditional ML processes. Furthermore, dozens of notable radiomics

studies have been enabled since radiomics allows quantitative

extraction of high-throughput features from medical images that

are not directly visible to the naked eyes, and then ML methods are

applied to build classification or prediction models based on the

radiomics features alone or the incorporation of disease-correlated

clinical information.
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However, there are still some challenges to generalizing AI

methods applied to USE in the clinical practice. The lack of large

curated data has been considered as the one of the main challenges.

Given that DL algorithms are “data hungry”, large-scale multicenter

studies with well-annotated datasets are needed to further determine

the diagnostic values of AI in USE imaging. The lack of a dataset will

increase the risk of overfitting, which will occur when a model has too

many parameters and remembers the training data but cannot be

generalized to new independent data. One common solution is the

data augmentation method. Data can be artificially augmented by

random transformations, including flipping, rotation, translation and

zooming (13). Another common strategy is the TL, which can

transfer the parameters learned from one dataset to another target

dataset. Recent advances of novel DL architectures, including the

unsupervised learning, Generative Adversarial Networks (GANs)

(127) for example, and federated learning (128) have shown great

promise to circumvent the obstacle of scarce data. GANs, consisting

of one generator and one classifier, can help generate synthetic

medical images to train deeper architectures. GANs have been

shown to be very effective at medical image synthesis between

magnetic resonance imaging (MRI) and computed tomography

(CT) images (129, 130). Federated learning enables multiple parties

to collaboratively construct a ML model based on datasets that are

distributed across multiple devices while keeping their private

training data private. It can be useful to help address the problems

related to privacy and ethical when patients’ data are sharing among

different centers. It’s also worth mentioning the Graph Neural

Networks (GNNs), which concentrates on learning the data

represented in the form of graphs (131). GNNs have been applied

to several computer vision tasks, including few-shot image

classification (132) and image segmentation (133). Nevertheless,

these advancements have not yet been explored in USE imaging

and are likely to be promising approaches. The non-interpretability of

DL approaches is another challenge. It is also known as the “black

box”, which means that it is difficult for radiologists to explain the

results given by DL architectures. Since there is a lack of

understanding of the relationship between the input and output,

identifying the features actually used for interpretation seems to be

impossible, and radiologists may not accept the conclusions derived

from such an AI architecture. The advance of heatmap may help to

address this problem.

In addition to the above impediments, USE presents unique

challenges. First, irrelevant patterns such as noises, artifacts and

regions lacking USE information can often be detected, which will

increase the difficulty for manual or automatic feature extraction.

The image quality of USE still needs to be improved. Secondly,

because ultrasound is often used as a first-line imaging modality,

there is often an imbalance with an excess of normal or healthy

images than abnormal or unhealthy ones, which will reduce the

diagnostic accuracy of AI models. In addition, the generalizability of

the developed AI models is another challenge. Most datasets are

generated from a single device type and a single collection center,

and most of the present AI has concentrated on single task within

an overall system, such segmentation or classification, all limiting

the generalizability of the developed AI models.
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AI is unlikely to replace radiologists in the near or far future,

owing to the complexity of creating and training an AI architecture.

What is imperative is that radiologists should understand the basic

working principles of AI and better apply it to medical image

interpretation and analysis. Although a second opinion can be

provided by AI based on USE models using ML or DL

techniques, the final diagnosis decision should be made by

the radiologists.
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Glossary

ACR
BI-
RADS

American College of Radiology Breast Imaging Reporting and Data
System (a standardized imaging reporting and data system for
ultrasound diagnosis of breast nodules proposed by American College
of Radiology)

ACR
TI-
RADS

American College of Radiology Thyroid Imaging Reporting and Data
System (a standardized imaging reporting and data system for
ultrasound diagnosis of thyroid nodules proposed by American
College of Radiology)

AI artificial intelligence (the theory and science of computer systems that
are capable of human intelligence)

ALN axillary lymph node (the lymph nodes growing in the axilla, which is
a common site of metastasis for breast cancer)

ANNs artificial neural networks (a computational framework with a large
number of interconnected neurons or nodes, formed by different
kinds of layers)

ARFI acoustic radiation force impulse (a short-duration high-intensity
acoustic “pushing”

CT computed tomography (a method of examining body organs by
scanning them with X rays and using a computer to construct a series
of cross-sectional scans along a single axis)

BMUS B-mode ultrasound (also known as two-dimensional gray-scale
ultrasound, which is the basis for other ultrasound imaging
techniques)

CEUS contrast-enhanced ultrasound (a technique using a new contrast agent
that can pass through pulmonary circulation, which can observe
microcirculation perfusion of organs and tissues)

CLD chronic liver diseases (a disease process of the liver that involves a
process of progressive destruction and regeneration of the liver
parenchyma leading to fibrosis and cirrhosis)

CLNM cervical lymph node metastasis (the common metastatic sites of neck
tumors, such as thyroid cancer)

CNN convolutional neural network (a type of deep learning network using a
specialized mathematical function called “convolutional”)

DL deep learning (the use of neural networks with many layers stacked)

DLRE deep learning radiomics of elastography (the DL-based radiomics
analysis of ultrasound elastography)

ES elasticity scores (a five-point scoring system applied in strain
elastography)

FLLs focal liver lesions (the focally formed liver lesions)

HCC hepatocellular carcinoma (the most common pathological type of liver
cancer)

LN lymph node (an oval or kidney-shaped organ of the lymphatic system,
distributed widely throughout the body including the armpit and
stomach and linked by lymphatic vessels)

ML machine learning (a branch of AI, which helps the creation of
algorithms that are able to learn from data and make predictions, thus
enabling computers to learn like humans)

MRI magnetic resonance imaging (the use of nuclear magnetic resonance
of protons to produce proton density images)

pCR pathological complete response (the important prognostic factors for
assessing long-term disease-free survival and overall survival in breast
cancer patients)
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PTC papillary thyroid cancer (the most common pathological type of
thyroid cancer)

RF Random Forest (a notion of the general technique of random decision
forests that are an ensemble learning method for classification,
regression and other tasks)

ROI region of interest (a selected subset of samples within a dataset
identified for a particular purpose)

SE strain elastography (a kind of ultrasound elastography using constant
stress)

SR strain ratio (a semi quantitative measurement that is calculated as the
ratio between the strain in the normal reference region and the strain
in the interested region)

SVM Support Vector Machine (the supervised learning models with
associated learning algorithms that analyze data used for classification
and regression analysis)

SWE shear wave elastography (a kind of ultrasound elastography using a
‘push’

SWV shear wave velocity (the measured speed of the produced shear wave,
which is commonly used to quantify the tissue elasticity)

USE ultrasound elastography (a medical imaging modality that maps the
elastic properties of soft tissue).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1197447
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Artificial intelligence - based ultrasound elastography for disease evaluation -&nbsp;a narrative review
	Introduction
	Overview of ultrasound elastography
	Strain elastography
	Shear wave elastography

	Overview of artificial intelligence
	Machine learning
	Deep learning
	Transfer learning
	Radiomics

	Applications of AI in USE imaging
	Liver disease evaluation
	Staging liver fibrosis
	Classification and evaluation of focal liver lesions

	Breast mass evaluation
	Segmentation and delineation of breast masses
	Classification and diagnosis of breast masses
	Prediction of ALN status and treatment response

	Thyroid nodule evaluation
	Segmentation and delineation of thyroid nodules
	Classification and diagnosis of thyroid nodules
	Prediction of CLN status

	Others
	Discussion and conclusion
	Author contributions
	Funding
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


